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Goals
Oscillating systems are a challenge for neural networks

I Oscillating systems are abundant in nature. Examples include
pendulum clocks, ocean waves, the human heartbeat, the
sleep-wake cycle, but also network of interacting chemical species in
a cell can exhibit a periodic dynamics.

I This kind of dynamics is a particularly challenging case for a neural
network, especially when the oscillations have a sawtooth shape, i.e.
with stretches along which the derivative is almost infinite.

I In this study, we show how a neural network with an appropriate
sinusoidal activation function whose parameters are derived from
the node vibrational centrality of the graph describing the set of
chemical reactions is able to well approximate this type of oscillatory
trends typical of various biological systems.



Case study: network of endogenous oscillatory enzyme
reactions
Glycolytic oscillations

Glycolytic oscillations, identified almost 50 years ago, remain the
prototypical example of periodic behaviour in a metabolic circuit.

They last approximately 5-10 minutes in yeast when glucose is
administered at a constant pace. The metabolic process
periodically transforms the glycolytic substrate, which is given at a
constant rate.



Glycolytic oscillations: a model
Goldbeter and Lefever, 1972

I The mechanism of glycolytic oscillations largely relies on the reaction catalysed
by phosphofructokinase (PFK). The production of oscillations by PFK can be
related to its activation by one of its reaction products, adenosine diphosphate
(ADP), via adenosine monophosphate (AMP).

I PFK is an allosteric enzyme phosphofructokinase, which uses ATP as a
phosphate donor to phosphorylate fructose-6-phosphate (F6P) in order to
produce fructose-1,6-diphosphate and ADP.

This model is based on the concerted transition model for allosteric enzymes, to which
is added the positive feedback exerted by the product. To exhibit oscillations such a
system must be open and in non-equilibrium conditions. Therefore, in addition to
PFK, the model includes the substrate input and the consumption of product in a
second enzyme reaction, which may be of Michaelis-Menten type.



Glycolytic oscillations: a scheme

1. Substrate S is supplied at a constant rate and binds to the active and inactive
conformations (respectively R and T ) of an allosteric enzyme, resulting in
product P.

2. P is eliminated through a sink reaction facilitated by an enzyme with linear or
Michaelis-Menten kinetics.

3. The allosteric enzyme is made up of subunits that move between two
conformational states.

4. The product P, a positive effector, only binds to the R state, causing the
allosteric enzyme to change from less active to more active.

The Figure below shows a schematic representation of the mechanism producing the
oscillations.



Glycolytic oscillations: a mathematical model
Goldbeter, 2013

The dynamic of this system is governed by the following equations

d [S ]

dt
= k1 − k2f ([S ], [P]) (1)

d [P]

dt
= rk2f ([S ], [P])− k3[P] (2)

where [S ] and [P] denote the normalized, dimensionless substrate and
product concentrations, f ([S ], [P]) is the enzyme rate function which in
the simple case where the substrate S binds exclusively to the most
active conformation of the enzyme is given by:

f ([S ], [P]) =
[S ](1 + [S ])h−1(1 + [P])h

L + (1 + [S ])h(1 + [P])h
, (3)

Parameters k1 and k2 are the normalized substrate injection rate and
maximum rate of the enzyme reaction, respectively; r is a normalization
parameter, and L� 1 is the allosteric constant of the enzyme measuring
the ratio of inactive (T ) to active (R) conformation in the absence of
ligand. k3[P] is the product sink function, or decay term.



Numerical solution via Runge-Kutta

Figure: The curves obtained by numerical integration of Eqs. (1) and (2
)with explicit Runge-Kutta method of order 5(4) for the following
parameter values: L = 106, k1 = 0.5 s−1, k2 = 5.075 s−1, r = 3,
k3 = 0.81 s−1, h = 2, and initial conditions [S ](t = 0) = [P](t = 0) = 0.



Neural network
Formalisation - part I

A system of n ordinary differential equations (hereafter “ODEs”)
has the following form,

dx1

dt
= F1 (t, x1, x2, . . . , xn)

dx2

dt
= F2 (t, x1, x2, . . . , xn)

...
...

dxn
dt

= Fn (t, x1, x2, . . . , xn)

(4)

defined on t0 < t < T with given initial values,

x1(0) = x
(0)
1 , x2(0) = x

(0)
2 , . . . , xn(0) = x

(0)
n .



Neural network
Formalisation - part II

dx

dt
= f(t, x), x(0) = x0, (5)

where x = [x1, x2, . . . , xn]T is the n × 1 matrix of unknowns (for
example, the concentration of the m chemical species in time), and

f(t, x) =


F1 (t, x1, x2, . . . , xn)
F2 (t, x1, x2, . . . , xn)

...
Fn (t, x1, x2, . . . , xn)


is the n × 1 matrix of functions. The solutions of the system are
the functions describing the behaviour of x1, x2, . . . , xn with
respect to the variable t (that, when the systems of ODEs describe
the dynamics of a system of m variables usually denotes the time).



Neural network
Formalisation - part III

The solution x calculated using a neural network can be expressed
as:

x(t,W) = x (t,W1, . . . ,WN) = σ (WN . . . σ (W2σ (W1t))) , (6)

and the neural network is a system of non-linear equations like

x(t,W) = σ(Wt + b), (7)

where σ is the activation function.



Neural network
Scheme

Figure: The network is fully connected and has one neuron in the input layer, and N
hidden layers of p neurons each. The output layer has as many neurons as there are
equations. The weight matrices W have dimensions as follows: W1 is a p × 1 matrix,
Wi (with 1 < i < N) is a p × p matrix, and finally WN is a q × p matrix, where q is
the number of differential equations of the system. b1, . . . bN are the biases, b1 and
and bN have dimensions p × 1, and bN and q × 1, respectively.



Toward the graph of the chemical reaction network
The node vibrational centrality - part I

Estrada et al. (2010) introduced a centrality measure, named bf
node vibrational centrality.

In the vibrational centrality measure, the external stresses to which
a system may be exposed are modelled through the concept of
temperature. Herein temperature is meant to be a metaphor of all
the different types of stress that the network can be submitted to.
In line with this metaphor, nodes are rigid spheres and edges are
elastic springs, submerged in a thermal bath at a given
temperature T . Vibrational centrality quantifies the amplitude of
the “oscillation” of a node in response to a stress.



Toward the graph of the chemical reaction network
The node vibrational centrality - part II

The n nodes of a network can be conceived as point in a n-dimensional
Euclidean space, represented by the Moore-Penrose pseudo-inverse of
graph Laplacian L = D− A, where D is the diagonal matrix of degrees
and A is the graph adjacency matrix of the network modelled as a graph.
Henceforth we denote by L+ the pseudo-inverse of L. Each diagonal
entry of L+, denoted as l+ii for the i-th node, represents the squared
distance of node i from the origin of the n-dimensional space and hence
measures the nodes topological centrality, which is defined by

C (i) =
1

l+ii
. (8)

Lower the value of l+ii , closer the node is to the origin more topologically
central the node is.



Toward the graph of the chemical reaction network
The node vibrational centrality - part III

Two nodes connected by an arc are then represented as masses connected
by springs (with elastic constant k). Furthermore, staying within the
thermodynamics metaphor, a vibrational potential energy defined as

V (x) =
k

2
x>Lx (9)

is introduced, where x is the vector of node displacements. The
probability distribution of node displacement is defined by the Boltzmann
distribution

P(x) =
e−

1
T V (x)

Z
=

1

Z
exp

(
− k

2T
xTLx

)
(10)

where the partition function Z of the network is

Z ≡
∫

dx exp

(
− k

2T
xTLx

)
.



Toward the graph of the chemical reaction network
The node vibrational centrality - part IV

Given P(x), the mean displacement of the i-th node is, by
definition,

〈∆xi 〉 ≡

√∫
x2
i P(x)dx (11)

It can be shown that the vibrational centrality is

〈∆xi 〉 =

√
T

k
l+ii . (12)



The graph of the chemical reaction network
The adjacency matrix A and the graph Laplacian L are then as follows.

A =

S T R P


0 1 1 0.000 S
0 0 1 1.000 T
0 1 0 5.075 R
0 0 0 0.000 P

L =

S T R P


2 −1 −1 0 S
0 2 −1 −1 T
0 −1 6 −5 R
0 0 0 0 P

Therefore, we obtain the vibrational centrality shown in the Figure below. The
substrate S is the node with the highest vibrational centrality, i.e. with the widest
amplitude of oscillation (as also confirmed by the numerical solution of Eqs. (1).



Neural network activation function
Considerations in order to build it

I The numerical solution shows that product fluctuations occur
after the linear increase of the substrate has reached a certain
value of concentration.

I The substrate is the node with the greatest vibrational
centrality, i.e. the node which, when perturbed is subject to
oscillations of the greatest amplitude.

To take these two points into account, we write the activation
function a(z) as follows

a(z) = a1 sin2(νz)− a2

z + a3
+ a4, z ≥ 0 (13)

where z is the output of the node, ν = 1/〈∆xS〉 (i.e. the
reciprocal of the vibrational centrality of the substrate),
a1 = a2 = 100, a3 = 0, and a4 = 10.



Results
Neural network solutions vs Runge-Kutta solutions in case of simple sinusoidal activation
function

A.

B

Figure: Numerical solution of the system of the differential equations (1) and (2) -
obtained with Explicit Runge-Kutta method of order 5(4) - compared to the output of
the neural network (Snn and Pnn) with the following parameters: (A.) learning rate:
0.01, size of input layer: 1 neuron, size of layer 1: 19 neurons, size of output layer; 2
neurons, activation function 1000 sin2(0.8x), and 2000 epochs; (B.) learning rate:
0.01, size of layer 1: 19, activation function 1000 sin2(0.8x), and 6500 epochs. The
value of the objective function at the last iteration is 42.40 (sub-figures A.), and 62.20
(sub-figures B). The agreement between the numerical solution and the neural
network output is suboptimal in both cases A. and B.



Results
Neural network solutions vs Runge-Kutta solutions in case of vibrational centrality
infromed activation function

Figure: Numerical solution of the system of the differential equations (1)
and (2) - obtained with Explicit Runge-Kutta method of order 5(4) -
compared to the output of the neural network (Snn and Pnn) with the
following parameters: learning rate: 0.025, size of layer 1: 15, activation
function as in Eq. (13), and 2000 epochs. The agreement between the
numerical solution and the neural network output is still non-optimal, but
the oscillatory behaviour is maintained over time and the correct phase
shift between product and substrate is obtained.



Discussion

I The oscillatory behaviour that best approximates the one
given by the numerical solution was found only in the case in
which ν is equal to the reciprocal of the vibrational centrality
of the substrate, i.e. 1/0.43.

I Experiments performed using values even slightly deviating
from this one show a significant disagreement with the
numerical solution and an incorrect phase relationship
between the substrate and product curves. The correct phase
relationship predicts that the product maximum immediately
follows a substrate maximum.



Conclusions

I Although the parameters found in our experiments are the only ones that
reproduce the oscillatory behaviour closest to that of the numerical solution, the
agreement between the numerical solution and the approximation calculated by
the neural network cannot be said to be optimal. We have performed an
extensive exploration of the parameter space of the activation function and the
hyper-parameters of the neural network. These experiments have shown us that
the reason for this disagreement is not due to improper values chosen for these
parameters. The reason should rather be sought in the temporal trend of the
enzyme and substrate.

I The analyses of Goldbeter et al. (2013) show that when the enzyme responsible
for product degradation approaches saturation, the oscillations take on a distinct
triangle shape. When the product sink is linear, the product peak resembles a
pulse. The decreasing sections of the impulse curve with the parameters used
for this simulation have a very high slope (i.e. a derivative close to infinity)
which the neural network cannot resolve appropriately.
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