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Introduction

Question: How can we quantify the agreement of a physical model with
experimental data?

Answer: For example, by means of

Do — O(y(p)) =e(p), J(p) = lO(y(p)) — Dol[§ (1)
D, : Experimental Data of a given observable quantity
y: Predictive Model (either mathematical or computational)
O: Observable to be predicted by the model
p € P: Parameter of our predictive model (scalar, vector, function...) in a space P
g(p): error (in experimental measurement, in theoretical model, in its
computation...)
J(p): Error Functional adequate for our problem; g = 2, or Wasserstein in
Machine Learning, etc.
Approaches:
e Forward Modelling: Given D,, y, and p, compare the prediction O(y(p))
against D,.
@ Inverse Modelling: Given D, and y, infer py that minimizes J(p), without
overfitting below experimental measurement error. There might be multiple
local minimizers py's.
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Physics-Informed-Neural-Networks (PINNs): an Intro

Data Science & Machine Learning: Main advantage is that one develops a
computational model y(p) that can predict future events, based on knowledge of
data D, by fitting a large number of parameters, represented by a vector p.
Choice of parameters is performed by minimizing a functional

Jaata(p) = [[Do — O(y(p))I|- )

Seminal idea for Physics-Informed-Neural-Networks (M. Raissi, P. Perdikaris,
G.E. Karniadaksis, [3] Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial
differential equations, JCP 378, 2019): If a physical "law"” is already known for
the problem,

Fly)=0 3)
consider as well, in the minimization problem for the parameters, the residual
F(y(p)) = R(P),  Jonys(P) = lIR(P)I, (4)
in respecting the satisfaction of a " physical law” known in advance:
J(p) = Jdata(p) + Jphys(p) (5)

Moral: A good model fits the data and also satisfies the Physics of the problem.
Key: role of automatic differentiation in deep learning. Differs from Wang et al, 17
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Brief literature review (non-exhaustive) on
Machine Learning in Computational Physics:

Previous work used Machine Learning as black-box tools

@ Physics-informed ML: "Wang et al., A comprehensive physics-informed
machine learning framework for predictive turbulence modeling, 2017"

@ Examples of machine learning for prediction of physical systems:

> Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder-decoder networks for
surrogate modeling and uncertainty quantification, 2018, arXiv:1801. 06879.

» T. Hagge et al. Solving differential equations with unknown constitutive
relations as recurrent neural networks, 2017, arXiv:1710.02242.

> R. Tripathy et al. Deep UQ: learning deep neural network surrogate models for
high dimensional uncertainty quantification, 2018, arXiv:1802.00850.
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Brief literature review (non-exhaustive) on

Machine Learning in Computational Physics:

o Raissi et al. 2019: revisit activation and loss functions for the differential
operator. Open black-box by understanding automatic diff. in deep learning.

@ Use automatic diff. as in deep learning, to physics-inform neural networks by
differentiation w.r.t. space-time coords. Regularization & lets use simple
feed-forward neural network architecture & training with small data.

@ Lin et al. Why does deep & cheap learning work so well? J. Stat. Phys. 2017

@ Builds upon

>

Psichogios et al. A hybrid neural network-first principles approach to process
modeling, AIChE J. 38 (1992) 1499-1511.

|.E. Lagaris, A. Likas, D.l. Fotiadis, Artificial neural networks for solving
ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (1998)
R. Kondor, N-body networks: a covariant hierarchical neural network
architecture for learning atomic potentials, 2018, arXiv:1803 .01588.

R. Kondor, S. Trivedi, On the generalization of equivariance and convolution
in neural networks to the action of compact groups, 2018, arXiv

M. Hirn, S. Mallat, N. Poilvert, Wavelet scattering regression of quantum
chemical energies, Multiscale Model. Simul. 15 (2017) 827-863.

S. Mallat, Understanding deep convolutional networks, Philos. Trans. R. Soc.
A 374 (2016) 20150203.
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Machine Learning for open quantum systems

Previous work on this line has been developed in the papers below:

@ Deep Reinforcement Learning for Quantum State Preparation with Weak
Nonlinear Measurements. Riccardo Porotti, Antoine Essig, Benjamin Huard,
and Florian Marquard. Quantum 6, 747 (2022)

o Ettore Canonici, Stefano Martina, Riccardo Mengoni, Daniele Ottaviani, and
Filippo Caruso, "Machine Learning based Noise Characterization and
Correction on Neutral Atoms NISQ Devices”, Advanced Quantum
Technologies 7 1, 2300192 (2024).

@ Bjorn Annby-Andersson, Faraj Bakhshinezhad, Debankur Bhattacharyya,
Guilherme De Sousa, Christopher Jarzynski, Peter Samuelsson, and Patrick P.
Potts, " Quantum Fokker-Planck Master Equation for Continuous Feedback
Control”, Physical Review Letters 129 5, 050401 (2022).

However, to our knowledge, nobody has applied PINNs to study the
Wigner-Fokker-Planck model for open quantum systems such as collisional
electron transport in semiconductors yet.
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Overview

We want to solve the Wigner-Fokker-Planck (WFP) equation, under a harmonic
potential, via a Physics Informed Neural Network (PINN).

This equation is used for open quantum systems to model the interaction between
a quantum (sub-)system and its environment [4].

o WFP is a kinetic/diffusive model for open quantum systems

@ Applications in semiconductors, computational electronics, quantum optics,
quantum computing and information science, etc.

o Diffusion operator represents part of the noise (together with a friction term)
introduced by the environment over the (sub-)system with which it interacts

Figure: Open Quantum System
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Wigner Fokker Planck Equation

Describes the time evolution of a quasi-probability Wigner function w(x, k, t),
which is the Wigner transform of the density matrix p [2]

The Wigner-Fokker-Planck model is defined as an Initial Value Problem in the
form

wi + k- Viw + Op[V](w) = Qn rp(w)
x,k € R t e RY,  w(t=0,x,k)=w(x,k)

Qr,rp(w): Quantum Fokker-Planck operator. Models the interaction of the
quantum system and its environment.

On[V](w): Pseudo-differential integral operator. Takes into account the non-local
action of the Potential. [4]

Under a harmonic potential, this will look like a convection-diffusion problem,
simpler than fluid models such as Navier-Stokes!

We will have a "quantum fluid” over a quantum phase space, where there is a flow
of quantum information under diffusion and friction due to environment noise.
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Where is our data coming from?

Using a Monte-Carlo-based (Euler-Maruyama) solver for WFP under a harmonic
potential [1], we generated data from the initial condition to the steady state.

Arash Edrisi (Ph. D. student), Hamza Patwa (undergrad), JAME IS
Monte Carlo (MC) methods for Wigner-Fokker-Planck models under a harmonic potential

Code benchmark: Stochastic modeling of WFP for harmonic potentials with Coherent State IC
Implementation: Euler-Maruyama method for Stochastic Differential Equations

Computational Methods for Wigner-Fokker-Planck
modeling of open quantum systems

Further work: More accurate time evolution methods such as Runge-Kutta 2

Work in progress: Study of Empirical Pseudo-potential Methods (Chelikowsky, Cohen) for
(conduction/valence) band-structure of semiconductor materials (Si, Ge, etc.).

Future Work: quantum computing methods for these eigenvalue calculations for Materials
Related view paper: ‘Noisy intermediate-scale quantum (NISQ) algorithms’, Bharti et al., 2021
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Where is our data coming from?

Algorithm 1 Euler-Maruyama for the Wigner—Fokker—Planck equation (harmonic potential)
1: Define:
2L+ 10
30 2
1
0 o
5 6 < 0.01
6
7:
8
9

- Total_Time < 50. 5
= NumO fTimeStep mund{“"’”’ﬁf’“ﬂ}
: NumO fParticles < 10*
: pp < 0.
10: pg < 0.
e p— [;«1 ;42]
12: qu =1, D,,F, =1

13: ¢ =1.
w D [P 0

0 DFF
15: Arrays Initialization:
16: q ¢ zeros[NumO fTimeStep, NumOf Particles|
17: p + zeros[NumO fTimeStep, NumO fParticles)
: Initial Conditions:
19: g[1,:] ¢~ normrnd(u[1], 0y, [1, NumOf Particles])
20: p[1,:] <= normrnd(p[2], op, [1, NumOf Particles])
21: Update:
22: for eachi € NumOf TimeStep do
23 for each j € NumOf Particles do
24 € < mvnrnd(y, 2Dé;)
25
26
27:
28

5

qli +1, j] < qli,j] + pli,f16 + e[1]
dpf[i +1, j] ¢ pliofl + (=qlij] = pli, /o +€[2]
: end for

Figure: GitHub repository https://github.com/phjame/StochasticWFP (accessed on 29
February 2024), for the computational implementation of an Euler—Maruyama-based

Monte Carlo solver for WFP under a harmonic potential
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https://github.com/phjame/StochasticWFP

WEFP PINN Latest Results

A Feed Forward Neural Network with 8 Hidden layers of 20 neurons. First trained
using the Adam optimizer followed by L-BFGS-B. From the 1,320,000 data points,

we trained using 6,600. Only 0.5% of total dataset.

Noiseless: Losses

Vs
Quantity of Interest Error for Error for 101 4 JrvsJa
Noiseless Noi
Training Training 1072 4
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for Wigner function 103 §
D,,(absolute) 0.004 0.004 10-4 4
Dp(relative) 1.547% 1.536%
Dq(relative) 0.662% 0.687%
Loss
10° 4 1
1
1071 § :
I
Loss 1072 4 1
1
-3 1
R Jp—- H
107*§ --- L-BFGS-B Begins h
|
0 20 40 60 20 100

Every 500th Iteration

We modified Raissi's repo for N-S (maziarraissi.github.io/PINNs) for WFP
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Conclusions

@ We have used Physics-Informed-Neural-Networks (PINNs) for " data-driven
discovery of PDEs": the inverse problem for the diffusion matrix in the
Wigner-Fokker-Planck equation under a harmonic potential.

@ By modifying Raissi et al.’s repository, we have adapted their code for the
data-driven discovery of the Navier-Stokes fluids problem to our
"quantum-fluid” problem in phase space, the Wigner-Fokker-Planck
equation, given the similarities in the math & physical interpretation of a flow
transport under diffusion processes.

@ Preliminary data indicates that parameters estimated to both fit the data and
respect the quantum physics are found to be as close to the true values as
Raissi et al. were for Navier Stokes (relative errors of order 1%): Sanity check

@ So far our data is "synthetic”. Later on, our data for this phenomenon could
come from actual observables measured in an experimental lab:

» Assuming that the noise in an open quantum system is Markovian, WFP is a
good model (the Physics to be respected)

» This data-driven discovery of PDEs could help estimate both diffusion and
friction mechanisms of the problem: we could estimate quantitatively the noise
introduced by the environment!

» This could have interesting applications in the control and use of noise in open
quantum systems: ground state preparation via Lindbladians, etc.
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