

Computational Risk Assessment in Water Distribution Network

Yas Barzegar¹, Atrin Barzegar², Stefano Marrone², Laura Verde², Francesco Bellini¹, and Patrizio Pisani³

 ¹ Department of Management, Banking and Commodity Sciences, Sapienza University, Rome, 00161 {yas.barzegar,francesco.bellini}@uniroma1.it
 ² Universit. degli Studi della Campania "Luigi Vanvitelli", Mathematics and Physics Department, Viale Lincoln n°5, Caserta 81100, Italy {atrin.barzegar,stefano.marrone,laura.verde}@unicampania.it 3 Unidata S.p.A., Viale A. G. Eiffel, 00148 Roma, Italy patrizio.pisani@unidata.it

7-9 July 2025 • Singapore

- This study introduces a two-stage Mamdani Fuzzy Inference System (M-FIS) for assessing risks in Water Distribution Networks.
- It evaluates hazards across wells, tanks, and pump stations using fuzzy logic based on Occurrence,
 Severity, and Detectability.
- □ Monte Carlo Simulation enhances result robustness by accounting for uncertainty in risk factors.
- Tanks were identified as the highest-risk component when the model was applied to Hashtgerd, Iran.
- □ The approach supports informed decision-making through interpretable, data-light risk evaluation.
- Recommendations include zoning control, infrastructure upgrades, and real-time monitoring systems to reduce overall network risk.

Introduction

- Water Distribution Networks (WDNs) are essential for delivering clean and safe water to urban populations.
- Aging infrastructure, environmental stress, and increasing demand pose significant risks to system reliability.
- □ Traditional risk assessment methods often struggle with uncertainty and incomplete data.
- □ This study adopts a fuzzy logic-based approach to enhance risk analysis under uncertain conditions.
- □ The goal is to support proactive maintenance and strategic decision-making in critical water systems.
- □ The methodology is tested on a real-world case study to demonstrate its effectiveness and adaptability.

Water Network Infrastructure

Methodology

- Inputs: Occurrence, Severity, Detectability
- Output: Risk Level
- Membership Functions:
 - Type: Triangular (for simplicity and computational efficiency)
 - Granularity: 3 levels per input (Low, Medium, High)

$\mu_A(\mathbf{x}) = \{$	0	if $x \le a$ or $x \ge c$	a : lower bound
	(x - a)/(b - a)	if a < x \leq b	b : peak value
	(c - x)/(c - b)	if b < x < c	c:upperbound
	3		

```
• Rule Base:
```

- Expert-driven rule matrix consists of 27 Rules for each model
- Combined in a hierarchical manner for subsystem evaluation
- Defuzzification Method: Centroid (Center of Gravity)
- Why Mamdani: Prioritizes interpretability with linguistic rule-based design
- Integration: Coupled with Monte Carlo Simulation for uncertainty handling.

 $RPN = (1 / N) \times \Sigma_{i=1}^{n} (S_i \times O_i \times D_i)$

Results

Risk Evaluation in Water Wells

Hazard	0	s	D	Risk	Critical Level
Wells near highways and busy routes	7	8	8	92.9	VVII
Soil conditions of the area	6	8	8	83.3	VH
Urban activities, pollution sources	7	6	8	83.3	VH
Contaminated aquifer(treated wastewater recharge-hardness/TDS)	5	7	8	83.3	VH
Intentional contamination of water through sabotage operations	4	8	8	83.3	VH
Contaminated aquifer (toxic minerals - wastewater recharge)	4	7	8	83.3	VH
Poor well maintenance, corrosion, casing issues	6	6	6	50	M
Lack of proper wellhead protection	4	7	7	83.3	VH
Insufficient perimeter and physical security	3	8	8	66.7	Н
Physical attacks	6	6	5	50	M
Encroachment on buffer zone	3	5	8	50	M
Forestry and agricultural activities	3	5	8	50	М
Direct injection of well water into the network	2	5	6	33.3	L
Animal husbandry and livestock activities	1	6	7	50	M
Industrial and mining activities	1	4	7	50	M
Final Risk of Water Wells				66.18	н

Risk Evaluation in Water Pump Station

Hazard	0	s	D	Risk	Critical Level
Long lifespan of the pumping station and transmission network	8	7	7	92.9	VVH
Chlorination near high-traffic areas	7	7	8	92.9	VVH
Water pressure and flow fluctuations	8	6	7	83.3	VH
Erosion and corrosion of infrastructure facilities	8	7	6	83.3	VH
Short distance of water pipes to sewage networks and wells	7	6	6	66.7	Н
Deliberate contamination of water during sabotage operations	6	8	4	66.7	Н
Inadequate perimeter and physical security	8	5	4	66.7	Н
Deficiency and absence of warning and monitoring equipment	5	5	6	50	М
Lack of emergency power	4	6	6	50	М
Weak performance and deficiencies in the disinfection system	7	4	5	66.7	Н
Improper storage of chemicals	4	4	4	50	М
Unprotected, open facilities with leaks	4	3	4	33.3	L
Average Risk of Water Pump Station				66.87	н

Risk Evaluation in Water Tank

Hazards	0	S	\mathbf{D}	Risk	Critical Level
Physical attacks	8	8	9	93.8	VVH
Erosion and corrosion of infrastructure facilities	8	8	8	93.8	VVH
Chlorine storage near high-traffic areas	9	7	8	92.9	VVH
Pressure fluctuations and changes in flow		8	7	92.9	VVH
High lifespan of the distribution network	8	8	6	83.3	VH
Illegal and unauthorized connections	7	6	8	83.3	VH
Inadequate perimeter and physical protection	7	6	8	83.3	VH
Deliberate contamination of water during sabotage operations	5	7	8	83.3	VH
Very close distance of water pipes to sewage networks and wells	6	5	7	66.7	Н
Lack of warning/monitoring equipment	7	5	5	66.7	Н
Delayed cleaning of tanks	4	6	7	66.7	Н
Improper storage of chemicals	5	3	5	33.3	L
Unprotected, open tanks with leaks	3	5	5	33.3	L
Weak performance and deficiencies in the disinfection system	3	6	4	33.3	L
Average Risk of water tank				71.9	VH

Computational Risk Assessment in Water Distribution Network

Results:Surface Viewer

Surface viewer of risk related to water wells hazard

The surface viewer of the final risk

ÍCC5 2025

Conclusion

- A fuzzy logic-based risk assessment model was employed for the Hashtgerd, Iran water distribution network.
- The model uses a two-stage Mamdani FIS to evaluate hazards in wells, tanks, and pump stations.
- □ Triangular membership functions and centroid defuzzification enabled accurate risk quantification.
- □ Water tanks have the highest average risk (71.9%), highlighting infrastructure vulnerabilities.
- □ The method supports prioritizing maintenance, security, and mitigation strategies.
- □ This flexible approach can be applied to other urban areas with diverse infrastructure profiles.
- □ Results emphasize the need for real-time monitoring, proactive zoning, and structural upgrades.

Future work:

□ Integration with AI and IoT technologies could enhance future risk prediction and responsiveness. We can add other

components of the water distribution network in order to have a more accurate model.