Detecting potential HIV inhibitors using the Cross Siamese Network

Konrad Witkowski^a, Agnieszka Duraj^a, Piotr S. Szczepaniak^a

^a Institute of Information Technology, Lodz University of Technology, Politechniki 8, Lodz 93-590, Poland

Presentation plan

- 1. Introduction
- 2. Models
- 3. Experiment
- 4. Summary

Introduction

Human Immunodeficiency Virus

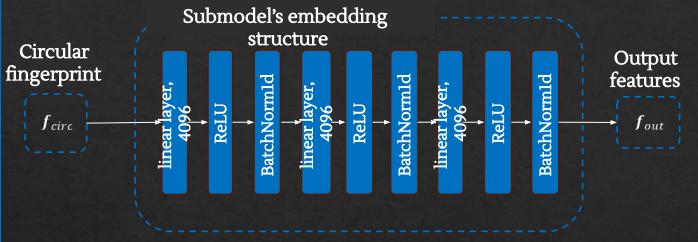
- (HIV)
 HIV is a Lentivirus (subgroup of retrovirus) targeting the human immune system. HIV may lead to acquired immunodeficiency syndom (AIDS).
- At the end of 2023 there were approximately 39.9 millions people with HIV, 65% of them living in the WHO African Region.
- AIDS is not curable. However, undertaking an antiviral therapy may slow down the disease and prolong the life expectancy of a patient.

Publicatio

- n The publication introduces a novel machine learning model Cross Siamese Network (CSN) based on Siamese Network architecture.
 - CSN was tested on indicating the HIV inhibitors

Models - Siamese Mol Net (SMN)

SMN as classificator

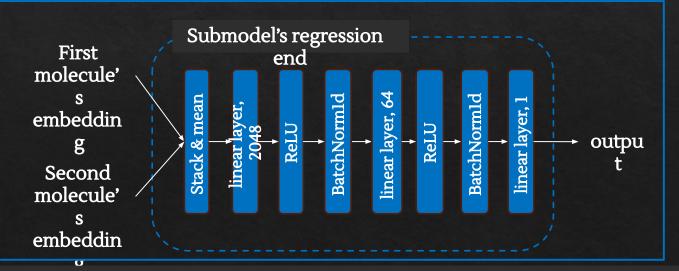


- The SMN receives as input Circular fingerprints of length 2048
- The embedding structure generates a vector with dimensionality of 4096

SMN as

regressor

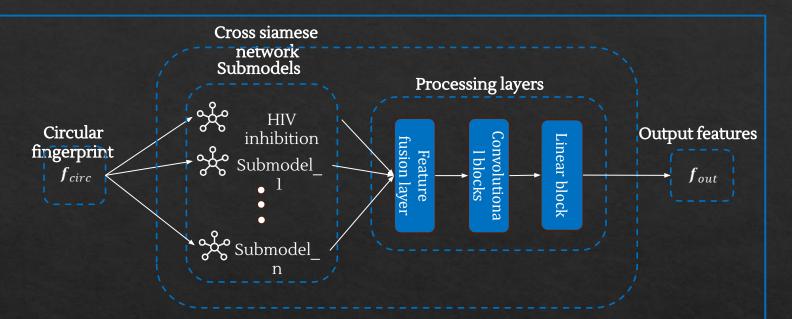
The regression type of SMN stacks the vector representations created by the embedding structure and outputs a single element vector – estimated value

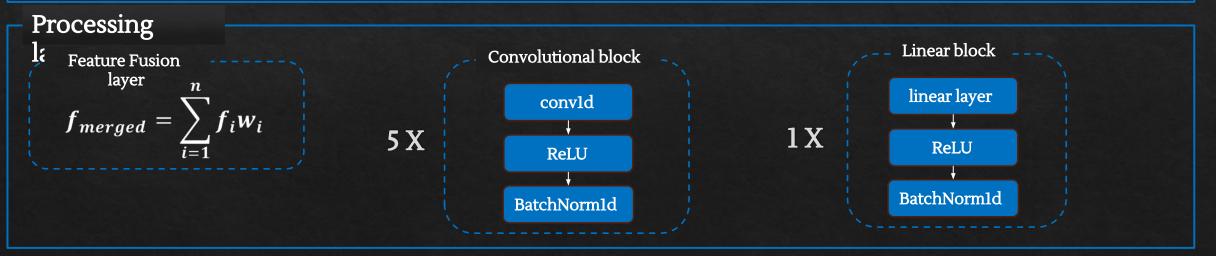


Models - Cross Siamese Network (CSN)

Architectur

- Model consists of several submodels (SMNs) whose outputs is merged by feature fusion layer
- The input f_{circ} for each of SMN is a Circular Fingerprint of length 2048

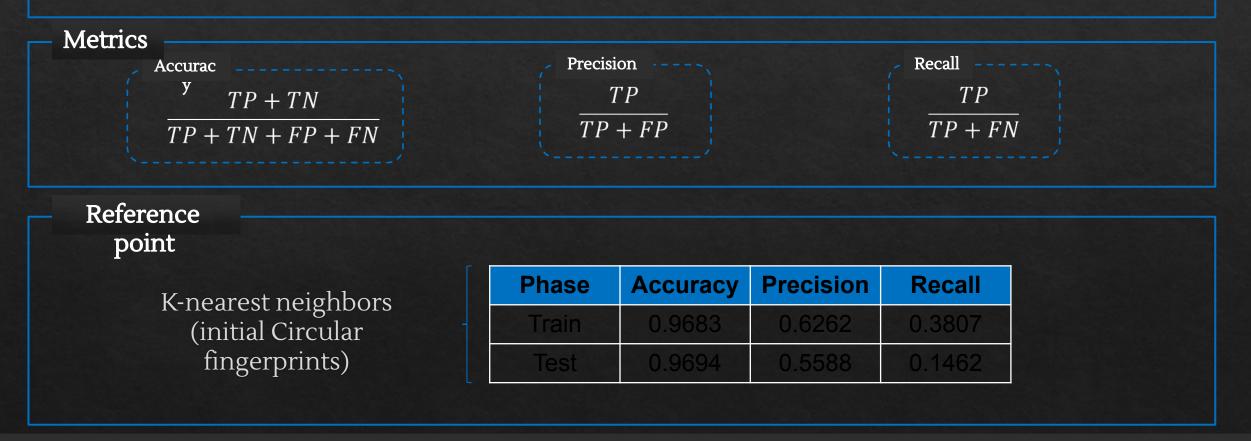




Experiment - overview

Description

The experiment aimed to verify the efficacy of the new architecture in indicating the potential HIV inhibitors. To conduct the evaluation, we trained a set of auxiliary SMNs which were used as components for the CSNs.

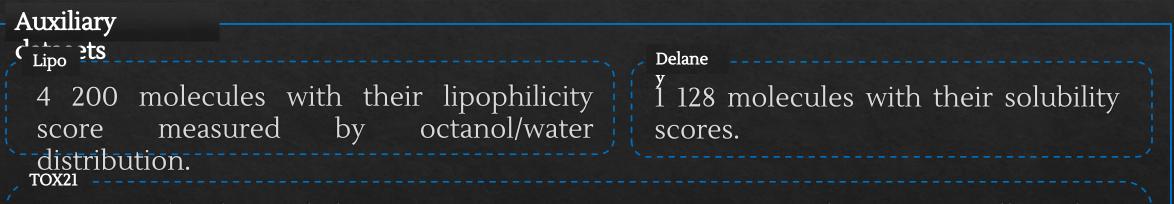


Experiment - datasets

HIV inhibitors

The datasets consists of **41 719** molecules, each described with one of three labels CA (confirmed active), CM (confirmed moderately active), CI (confirmed inactive).

Class	Count	Share	
CA	456	1%	
СМ	1068	3%	
CI	40 195	96%	



12 707 molecules and their toxicity measurement (compound activity in all nuclear receptor signaling pathways). Selected categories: androgen receptor (NR_AR), androgen receptor ligand binding (NR_AR_LBD), androgen receptor aryl hydrocarbon receptor (NR_AR_AHR) and aromatase receptor (NR_AROMAT).

Experiment - training

Loss functions

$$L(y_i, \hat{y}_i) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Triplet margin
loss
$$L(a_i, p_i, n_i) = \max\{||a_i - p_i||_2 - ||a_i - n_i||_2 + margin, 0\}$$

Batch

ዋሪባ^s ቴፕሬቲት የትውጠው sition we utilized hard batch mining. We also made sure that each batch had the same proportion of positive and negative samples.

Weighting strategies $w_{i}=1$ Weights	$w_{i} = \begin{cases} \frac{number \ of \ neg. \ samples}{number \ of \ pos. \ samples}, a_{i} \ is \ a \ pos. \ sample \\ 1, a_{i} \ is \ a \ neg. \ sample \end{cases}$

Experiment - results

Standard

.weights best result in terms of precision was achieved by SMN_HIV – the model reached approximately 0.86 on the test set. Its recall was around 0.05.

• Adding the auxiliary models to the CSN did not lead to better performance.

Model	Т	Training			Testing		
	Accuracy	Precisio n	Recall	Accuracy	Precisio n	Recall	
SMN_HIV	0.9721	0.8668	0.3011	0.9696	0.8571	0.0462	
CSN_HIV	0.9673	0.6137	0.3417	0.9686	0.511	0.1769	
CSN_HIV_LIPO	0.9666	0.6255	0.267	0.9691	0.6	0.0922	
CSN_HIV_TOX_NR_AR	0.9664	0.6123	0.3289	0.9688	0.4857	0.1632	
CSN_HIV_TOX_NR_AROMAT	0.9666	0.614	0.3433	0.9686	0.4857	0.1323	
CSN HIV TOX NR AR LBD	0.9678	0.631	0.3117	0.9686	0.5926	0.1231	
CSN_HIV_TOX_NR_AR_AHR	0.967	0.6755	0.2281	0.9686	0.5568	0.0769	
CSN HIV DELANEY	0.9683	0.625	0.3856	0.9696	0.5439	0.2385	

Boosted

- .weights boosted weighting strategy increased the recall of SMN_HIV to 0.15, but this came at the cost of reduced precision (0.71).
- A similar effect was observed in the case of the CSN network increased recall simultaneously reduced precision.

Model	Training			Testing			
	Accuracy	Precisio n	Recall	Accuracy	Precisio n	Recall	
SMN_HIV	0.9829	0.8788	0.6299	0.9713	0.7143	0.1538	
CSN_HIV	0.9672	0.6423	0.2784	0.9677	0.4	0.0462	
CSN_HIV_LIPO	0.9671	0.6118	0.3287	0.9684	0.5	0.1538	
CSN HIV TOX NR AR	0.9685	0.6471	0.3482	0.9703	0.6333	0.1462	
CSN HIV TOX NR AROMAT	0.9672	0.6498	0.2711	0.9691	0.6	0.0692	
CSN HIV TOX NR AR LBD	0.9676	0.6267	0.3312	0.9699	0.5938	0.1462	
CSN HIV TOX NR AR AHR	0.9693	0.6708	0.3523	0.9711	0.8235	0.1077	
CSN_HIV_DELANEY	0.9675	0.6153	0.3531	0.9684	0.5	0.1231	

Summary

Conclusion

- The^s introduced architecture was able to enhance the quality of molecular embeddings for indicating potential HIV inhibitors.
- The boosted weighting strategy allowed for control of the precision-recall trade-off during the training process.
- The molecular representations generated by the CSNs were less effective than those produced by the SMNs.

Next

- steps Refine the architecture, training approach and propose a method for visualizing key molecular substructures.
- Develop an algorithm (data splitter) for dividing a set of chemical molecules into training and test subsets.