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Introduction

▪ The recent incorporation of AI into CFD has opened new prospects for faster 

and more reliable simulations

▪ In work [1], we proposed a methodology aimed at enhancing CFD simulations 

by integrating two main components: the AI supervisor and the AI accelerator

▪ This research explores the potential of mixed precision techniques with diverse 

data formats - BF16, TF32, and FP32 - to accelerate the distributed data-parallel 

training of our DNN model proposed for CFD motorBike simulations on an HPC 

system using multiple NVIDIA GH200 chips

▪ Especial emphasis is given to validating and tuning the accuracy of training 

concerning the impact of mixed precision methods and partitioning a large 

training dataset into smaller batches

▪ We aim to understand better how various number formats impact the 

performance-accuracy trade-off in training DNN models for CFD simulations on 

modern HPC platforms with multiple GPUs and nodes

1. Krzysztof Rojek, Roman Wyrzykowski, and Pawel Gepner. AI-Accelerated CFD Simulation Based on 

OpenFOAM and CPU/GPU Computing. In Maciej Paszynski, Dieter Kranzlm¨uller, Valeria V. 

Krzhizhanovskaya, Jack J. Dongarra, and Peter M. A. Sloot, editors, Computational Science – ICCS 2021, 

pages 373–385, 2021



Floating-point data formats and mixed 

precision in AI-accelerated CFD simulation

▪ Precision in deep learning models is a critical factor influencing performance

➢ FP32 (float32) Format

• Backbone of deep learning

• High range of representable values

• Suitable for accuracy-critical AI computations

• Requires significant memory and computing resources

➢ FP16 (float16) and BF16 (bfloat16) Formats

• Lower precision formats

• Reduced memory usage and computational demands

• Attractive for large-scale AI computations (e.g., training large models)

• Potential numerical instability in certain computations

➢ TF32 (TensorFloat-32)

• It uses only 19 bits with three additional bits for mantissa compared to BF16

• Practically the same accuracy for AI computation as the FP32 format while 
providing radical performance compared to single-precision

➢ Mixed Precision Techniques

• Trade-offs between precision, memory constraints, and computational 
efficiency

• Optimal choice depends on the specific application and precision needs



Deep Neural Network for AI-Accelerated 

CFD Simulation

▪ The AI model for predicting iteration results in motorBike CFD simulations 

leverages a variational autoencoder (VAE) architecture

▪ The AI model is trained on extensive datasets from RANS simulations, designed 

to infer and optimize the estimation of flow velocity U and pressure p in a 

motorcycle aerodynamic analysis

▪ The dataset is constructed through a parametric series of simulations with key 

physical variables, systematically varied to capture a broad range of operational 

conditions

▪ The VAE is used to predict critical CFD quantities such as pressure and velocity 

around a motorbike geometry

▪ Our approach employs an ML pipeline with four iterations of CFD simulation, 

which produces the input data for the VAE and generates a single predicted 

output

▪ Each input corresponds to q quantities (e.g., pressure, velocity) across n
domain cells, represented as an array of size timesteps × n × q

▪ The output is represented as an array of size 1 × n × 1, predicting the last time 
step’s pressure distribution



Distributed Data Parallel Training of DNN

▪ Distributed data-parallel (DDP) training is an advanced form of data-parallel 

(DP) training, assuming computations across multiple nodes and allowing 

training to scale beyond a single machine

▪ Training DNN models relies on executing iteratively three steps: (i) the forward 

pass to compute loss, (ii) the backward pass to compute gradients, and (iii) the 

optimizer step to update parameters

▪ In DDP training, multiple processes are launched on various machines with 

each process usually assigned to a single GPU

➢ Each process performs the forward pass independently on separate partitions of 
the training dataset to calculate the local gradients

➢ Models for all processes have to be synchronized at each training iteration by 
sharing and averaging the local gradients in order to compute the global gradient 
used by each process to update the model

▪ For the DDP training, we can distinguish the batch size BS corresponding to the 

size of subsets processed by each GPU and the effective batch size BEf , which 

corresponds to the size of the whole dataset processed by all p GPUs of the 

computing platform, where BEf = pBS

▪ In this work, PyTorch is employed to implement DDP training of DNN



Testing platform

▪ The benchmarks are performed on the Helios supercomputer installed at 

ACC Cyfronet AGH

▪ The tests are executed on four nodes with four NVIDIA GH200 accelerators

✓ NVIDIA GH200 Superchip is based on heterogenous Grace Hooper 
architecture 

➢ It combines the high-performance capabilities of the NVIDIA Hopper H100 
GPU with the versatility of the NVIDIA Grace CPU based on Neoverse V2 
Armv9 architecture

➢ It has 72 cores and up to 480GB of LPDDR5X memory

➢ The GPU chip includes 16,896 FP32 and up to 144 GB of HBM3e memory 

➢ GPU contains 528 fourth-generation Tensor Cores that support various 
precisions, including FP64, FP32, BF16, TF32, and newly introduced FP8

➢ The theoretical peak performance (without sparsity) for TF32 and BF16 
formats equals 494 and 990 TFlop/s, respectively

▪ Software installed on the platform:

➢ Python 3.11.5

➢ PyTorch 2.3.1

➢ NVIDIA CUDA SDK 12.4.0



Performance and accuracy evaluation of 

multi-GPU DNN training with BF16 data format

▪ The performance and accuracy of parallel DNN training with BF16 

data format is evaluated in the following three scenarios:

➢ Scenario 1: Benchmarking the scalability without considering accuracy
• The fixed number NE = 50 of training epochs is executed on various GPU 

numbers, with the batch size BS = 16 set corresponding to the maximum 
portion of the dataset that ensures all computations fit into the GPU 
memory

➢ Scenario 2: Investigating the scalability of training with considering 
accuracy
• Unlike the previous scenario, training is performed for different numbers 

of epochs until the loss reaches a value equal to that obtained for a 
single GPU (with a tolerance of 10%)

➢ Scenario 3: Analyzing the scalability of training when batch sizes BS and 
BEf are selected concerning the performance and accuracy trade-off

▪ PyTorch Automatic Mixed Precision (torch.amp) package is 

employed to enable mixed-precision computations with BF16 format



Performance and accuracy evaluation of 

multi-GPU DNN training with BF16 data format

▪ Performance and accuracy results achieved for Scenario 1

▪ Increasing the number of GPUs significantly reduces the execution time of DNN 

training, with nearly linear scaling and efficiency remaining high across different GPU 

configurations

▪ Using all GPUs allows us to accelerate the training 14.6 times (89% of ideal 

scalability)

▪ However, while training performance increases significantly, the accuracy decreases 

when employing more GPUs

▪ The final loss remains relatively stable when using up to 4 GPUs, but it rises 

significantly for 8 and 16 GPUs (0.211 and 0.278, respectively)

▪ This behavior suggests that, in our case, selecting a large size BEf negatively affects 

the training convergence.

1 x GH200 2 x GH200 4 x GH200 8 x GH200 16 x GH200

Time [s] 1274 657 336 175 90

Final loss 0.141 0.149 0.148 0.211 0.278

Speedup 1 1.94 3.79 7.28 14.16



Performance and accuracy evaluation of 

multi-GPU DNN training with BF16 data format

▪ Performance and accuracy results achieved for Scenario 2

▪ In this scenario, training is performed only for 8 and 16 GPUs as yielding 

noticeably lower accuracy in Scenario 1

▪ The tests show that NE = 74 and NE = 94 epochs are required to reach the 

loss value achieved for a single GPU

▪ However, increasing NE decreases the training performance significantly

▪ As a result, the value of speedup is equal to only 4.9 and 7.41 for 

configurations with 8 and 16 GPUs, respectively

1 x GH200 2 x GH200 4 x GH200 8 x GH200 16 x GH200

Time [s] - - - 260 172

Speedup - - - 4.9 7.41



▪ Performance and accuracy results achieved for Scenario 3

▪ This scenario starts with assuming the same effective batch size BEf = 16 as BS for a 

single GPU, regardless of the number of GPUs

▪ The obtained results indicate better scalability than Scenario 2 while providing the 

desired accuracy

▪ At the same time, the results achieved for Scenario 1 show a relatively stable loss for 

up to 4 GPUs with the effective batch size BEf ≤ 4∗16 = 64

▪ So, it is rational to set BEf = 64 for 8 and 16 GPUs as well, improving scalability 

considerably with the speedup of 6.4 and 11.58 for 8 and 16 GPUs, respectively

▪ These performance gains come at slightly higher loss but within the tolerance

1 x GH200 2 x GH200 4 x GH200 8 x GH200 16 x GH200

BEf = 16

Time [s] 1274 764 396 217 129

Final loss 0.141 0.14 0.144 0.142 0.146 

Speedup 1 1.67 3.22 5.87 9.88

BEf = 64

Time [s] - - - 199 110

Final loss - - - 0.15 0.152

Speedup - - - 6.4 11.58

Performance and accuracy evaluation of 

multi-GPU DNN training with BF16 data format



Performance and accuracy evaluation of 

multi-GPU DNN training with BF16 data format

▪ The comparison of scalability achieved for different scenarios with BF16 on the 

multi-GPU system using NVIDIA GH200 chips

▪ While Scenario 1 provides the best scalability, it delivers lower accuracy for 

configurations with 8 and 16 GPUs

▪ The opposite is true for Scenario 2, which provides the desired accuracy but at the 

cost of performance

▪ Finally, Scenario 3 achieves a reasonable speedup for all numbers of GPUs while 

maintaining the desired accuracy 



Performance-accuracy trade-off for TF32 format 

versus BF16 and FP32 formats

▪ Performance and accuracy achieved for training with TF32 and FP32 formats for

NE = 50 epochs and BS = 2

▪ For implementing mixed precision computations with TF32 format, we use

torch.backends module

▪ Besides good scalability (speedup of about 14 times for 16 GPUs), the TF32 format 

provides better accuracy than BF16 for all numbers of GPUs 

▪ The performance gap between TF32 and BF16 decreases when using more GPUs

➢ For 16 GPUs, TF32 is only 1.17 times slower than BF16 format, with 1.09 times 
better accuracy

▪ Using TF32 reduces computation time by approximately 1.25 times compared to 

FP32 across the tested GPU counts, while maintaining accuracy behavior practically 

identical to the full precision FP32 solution

1 x GH200 2 x GH200 4 x GH200 8 x GH200 16 x GH200

TF32

Time [s] 1805 938 485 250 129

Final loss 0.118 0.114 0.12 0.138 0.139 

Speedup 1 1.92 3.72 7.22 13.99

FP32

Time [s] 2256 1157 603 309 161

Final loss 0.118 0.128 0.129 0.135 0.137 

Speedup 1 1.95 3.74 7.3 14.01



Conclusion and future work

▪ This work investigates the impact of diverse floating-point data formats - BF16, 

TF32, and FP32 - on the performance and accuracy of training CFD AI models 

on multi-GPU platforms

▪ Leveraging mixed precision based on the BF16 format on 16 GPUs allows us to 

accelerate training the model by about 11.6 times, preserving the same loss 

value as for a single GPU

▪ TF32 data format provides better accuracy than BF16, but requires more 

computational overheads 

▪ The accuracy behavior of the mixed precision solution with TF32 is practically 

the same as that of the full precision option with FP32

➢ At the same time, TF32 allows us to speed up the computations 1.25 times 
across the considered range of GPU numbers

▪ In the future, we plan to study the feasible methods of increasing the effective 

batch size more systematically without decreasing training accuracy

▪ Another direction of our future work is exploiting AI accelerators with alternative 

architecture, such as Intel Habana Gaudi 2 and Gaudi 3 platforms



Thanks for your attention :)
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