
Influence of Mixed Precision on

Performance and Accuracy of DNN

Training for AI-Accelerated CFD

Simulations on NVIDIA Multi-GPU System

ICCS 2025
7-9 July 2025

Kamil Halbiniak1, Krzysztof Rojek1, Roman Wyrzykowski1,
Paweł Gepner2 and Norbert Meyer3

1 Czestochowa University of Technology, Poland
2 Warsaw Technical University, Poland

3 Poznan Supercomputing and Networking Center, Poland

Agenda

▪ Introduction

▪ Floating-point data formats and mixed precision in

AI-accelerated CFD simulation

▪ Deep neural network for AI-accelerated CFD simulation

▪ Distributed data parallel training of DNN

▪ Overview of testing platform

▪ Performance and accuracy evaluation of multi-GPU DNN

training with BF16 data format

▪ Performance-accuracy trade-off for TF32 format versus BF16

and FP32 formats

▪ Conclusions

Introduction

▪ The recent incorporation of AI into CFD has opened new prospects for faster

and more reliable simulations

▪ In work [1], we proposed a methodology aimed at enhancing CFD simulations

by integrating two main components: the AI supervisor and the AI accelerator

▪ This research explores the potential of mixed precision techniques with diverse

data formats - BF16, TF32, and FP32 - to accelerate the distributed data-parallel

training of our DNN model proposed for CFD motorBike simulations on an HPC

system using multiple NVIDIA GH200 chips

▪ Especial emphasis is given to validating and tuning the accuracy of training

concerning the impact of mixed precision methods and partitioning a large

training dataset into smaller batches

▪ We aim to understand better how various number formats impact the

performance-accuracy trade-off in training DNN models for CFD simulations on

modern HPC platforms with multiple GPUs and nodes

1. Krzysztof Rojek, Roman Wyrzykowski, and Pawel Gepner. AI-Accelerated CFD Simulation Based on

OpenFOAM and CPU/GPU Computing. In Maciej Paszynski, Dieter Kranzlm¨uller, Valeria V.

Krzhizhanovskaya, Jack J. Dongarra, and Peter M. A. Sloot, editors, Computational Science – ICCS 2021,

pages 373–385, 2021

Floating-point data formats and mixed

precision in AI-accelerated CFD simulation

▪ Precision in deep learning models is a critical factor influencing performance

➢ FP32 (float32) Format

• Backbone of deep learning

• High range of representable values

• Suitable for accuracy-critical AI computations

• Requires significant memory and computing resources

➢ FP16 (float16) and BF16 (bfloat16) Formats

• Lower precision formats

• Reduced memory usage and computational demands

• Attractive for large-scale AI computations (e.g., training large models)

• Potential numerical instability in certain computations

➢ TF32 (TensorFloat-32)

• It uses only 19 bits with three additional bits for mantissa compared to BF16

• Practically the same accuracy for AI computation as the FP32 format while
providing radical performance compared to single-precision

➢ Mixed Precision Techniques

• Trade-offs between precision, memory constraints, and computational
efficiency

• Optimal choice depends on the specific application and precision needs

Deep Neural Network for AI-Accelerated

CFD Simulation

▪ The AI model for predicting iteration results in motorBike CFD simulations

leverages a variational autoencoder (VAE) architecture

▪ The AI model is trained on extensive datasets from RANS simulations, designed

to infer and optimize the estimation of flow velocity U and pressure p in a

motorcycle aerodynamic analysis

▪ The dataset is constructed through a parametric series of simulations with key

physical variables, systematically varied to capture a broad range of operational

conditions

▪ The VAE is used to predict critical CFD quantities such as pressure and velocity

around a motorbike geometry

▪ Our approach employs an ML pipeline with four iterations of CFD simulation,

which produces the input data for the VAE and generates a single predicted

output

▪ Each input corresponds to q quantities (e.g., pressure, velocity) across n
domain cells, represented as an array of size timesteps × n × q

▪ The output is represented as an array of size 1 × n × 1, predicting the last time
step’s pressure distribution

Distributed Data Parallel Training of DNN

▪ Distributed data-parallel (DDP) training is an advanced form of data-parallel

(DP) training, assuming computations across multiple nodes and allowing

training to scale beyond a single machine

▪ Training DNN models relies on executing iteratively three steps: (i) the forward

pass to compute loss, (ii) the backward pass to compute gradients, and (iii) the

optimizer step to update parameters

▪ In DDP training, multiple processes are launched on various machines with

each process usually assigned to a single GPU

➢ Each process performs the forward pass independently on separate partitions of
the training dataset to calculate the local gradients

➢ Models for all processes have to be synchronized at each training iteration by
sharing and averaging the local gradients in order to compute the global gradient
used by each process to update the model

▪ For the DDP training, we can distinguish the batch size BS corresponding to the

size of subsets processed by each GPU and the effective batch size BEf , which

corresponds to the size of the whole dataset processed by all p GPUs of the

computing platform, where BEf = pBS

▪ In this work, PyTorch is employed to implement DDP training of DNN

Testing platform

▪ The benchmarks are performed on the Helios supercomputer installed at

ACC Cyfronet AGH

▪ The tests are executed on four nodes with four NVIDIA GH200 accelerators

✓ NVIDIA GH200 Superchip is based on heterogenous Grace Hooper
architecture

➢ It combines the high-performance capabilities of the NVIDIA Hopper H100
GPU with the versatility of the NVIDIA Grace CPU based on Neoverse V2
Armv9 architecture

➢ It has 72 cores and up to 480GB of LPDDR5X memory

➢ The GPU chip includes 16,896 FP32 and up to 144 GB of HBM3e memory

➢ GPU contains 528 fourth-generation Tensor Cores that support various
precisions, including FP64, FP32, BF16, TF32, and newly introduced FP8

➢ The theoretical peak performance (without sparsity) for TF32 and BF16
formats equals 494 and 990 TFlop/s, respectively

▪ Software installed on the platform:

➢ Python 3.11.5

➢ PyTorch 2.3.1

➢ NVIDIA CUDA SDK 12.4.0

Performance and accuracy evaluation of

multi-GPU DNN training with BF16 data format

▪ The performance and accuracy of parallel DNN training with BF16

data format is evaluated in the following three scenarios:

➢ Scenario 1: Benchmarking the scalability without considering accuracy
• The fixed number NE = 50 of training epochs is executed on various GPU

numbers, with the batch size BS = 16 set corresponding to the maximum
portion of the dataset that ensures all computations fit into the GPU
memory

➢ Scenario 2: Investigating the scalability of training with considering
accuracy
• Unlike the previous scenario, training is performed for different numbers

of epochs until the loss reaches a value equal to that obtained for a
single GPU (with a tolerance of 10%)

➢ Scenario 3: Analyzing the scalability of training when batch sizes BS and
BEf are selected concerning the performance and accuracy trade-off

▪ PyTorch Automatic Mixed Precision (torch.amp) package is

employed to enable mixed-precision computations with BF16 format

Performance and accuracy evaluation of

multi-GPU DNN training with BF16 data format

▪ Performance and accuracy results achieved for Scenario 1

▪ Increasing the number of GPUs significantly reduces the execution time of DNN

training, with nearly linear scaling and efficiency remaining high across different GPU

configurations

▪ Using all GPUs allows us to accelerate the training 14.6 times (89% of ideal

scalability)

▪ However, while training performance increases significantly, the accuracy decreases

when employing more GPUs

▪ The final loss remains relatively stable when using up to 4 GPUs, but it rises

significantly for 8 and 16 GPUs (0.211 and 0.278, respectively)

▪ This behavior suggests that, in our case, selecting a large size BEf negatively affects

the training convergence.

1 x GH200 2 x GH200 4 x GH200 8 x GH200 16 x GH200

Time [s] 1274 657 336 175 90

Final loss 0.141 0.149 0.148 0.211 0.278

Speedup 1 1.94 3.79 7.28 14.16

Performance and accuracy evaluation of

multi-GPU DNN training with BF16 data format

▪ Performance and accuracy results achieved for Scenario 2

▪ In this scenario, training is performed only for 8 and 16 GPUs as yielding

noticeably lower accuracy in Scenario 1

▪ The tests show that NE = 74 and NE = 94 epochs are required to reach the

loss value achieved for a single GPU

▪ However, increasing NE decreases the training performance significantly

▪ As a result, the value of speedup is equal to only 4.9 and 7.41 for

configurations with 8 and 16 GPUs, respectively

1 x GH200 2 x GH200 4 x GH200 8 x GH200 16 x GH200

Time [s] - - - 260 172

Speedup - - - 4.9 7.41

▪ Performance and accuracy results achieved for Scenario 3

▪ This scenario starts with assuming the same effective batch size BEf = 16 as BS for a

single GPU, regardless of the number of GPUs

▪ The obtained results indicate better scalability than Scenario 2 while providing the

desired accuracy

▪ At the same time, the results achieved for Scenario 1 show a relatively stable loss for

up to 4 GPUs with the effective batch size BEf ≤ 4∗16 = 64

▪ So, it is rational to set BEf = 64 for 8 and 16 GPUs as well, improving scalability

considerably with the speedup of 6.4 and 11.58 for 8 and 16 GPUs, respectively

▪ These performance gains come at slightly higher loss but within the tolerance

1 x GH200 2 x GH200 4 x GH200 8 x GH200 16 x GH200

BEf = 16

Time [s] 1274 764 396 217 129

Final loss 0.141 0.14 0.144 0.142 0.146

Speedup 1 1.67 3.22 5.87 9.88

BEf = 64

Time [s] - - - 199 110

Final loss - - - 0.15 0.152

Speedup - - - 6.4 11.58

Performance and accuracy evaluation of

multi-GPU DNN training with BF16 data format

Performance and accuracy evaluation of

multi-GPU DNN training with BF16 data format

▪ The comparison of scalability achieved for different scenarios with BF16 on the

multi-GPU system using NVIDIA GH200 chips

▪ While Scenario 1 provides the best scalability, it delivers lower accuracy for

configurations with 8 and 16 GPUs

▪ The opposite is true for Scenario 2, which provides the desired accuracy but at the

cost of performance

▪ Finally, Scenario 3 achieves a reasonable speedup for all numbers of GPUs while

maintaining the desired accuracy

Performance-accuracy trade-off for TF32 format

versus BF16 and FP32 formats

▪ Performance and accuracy achieved for training with TF32 and FP32 formats for

NE = 50 epochs and BS = 2

▪ For implementing mixed precision computations with TF32 format, we use

torch.backends module

▪ Besides good scalability (speedup of about 14 times for 16 GPUs), the TF32 format

provides better accuracy than BF16 for all numbers of GPUs

▪ The performance gap between TF32 and BF16 decreases when using more GPUs

➢ For 16 GPUs, TF32 is only 1.17 times slower than BF16 format, with 1.09 times
better accuracy

▪ Using TF32 reduces computation time by approximately 1.25 times compared to

FP32 across the tested GPU counts, while maintaining accuracy behavior practically

identical to the full precision FP32 solution

1 x GH200 2 x GH200 4 x GH200 8 x GH200 16 x GH200

TF32

Time [s] 1805 938 485 250 129

Final loss 0.118 0.114 0.12 0.138 0.139

Speedup 1 1.92 3.72 7.22 13.99

FP32

Time [s] 2256 1157 603 309 161

Final loss 0.118 0.128 0.129 0.135 0.137

Speedup 1 1.95 3.74 7.3 14.01

Conclusion and future work

▪ This work investigates the impact of diverse floating-point data formats - BF16,

TF32, and FP32 - on the performance and accuracy of training CFD AI models

on multi-GPU platforms

▪ Leveraging mixed precision based on the BF16 format on 16 GPUs allows us to

accelerate training the model by about 11.6 times, preserving the same loss

value as for a single GPU

▪ TF32 data format provides better accuracy than BF16, but requires more

computational overheads

▪ The accuracy behavior of the mixed precision solution with TF32 is practically

the same as that of the full precision option with FP32

➢ At the same time, TF32 allows us to speed up the computations 1.25 times
across the considered range of GPU numbers

▪ In the future, we plan to study the feasible methods of increasing the effective

batch size more systematically without decreasing training accuracy

▪ Another direction of our future work is exploiting AI accelerators with alternative

architecture, such as Intel Habana Gaudi 2 and Gaudi 3 platforms

Thanks for your attention :)

	Slajd 1: Influence of Mixed Precision on Performance and Accuracy of DNN Training for AI-Accelerated CFD Simulations on NVIDIA Multi-GPU System
	Slajd 2: Agenda
	Slajd 3: Introduction
	Slajd 4: Floating-point data formats and mixed precision in AI-accelerated CFD simulation
	Slajd 5: Deep Neural Network for AI-Accelerated CFD Simulation
	Slajd 6: Distributed Data Parallel Training of DNN
	Slajd 7: Testing platform
	Slajd 8: Performance and accuracy evaluation of multi-GPU DNN training with BF16 data format
	Slajd 9: Performance and accuracy evaluation of multi-GPU DNN training with BF16 data format
	Slajd 10: Performance and accuracy evaluation of multi-GPU DNN training with BF16 data format
	Slajd 11
	Slajd 12: Performance and accuracy evaluation of multi-GPU DNN training with BF16 data format
	Slajd 13: Performance-accuracy trade-off for TF32 format versus BF16 and FP32 formats
	Slajd 14: Conclusion and future work
	Slajd 15

