

Optimizing U-Net Architecture Using Differential Evolution for Brain Tumor Segmentation

Authors: Shoffan Saifullah^{1,2,*} and Rafał Dreżewski¹

¹Faculty of Computer Science, AGH University of Krakow, Krakow 30-059, Poland ²Department of Informatics, Universitas Pembangunan Nasional Veteran Yogyakarta, Yogyakarta 55281, Indonesia

Why Brain Tumor Segmentation?

- Accurate segmentation critical for diagnosis and treatment
- Manual segmentation is time-consuming and inconsistent
- Need for robust automatic models that generalize across MRI modalities

7-9 July 2025 Singapore

Key Contributions

- Proposed DE-UNet: U-Net optimized using Differential Evolution (DE)
- Automatically tunes hyperparameters: learning rate, dropout, batch size, filter size
- Outperforms state-of-the-art models on FBTS and BraTS 2021 datasets

25th International Conference on Computational Science

7-9 July 2025 Singapore

DE-UNet Framework

 Base model: U-Net with skip connections
 DE tunes 4 key hyperparameters

• Optimization minimizes composite loss: $L_{\text{total}} = 1 - \alpha \cdot \text{DSC} - (1 - \alpha) \cdot \text{JI}$

Differential Evolution Strategy

- Population-based metaheuristic
- Mutation, crossover, and selection
- 10 generations
 with population
 size = 5

Algorithm 1 DE Algorithm for U-Net hyperparameter optimization.

Require: NP, F, CR, G

Ensure: Optimized hyperparameter configuration x^*

- 1: Initialize a population of NP candidate solutions within predefined bounds.
- 2: for generation g = 1 to G do
- 3: for each candidate solution x_i in the population do
- 4: **Mutation:** Randomly select 3 distinct solutions (x_a, x_b, x_c) from the population.
- 5: Generate mutant vector: $v_i = x_a + F \cdot (x_b x_c)$
- 6: **Crossover:** Generate trial vector u_i as:

 $u_{ij} = \begin{cases} v_{ij} & \text{if rand}(0,1) < CR \text{ or } j = j_{\text{rand}} \\ x_{ij} & \text{otherwise} \end{cases}$

- 7: Selection: Replace x_i with u_i if $f(u_i) < f(x_i)$
- 8: end for
- 9: end for
- 10: Return the best-performing solution x^*

25th International Conference on Computational Science

7-9 July 2025 Singapore

Datasets and Preprocessing

- FBTS: 3064 slices, 3 tumor types (Meningioma, Glioma, Pituitary)
- BraTS 2021: 1251 slices, 4 modalities (T1, T1-CE, T2, FLAIR)
- Resized to 256×256, normalized to [0,1]

7-9 July 2025 Singapore

Performance Summary

Tumor Type	Training				Validation			
	Accuracy	Loss	DSC	JI	Accuracy	Loss	DSC	JI
Meningioma	0.9983	0.0042	0.9286	0.8677	0.9984	0.0038	0.9348	0.8784
Glioma	0.9971	0.0070	0.9023	0.8231	0.9968	0.0080	0.8943	0.8103
Pituitary	0.9991	0.0022	0.9183	0.8509	0.9991	0.0021	0.9200	0.8539

Modality-	Training				Validation				
	Accuracy (pp)	Loss (pp)	DSC (pp)	JI (pp)	Accuracy (pp)	Loss (pp)	DSC (pp)	JI (pp)	
FLAIR	0.9956 (+0.18)	0.0110 (-0.47)	0.8941 (+4.31)	0.8103(+7.21)	0.9961 (+0.15)	0.0095 (-0.37)	$0.9068 \ (+3.31)$	0.8304 (+5.69)	
T1	0.9935 (+0.32)	0.0157 (-0.79)	0.8464 (+7.58)	0.7353(+12.12)	0.9930 (+0.39)	0.0168 (-0.96)	$0.8327 \ (+9.07)$	0.7154 (+14.3)	
T1-CE	0.9950 (+0.34)	0.0119 (-0.82)	0.8823 (+8.05)	0.7900(+13.86)	0.9940 (+0.43)	0.0147 (-1.06)	0.8576 (+10.37)	0.7524(+17.34)	
T2	0.9946 (+0.28)	0.0135(-0.72)	$0.8707 \ (+6.65)$	0.7714(+11.1)	$0.9942 \ (+0.34)$	0.0147 (-0.89)	0.8602 (+7.97)	0.7550(+13.23)	

Note: "+" indicate performance improvement in pp. "-" loss values represent reduction.

- FBTS: DSC = 0.9160, JI = 0.8472
- BraTS 2021: DSC = 0.9094, JI = 0.8371
- Consistent gains across all tumor types and modalities

25th International Conference on Computational Science

7-9 July 2025 Singapore

Qualitative Segmentation Examples

FBTS

 $\begin{array}{ccccc} Meningioma & Glioma & Pituitary \\ DSC: 0.9368 & DSC: 0.9582 & DSC: 0.9567 \\ JI: 0.8811 & JI: 0.9198 & JI: 0.9169 \end{array}$

BraTS 2021

FLAIRT1T1-CET2DSC: 0.9694DSC: 0.9556DSC: 0.9699DSC: 0.9762JI: 0.9405JI: 0.9150JI: 0.9416JI: 0.9536

Red = Ground Truth, Green = Prediction

Strong boundary alignment, especially in T1-CE and FLAIR

DE-UNet vs. State-of-the-Art

Method	FBTS Dataset Method			BraTS 2021		
Method	DSC	JI	Wethod	DSC	JI	
Proposed DE-UNet	0.9160	0.8472	Proposed DE-UNet	0.9094	0.8371	
${\it DeepLabV3+Xception}$	0.8115	0.8018	UNet	0.8600	0.7807	
KFCM-CNN	0.8884	0.8204	U-Net base	0.9080	-	
U-Net based	0.8900	0.8100	SPPNet-2	0.9040	-	
MST-based	0.8469	0.7443	UNCE-NODE	0.8949	-	
U-Net with ResNet	0.9011	-	nnU-Net	0.8900	-	

- DE-UNet outperforms models like U-Net, DeepLabV3+, UNCE-NODE
- Higher DSC and JI without manual tuning

Conclusion & Future Directions

- DE-UNet provides accurate, robust brain tumor segmentation
- Effective hyperparameter tuning across modalities
- Future work: hybrid metaheuristics, more datasets, clinical deployment