
Adapting Memory-Bound CFD Computations to RISC-V

Advances in Adapting Memory-Bound CFD
Computations to RISC-V Multicore Architecture

Tomasz Olas1 Lukasz Szustak1 Roman Wyrzykowski1

Mateusz Olas 1 Marco Lapegna2

Institute of Computer and Information Sciences, Czestochowa University of Technology
{olas,lszustak,roman}@icis.pcz.pl

Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Poland
marco.lapegna@unina.it

ICCS 2025

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Agenda

Motivation and goal of our research

RISC-V-based platforms

Overview of MPDATA application

Parallelization of MPDATA on RISC-V Platforms

Vectorization using Various RVV Extensions

Performance Evaluation of MPDATA on RISC-V

Conclusions

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Motivation and goal of our research

RISC-V architectures

RISC-V is an open standard Instruction Set Architecture (ISA) that enables
the royalty-free development of CPUs and a common software ecosystem

While RISC-V has already become very popular in some fields, like
embedded and edge computing, it has yet to gain traction in
general-purpose computing, including HPC, and AI/M

In particular, recent advances in RISC-V make it a more realistic proposition for HPC
workloads than ever before

At the same time, the performance of publicly available RISC-V CPUs is still behind
even mobile x86 and ARM CPUs, but progress in this area is proceeding at a
significant pace

Since the RISC-V software stack includes all the necessary tools for application
development, it is of considerable interest to study porting real-life applications to
computing platforms based on the RISC-V architecture

Knowledge gained in this way will allow application programmers to identify
bottlenecks in existing approaches to mapping and optimization codes for HPC
architectures, considering the characteristics of available computing platforms and
the software stack supporting them

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Motivation and goal of our research

Motivation and goal of our research

In this paper, we tackle the challenge of adapting HPC
applications to RISC-V architectures for real-world problems with
memory-bound codes, for which memory performance is the
main factor affecting computation time

The application we study as a use case implements the
Multidimensional Positive Definite Advection Transport Algorithm
(MPDATA)
We will perform tests on two available commercial platforms:

Banana Pi BPI-F3 Low-Power Platform
Milk-V Pionier Platform with 64-core Sophon SG2042
Processor

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

RISC-V architectures

Banana Pi BPI-F3

Banana Pi BPI-F3 is a industrial grade RISC-V development
board with 4GB 32-bit LPDDR4 SDRAM with 2666Mbps
operation (max 16GB)
It is equipped with RISC-V SpacemiT® X60™ dual-cluster
octa-core processors (2 * 4 cores):

Each core has 32KB L1-I Cache
Each core has 32KB L1-D Cache
Each cluster has 512KB L2 Cache
Vector Extension: RVV1.0 256-bit
Eight-stage dual-issue
in-order pipeline

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

RISC-V architectures

Milk-V Pionier with 64-core Sophon SG2042 Processor

Milk-V Pioneer is a developer motherboard based on the 64-core Sophon
SG2042 RISC-V CPU

It runs at 2GHz and is organized in 16 clusters of four XuanTie C920 cores

Clusters are connected through the network-on-chip (NoC) with a 2D mesh
topology

L1 Instruction Cache - 64KB

L1 Data Cache - 64KB

L2 Cache - 1MB (shared across
a cluster of four core)

L3 Cache - 16GB

12 stages out-of-order multiple-issue
superscalar pipeline

Vector Extension: RVV 0.7.1 128-bit

RAM: 128GB of DDR4-3200 (four DDR4-3200 memory controllers)

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Overview of MPDATA application

MPDATA

MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is
one of the main parts of EULAG

EULAG is an established computational model developed by the group headed
by Piotr K. Smolarkiewicz for simulating thermo-fluid flows across a wide range
of scales and physical scenarios

One of the most interesting applications of the EULAG model is numerical
weather prediction (NWP)

MPDATA is a real-life CFD application

MPDATA belongs to the class of the
forward-in-time algorithms which
assume iterative execution of
multiple time steps

We focus on simulations
using 3D grid

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Overview of MPDATA application

MPDATA: Data dependencies

The whole MPDATA
computations in each time
step are decomposed into
a set of 17 heterogeneous
stencils

The stages depend on
each other

A single MPDATA time step
requires 5 input and 1
output matrices

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Parallelization of MPDATA

A naive, non-optimized MPDATA

The basic version of MPDATA is
parallelized using OpenMP

All MPDATA kernels are executed
sequentially, one by one
Each kernel processed in parallel

by using #pragma omp for
directive across 1st dimension,
and then incorporates automatic
vectorization along 3rd dimension
using #pragma vector directive

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Parallelization of MPDATA

Methodology for mapping MPDATA algorithm onto
multicore platforms

However, the operational intensity for naive version of MPDATA is
not high enough to utilize computing resources of modern
processors efficiently
MPDATA is a memory-bound algorithm
In order to alleviate such performance constraints we proposed
recently parallelization methodology for SMP/ccNUMA
architectures
To ensure the performance portability across various computing
platforms, the following parametric optimization techniques were
proposed targeting x86 architecture:

(3+1)D decomposition of MPDATA
Islands-of-cores strategy
Data-flow strategy of synchronization
Vectorization

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Parallelization of MPDATA

(3+1)D Decomposition of MPDATA

The prime goal of is to take advantage of cache reusing by
transferring the data traffic between kernels from the main
memory to the cache hierarchy

For this aim, a combination of loop tiling and loop fusion
optimization techniques is used, that allows reducing the main
memory traffic at the cost of additional computations

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Parallelization of MPDATA

Data-flow strategy of synchronization

The main idea is to synchronize only interdependent threads instead of
using the barrier approach that – in contrast to the developed approach
– synchronize all threads

This strategy reduces the cost of synchronization

Implementing this strategy needs needs to reveal the scheme of
inter-thread data traffic during execution of MPDATA kernels

coreCN

th
re
a
d
C
N
,1

th
re
a
d
C
N
,S
M
T

core1

th
re
a
d
1
,1

th
re
a
d
1
,S
M
T

core2

th
re
a
d
2
,1

th
re
a
d
2
,S
M
T

core3

th
re
a
d
3
,1

th
re
a
d
3
,S
M
T

syncGroup1

syncGroup2

syncGroup3

syncGroupCN-1

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Approaches to Vectorization for RISC-V Architectures

Vectorization using Various RVV Extensions

Using vector (or SIMD) unit has yielded notable performance
improvements for Intel and AMD processors

In RISC-V processors, the vector (or "V") extension of ISA is dedicated
to supporting vectorization. The studied platforms implement different
versions of this extension:

SG2042 with RVV 0.7.1 Extension - Due to difficulties in finding a
compiler that supports vector intrinsics on this CPU, we manually
vectorize code using assembly. Assembly fragments targeting the
xtheadvector extension are compiled with gcc 9.2.0, while the rest of the
C++ code and final linking are handled by gcc 13.2.0

SpacemiT K1 with RVV 1.0 Extension - With modern Clang and gcc
compilers supporting RVV 1.0, automatic vectorization by the compiler
becomes feasible. MPDATA kernels are adapted similarly to x86, using
Clang directives like #pragma clang loop vectorize(enable) and
intrinsics to guide and enhance vectorization

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Evaluation Metodology

Metodology of experiments

Evaluating the impact of optimization steps on MPDATA
execution time on Banana Pi BPI-F3

For the SG2042:

1 Determining the memory throughput using the STREAM
benchmark

2 Determining the overall performance for executing various
algorithms using the NPB benchmark

3 Investigating the performance of different versions of MPDATA

4 Performance analysis based on the Roofline model

5 Using single precision for improving performance

6 Preliminary assessment of energy consumption and energy
efficiency for the analyzed platforms

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Evaluation of Banana Pi BPI-F3 Platform

Execution time for running different versions of MPDATA
code on Banana Pi BPI-F3

 150

 200

 250

 300

 350

 400

T
im

e
 [
s]

Basic
(3+1)D
(3+1)D + auto-vec
(3+1)D + intr vec
(3+1)D + asm vec
(3+1)D + df synchr
(3+1)D +df synchr +auto-vec
(3+1)D +df synchr +intr vec
(3+1)D +df synchr +asm vec

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Evaluation of Milk-V Pionier Platform

Determining memory throughputs using the STREAM
benchmark

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

16 threads
 (total)

16 threads
 (per thread)

64 threads
 (total)

64 threads
 (per thread)

T
h
ro

u
g
h
p

u
t 
[M

B
/s

]

Copy
Scale
Add
Triad
Daxpy

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Evaluation of Milk-V Pionier Platform

Scalability of selected NPB codes on SG2042

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Evaluation of Milk-V Pionier Platform

Performance of different versions of MPDATA on SG2042

0

10

20

30

40

50

60

16 32 48 64

G
F

lo
p

/s

Number of threads

Basic

(3+1)D

(3+1)D + DFS

(3+1)D + DFS + vec

57.7

24.5

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Performance analysis based on the Roofline mode

The Roofline model for the double-precision MPDATA on
Milk-V

Examples of kernels
for basic version

Optimized version: P1-P5 
packages of kernels

At
ta

in
ab

le
 p

er
fo

rm
an

ce
 

[G
flo

p/
s]

K4

K8
K1

K3

0.1 1 10

0.
14

6.7

25.9
0.

54

0.
72

0.
82

39.534.6
58.1

1.
04

256 GFlop/s (128-bit vector)

DRAM: 47 GB/s

Operational intensity [flop/byte]

P1

128 GFlop/s (scalar)

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Using single precision for improving performance

Performance of single-precision codes on SG2042
versus double-precision

 0

 20

 40

 60

 80

 100

 120

 140

16 32 48 64

T
im

e
 [
s
]

Basic: double-precision
Basic: single-precision
(3+1)D + DFS + vec: double-precision
(3+1)D + DFS + vec: single-precision

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Preliminary assessment of energy consumption and energy efficiency

Methodology of power and energy measurements

The Yokogawa WT310 digital power meter is used to measure the
power and energy of the platform

It is installed between the input power sockets of the server and
the wall AC outlets and measures power and energy consumed in
real time of the whole platform

DRAMDRAM
Power supply

YOKOGAWA WT310E

v

AC power meter (WT310)

AC power
source

PCIe cardsCooling system Disks
Chipset and

motherboard

Communication interface (USB)

CPUCPU

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Preliminary assessment of energy consumption and energy efficiency

Comparison of energy consumption and energy efficency
for MPDATA versions, various computing platforms

0

2000

4000

6000

8000

10000

12000

14000

BPI-F3 8 16 32 64

E
n
e
rg

y 
[J

]

Basic

(3+1)D

(3+1)D + DFS

(3+1)D + DFS + vec

0

50

100

150

200

250

300

350

400

450

BPI-F3 8 16 32 64

E
n
e
rg

y 
e
ffi

ci
e
n
cy

 [
M

F
L
O

P
S

/W
]

Basic

(3+1)D

(3+1)D + DFS

(3+1)D + DFS + vec

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Preliminary assessment of energy consumption and energy efficiency

Average power consumption in watts for double-precision
versions of MPDATA on the Milk-V platform

 80

 90

 100

 110

 120

 130

 140

 150

8 16 32 48 64

P
o
w

e
r 

[W
]

Number of threads

Basic
(3+1)D
(3+1)D + DFS
(3+1)D + DFS + vec

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Conclusions

Summary (I)

We demonstrate that our optimization methodology developed
previously for Intel and AMD x86 architectures can efficiently
address performance trade-offs and bottlenecks of two
resource-constrained, multicore RISC-V platforms while executing
the memory-bound MPDATA code

To efficiently utilize the vector hardware of the considered CPUs,
besides using the auto-vectorization for the SpacemiT K1 CPU, we
develop a manual vectorization of MPDATA codes for both versions
of the RVV extension and different numerical precisions

The experimental evaluation of MPDATA codes on the Sophgon
SG2042 CPU shows that, unlike most tests from the NPB test suite
and the basic MPDATA code, our optimized code is scalable up to all
64 cores of this CPU

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V



Adapting Memory-Bound CFD Computations to RISC-V

Experimental results

Conclusions

Summary (II)

In double precision, the code optimizations allow us to speed up
computation more than 7 times compared to the original code. For
single precision, this speedup is even higher, exceeding 10 times

The experimental evaluation of energy consumption demonstrates
convincingly the energy savings achieved by the code optimizations
performed for both platforms. In particular, on the Milk-V Pionier
platform, energy consumption is reduced radically - by more than 11
times

The evaluation of energy efficiency shows that while for eight cores,
the Banana BPI-F3 low-power platform beats the Milk-V Pionier
platform by more than two times, already by using 32 cores, Milk-V
catches up with BPI-F3, and by exploiting 64 cores, Milk-V beats the
opponent by 36%

Tomasz Olas Adapting Memory-Bound CFD Computations to RISC-V


	Motivation and goal of our research
	RISC-V-based platforms
	RISC-V architectures
	Overview of MPDATA application
	Parallelization of MPDATA
	Approaches to Vectorization for RISC-V Architectures
	Experimental results
	Evaluation Metodology
	Evaluation of Banana Pi BPI-F3 Platform
	Evaluation of Milk-V Pionier Platform
	Performance analysis based on the Roofline mode
	Using single precision for improving performance
	Preliminary assessment of energy consumption and energy efficiency
	Conclusions


