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Introduction

o Continual Learning (CL) models suffer from Catastrophic
Forgetting (CF) in class-incremental settings [1].

o Exemplar-Free Class-Incremental Learning (EFCIL) avoids storing
past data due to privacy/storage concerns.

o Feature extractors are often frozen, which limits adaptability to
new classes.

o Mahalanobis-based methods and pre-trained Transformers like
ChemBERTa are promising for molecular property prediction [2].

o MTL-FECAM is proposed to balance the stability-plasticity
trade-off in EFCIL for molecular data.
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@ Drug discovery involves dynamic, high-dimensional, and
privacy-sensitive data.

Existing CL methods compromise either stability or plasticity.

Mahalanobis distance can model non-linear boundaries better
than Euclidean in heterogeneous data. [3]

Data privacy concerns make exemplar storage infeasible in
biomedical settings.

@ A need exists for a scalable, adaptive, and exemplar-free approach
to molecular property prediction. [4]
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Related Work

@ oEWC and LwF-MC use regularization/distillation but retain
some CF.

o Prototype-based methods like NCM use Euclidean distance but
fail with evolving features [5].

o FeTrIL and SSRE handle exemplar-free learning, but perform
poorly in high-variance domains [9].

@ Graph-based SSL and Transformer models lack mechanisms for
CL in bioinformatics [6].

o Existing approaches ignore covariance modeling and
Mahalanobis-based classification in molecular CL.
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Challenges and Objectives

Challenges
o Balancing feature stability with adaptability to new classes
(stability-plasticity trade-off) [2].
o Mitigating semantic drift without storing data from previous tasks.

@ Learning optimal class boundaries in heterogeneous molecular
feature spaces.

Objectives

o Introduce the Mahalanobis metric and feature covariance modeling
for robust classification.

@ Design an exemplar-free multitask model using ChemBERTa,
EWC, and FECAM [1] [7].
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Methodology

Dataset and Featurization
o Used BBBP, Bitter, and Sweet datasets from MolecularNet [4].

o Pre-processing: Canonicalization, encoding, padding, and
truncation of SMILES.

MTL-FECAM

o Extracts SMILES embeddings via ChemBERTa and models
class-wise and task-wise covariance matrices.

o Applies Tukey’s transformation to reduce skewness, and then uses
Mahalanobis distance for classification with Bayes-optimal
boundaries [3].

o Employs Elastic Weight Consolidation (EWC) for parameter
regularization [8].

@ Supports both FSCIL and MSCIL setups.
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Methodology
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Empirical Analysis

Table: Anytime average accuracy in exemplar-free MSCIL with different
incremental tasks.

CIL BBBP BITTER SWEET
METHODS T=5 T=10 T=20| T=b T=10 T=20| T=b T=10 T=20
oEWC 86.88 85.85 87.67 | 85.17 86.81 88.13 | 84.86 88.57 90.08
LwF-MC 89.80 90.34 90.88 | 85.34 85.79 87.21 | 84.84 86.34 87.91
DeeSIL 74.05 74.49 74.73 | 49.35 51.06 50.52 | 40.22 40.39 42.60
MUC 70.93 66.12 57.46 | 61.60 61.74 62.32 | 58.01 60.45 59.21
SDC 76.29 69.71 66.62 | 55.06 55.11 55.35 | 63.83 60.43 60.68
PASS 89.51 89.08 89.12 | 84.19 85.24 85.53 | 89.29 83.59 84.26
IL2A 89.00 88.63 88.36 | 87.30 87..62 88.18 | 84.00 86.07 86.41
SSRE 63.27 58.68 b56.47 | 62.45b 62.20 62.44 | 66.88 61.84 63.65
FeTrIL 55.26 54.71 4520 | 61.14 64.85 61.12 | 54.26 58.66 56.14
Eucl-NCM 64.88 64.88 64.88 | 72.24 72.24 72.24 | 73.68 73.68 73.68
MTL-FECAM | 90.17 90.67 91.11 | 89.41 90.22 90.93 | 88.61 89.57 90.41
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Model Performance Comparison

o MTL-FECAM achieves highest accuracy and 0.0 FM across
BBBP, Bitter, and Sweet datasets.

o Efficiently handles Catastrophic Forgetting while learning new
tasks incrementally.

@ Multitask learning promotes shared feature representation,
improving task generalization, also covariance modeling and
Mahalanobis distance ensure better class separation.

o Competing methods like ocEWC and LwF-MC show partial
retention; others like

o MTL-FECAM excels in memory efficiency, task adaptability, and
stability-plasticity tradeoff.
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Empirical Analysis : Baseline and Ablation

Comparison

DISTANCE Covariz%nce Turkey Shrinkage Normalization BBBP | BITTER | SWEET
Matrix Eqn. Eqn. Eqgn.

Eucledian - X - - 55.77 58.18 59.47

Eucledian - v - - 62.00 59.09 50.27
Mahalanobis Full X X X 60.00 57.99 65.75
Mahalanobis Full v X X 63.12 64.31 50.69
Mahalanobis Full X X v 50.61 61.93 52.67
Mahalanobis Full X v X 62.54 62.77 52.48
Mahalanobis Full v v X 66.44 63.75 64.27
Mahalanobis Full X v v 71.80 62.64 64.52
Mahalanobis Full v v v 73.85 68.04 67.00

o MTL-FECAM outperforms baseline models across all datasets.

o Ablation study confirms best performance with full Mahalanobis
+ Tukey + Shrinkage 4+ Normalization.
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Graphical Analysis
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Figure: FSCIL methods accuracy of each incremental task for molecular
datasets
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Figure: Accuracy of each incremental task for molecular datasets and multiple
MSCIL methods.
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Graphical Analysis

o MTL-FECAM shows consistent accuracy across incremental
sessions.

o Demonstrates strong resistance to CF and outperforms others in
long-term stability and task adaptation.

o BBBP shows sharpest decline — harder to retain; Bitter/Sweet
degrade slowly.

@ Achieves optimal decision boundaries via feature distribution
modeling.

o IL2A and FeTrIL are competitive but less stable than
MTL-FECAM, whereas PASS and SSRE fail due to reliance on
distillation.
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Conclusion and Future Scope

@ The proposed MTL-FECAM integrates FECAM, the Mahalanobis
metric, and EWC in ChemBERTa.

o Effectively addresses Catastrophic Forgetting and semantic drift in
molecular CL.

o Balances stability-plasticity tradeoff, a key challenge in
bio-informatics.

o Leverages covariance adjusted features and the Bayes-optimal
classifier for robust predictions.

@ Operates in an exemplar-free manner, ideal for privacy-sensitive
biomedical applications.

o In future, we can extend MTL-FECAM to multi-modal biomedical
data (e.g., genomics + SMILES).

o Adapt for real-time CL systems in drug discovery pipelines.

o Explore integration with explainable Al for interpretable
molecular predictions.
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