
Teaching high�performance computing systems �

a case study with parallel programming APIs:

MPI, OpenMP and CUDA

Pawel Czarnul[0000−0002−4918−9196], Mariusz Matuszek[0000−0001−7551−256X]

and Adam Krzywaniak[0000−0003−1904−2510]

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology, Narutowicza 11/12, 80-233 Poland

pczarnul@eti.pg.edu.pl

Abstract. High performance computing (HPC) education has become
essential in recent years, especially that parallel computing on high per-
formance computing systems enables modern machine learning models
to grow in scale. This signi�cant increase in the computational power
of modern supercomputers relies on a large number of cores in mod-
ern CPUs and GPUs. As a consequence, parallel program development
based on parallel thinking has become a necessity to fully utilize mod-
ern HPC systems' computational power. Therefore, teaching HPC has
become essential in developing skills required by the industry. In this
paper we share our experience of conducting a dedicated HPC course,
provide a brief description of the course content, and propose a way to
conduct HPC laboratory classes, in which a single task is implemented
using several APIs, i.e., MPI, OpenMP, CUDA, hybrid MPI+Pthreads,
and MPI+OpenMP. Based on the actual task of verifying Goldbach's
conjecture for a given range of numbers, we present and analyze the per-
formance evaluation of students' solutions and code speed-ups for MPI
and OpenMP. Additionally, we evaluate students' subjective assessment
of ease of use of particular APIs along with the lengths of codes, and
students' performance over recent years.

Keywords: teaching HPC, parallel computing, HPC education, MPI,
CUDA, OpenMP

1 Introduction

In recent years, a considerable increase in computational power has become pos-
sible primarily due to the incorporation of an increasingly larger number of cores
into both CPUs and accelerators, such as GPUs, and improvements in memory
sizes and bandwidth [11]. This applies to all the segments of computing devices,
i.e., the data center, server, workstation, desktop, and mobile CPUs and GPUs.
As a consequence, the development of parallel programs has become a necessity
in order to make the most of the computational power of the computing devices
within each computer/node as well as in clusters of machines. Teaching HPC has

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


2 P. Czarnul, M. Matuszek, A. Krzywaniak

then become the issue of the utmost importance. A number of Application Pro-
gramming Interfaces (APIs) exist for general purpose programming in HPC, i.e.,
OpenMP, Pthreads for shared memory systems and multithreaded programming
for multi-core CPUs, as well as o�oading to accelerators, NVIDIA CUDA and
OpenCL for GPUs, OpenCL for programming shared memory CPU+GPU sys-
tems, and Message Passing Interface (MPI) for distributed memory systems [11].
Use of frameworks allows for easier programming at a higher level of abstraction
but it comes at the cost of performance overheads. For example, KernelHive al-
lows parallelization of computations among the nodes of a cluster using OpenCL
as computational kernels and Java based management layer(s) supporting work-
�ow model execution. The authors of [28] demonstrated overheads up to around
11% compared to the highly tuned MPI+OpenCL solution. Access to HPC re-
sources can be granted either via ssh, remote shell [10], or through various mid-
dlewares, including Web interfaces [12], which are, however, often adapted over
time [34]. Courses in HPC can also be delivered using container virtualization
and open-source cloud technologies [2].

In this paper, we provide subjective assessment of the programming di�culty
using a selected set of APIs that a population of programmers face. We also an-
alyze the execution times and scalability of parallel codes written by them for
various input data sizes and for the codes programmed with selected APIs. For
this purpose, we propose a methodology that uses the same programming task,
i.e., the implementation of Goldbach's conjecture for a range of input numbers,
which is the material for a separate student laboratory, and focuses on various
programming APIs such as: OpenMP, MPI, CUDA, and selected hybrid com-
binations. Our research results allowed us to conclude how the performance of
codes, written by various programmers to solve a particular task using a given
technology, di�ers. Additionally, we provide information on the length of codes
for the analyzed APIs as well as track our students' performance over recent
years.

The outline of the paper is as follows. In Section 2 we discuss the related
works, while in Section 3 we present the motivation for our work. Section 4
contains a detailed description of the High Performance Computing Systems
course from which we gathered the data analyzed in this paper. In Section 5 we
provide details of our evaluation of the programmers and codes, including the
proposed methodology, students' subjective evaluation data, practical evaluation
of the students' codes, using objective metrics, and add subsequent discussion.
Finally, Section 6 contains the study conclusions and the scope identi�ed for
further research.

2 Related work

Importance of HPC education HPC education has become essential in recent
years, especially that parallel computing on HPC systems enables modern ma-
chine learning models to grow in scale [9]. Accelerating deep learning is the key
for future large models development [4]. However, as the authors of [27] claim,

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


Teaching high performance computing systems . . . 3

computing educators are only beginning to recognize the need for HPC educa-
tion. The industry demand for talented sofware developers with experience in
the HPC area has raised a concern if HPC skills should not be introduced earlier
in the university education, i.e., for undergraduates [17], or even for secondary
school students [6]. In this context, teaching HPC has become essential in de-
veloping relevant skills required by the industry, and already over a decade ago
HPC was recommended to be taught as part of Computer Science Engineering
education [29] at all the university degree levels.

Teaching HPC academic standards The most common technologies used in
teaching HPC are C and C++, with signi�cantly less frequent practice of JAVA,
Fortran or Python [7]. The most commonly used software APIs for HPC edu-
cation is OpenMP, MPI, and CUDA. As con�rmed by the most recent review
[32], C++ along with MPI have become primary tools in teaching computational
science, speci�cally when demonstrating parallel programming. In this context,
we want to emphasize that our experience and conclusions from dealing with the
method of teaching HPC presented in this paper are based on the technologies
that are the industry and academic standard, i.e., C++, MPI, OpenMP, and
CUDA.

As stated in [19], based on the review of 94 papers related to teaching HPC,
the predominant method is still traditional learning, whereas projects (problem
based learning), gami�cation, and collaborative learning are employed in far
fewer cases. Also, the teaching objective is almost always programming, while
the architecture or parallel thinking focus are rare. In this paper, we present
the experience from conducting a course which combines project based teaching
with more focus on architecture and parallel thinking, speci�cally emphasizing
the di�erences between three parallel APIs and CPU vs GPU architecture.

Evolution of HPC courses In the past two decades, teaching HPC has evolved
from Parallel Programming courses, where MPI and OpenMP, among others,
were used as exemplary APIs for writing multithread and multi�process pro-
grams [25]. Also, Parallel Distributed Computing has gained more attention and
various combinations of parallel APIs have been used to demonstrate the capa-
bilities of diverse platforms and architectures, as reported by [30], i.e., using not
only MPI and OpenMP for HPC on CPU clusters, but also employing GPGPU
and APIs, such as CUDA, or presenting distributed processing of large data sets
with Hadoop. Although the majority of courses use C and C++ as primary pro-
gramming languages, natively supported by OpenMP, CUDA or MPI, some of
them present a di�erent approach with OpenMP-like directives used with Java
and Pyjama compiler [20].

Early courses in HPC encountered di�erent barriers such as lack of access
to typical HPC clusters. The problems were addressed with using small educa-
tional clusters such as Mozart, which unblocked teaching HPC [5]. In developing
countries, e.g. in Mexico, as reported by [33], even nowadays one of the barriers,
besides de�ciencies in HPC educational infrastructure, is still lack of interest
from students in learning HPC.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


4 P. Czarnul, M. Matuszek, A. Krzywaniak

On the other hand, many HPC courses with the well established scope tend
to explore innovative approaches to HPC education, such as focus on gaining
cluster con�guration skills instead of just introducing HPC APIs, proposed by
[22], or emphasizing parallel distributed computing patterns, proposed by [1].
The authors of [14] explore how using a higher level of abstraction, i.e., the
Thrust framework for parallel GPU programing, enhances programmer produc-
tivity. Our HPC course proposed for postgraduates [13] introduces such concepts
as: blocking and non-blocking communication, overlapping of compute and com-
munication, and dynamic load balancing. The method described in this paper
is the extension of the previous studies, focusing on the practical incorporation
of various parallel APIs (OpenMP, MPI, CUDA, hybrid MPI+OpenMP), into
the solution for a well de�ned task and running its various implementations in
several system types (multicore CPU, cluster of CPUs, and GPU).

Methods of teaching HPC Following the challenges arising with the evolution of
HPC education, novel methods enhancing HPC courses are being proposed. At
the early stages of education, teaching Computational Thinking was proposed
by [21] for elementary and middle school students. For undergraduates, the au-
thors of [24] propose teaching inexperienced programmers with a set of analogies
helpful in understanding the basic concept of parallelism. On the other hand,
the authors of [23] propose a challenge�based approach inspired by Parallel Pro-
gramming Marathons in Brazil.

The authors of [8] identi�ed three major issues in HPC education and ad-
dressed them by creating their own HPC curriculum system by empowering stu-
dents' innovation capability with a project�based Parallel Programming course,
involving real�life examples from the HPC �eld, such as Computational Fluid
Dynamics, or 3-D simulations of human ventricular tissues. Lack of suitable HPC
environments dedicated to teaching HPC skills is often addressed by propos-
ing small�scale clusters. For instance, [26] proposed a 25�node cluster based on
Raspberry Pi nodes, while [3] presented their small�scale cluster based on Odroid
boards.

3 Motivations

Considering the evolution of HPC courses in the past two decades and the shift
of focus in HPC education towards more parallel thinking and project�based
classes, we were motivated to propose a new method for the laboratory part of
our original HPC course [13]. It assumed the implementation of the same pro-
gramming task using several representative parallel programming APIs. While
we did not aim at performing an inter-API or inter-software stack performance
comparison, the method allowed us to provide meaningful assessment of the
programmers' relative performance within each API. Additionally, the obtained
results provided information on the most important general purpose parallel
programming APIs because these cover the most important types of computer
systems and compute devices, i.e., shared-memory single node systems with

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


Teaching high performance computing systems . . . 5

multi-core CPUs (programmed with OpenMP) and GPUs (programmed with
CUDA), and distributed memory multi-node systems, programmed with: MPI,
MPI+OpenMP, and MPI+Pthreads. For this purpose, we incorporated both
theoretical knowledge on parallelization concepts, paradigms and APIs as well
as practical tasks using particular APIs into our High Performance Computing
Systems (HPCS) course, o�ered to all the computer science �rst semester MSc
level students. For the practical part, the same programming task � veri�cation
of Goldbach's conjecture � was given to students for implementation using the
aforementioned APIs.

4 High Performance Computing Systems course

4.1 Aims, structure and scope

The goal of the course is to acquire the neccessary knowledge and skills that allow
for designing, implementation, deployment as well as testing parallel implemen-
tations, and solving a given computational problem. The primary objective for
the student is to be able to develop scalable parallel programs that would obtain
high speed-ups, taking advantage of modern parallel environments. The latter
include both shared and distributed memory systems (clusters) with multi-core
CPUs and GPUs. Assessment of students' work involves taking and passing a
theoretical exam (with a score of at least 50%) as well as obtaining at least
50% of the points on lab exercises. Both the theoretical and the practical parts
contribute to the �nal grade equally.

The teaching approach involves getting to know parallel processing paradigms
representative of computationally demanding applications and, subsequently,
discussing speci�c techniques allowing for their e�cient parallelization. The fol-
lowing paradigms are considered [11]:

1. Dynamic master-slave � the master process/thread initially partitions the
input data into chunks which are distributed among the slaves dynamically.

2. Geometric Single Program (Stream) Multiple Data (Stream) � the computa-
tions are performed in iterations over a domain which is partitioned geomet-
rically among the processes/threads for parallel updates of their subdomains,
followed by the synchronization/communication (boundary data exchange).
This paradigm typically refers to simulations of physical phenomena.

3. Pipelining � data chunks of the input stream are passed through a pipeline
and parallel processing of particular chunks is performed.

4. Divide and conquer � the original problem is partitioned into subproblems
recursively down to the leaves of either a balanced or an imbalanced tree.
Subtrees are processed in parallel by processes/threads with synchronization
corresponding to data merging and subsequent passing up towards the root
of the tree.

After the students have learnt these concepts and techniques, mapping relevant
solutions onto speci�c APIs and environments is discussed during this course.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


6 P. Czarnul, M. Matuszek, A. Krzywaniak

The mapping is done mainly with distributed memory systems in mind. For
this purpose, MPI is used. Additionally, the HPCS course features the basics of
shared memory programming, including multithreaded programming for multi-
core CPUs � using OpenMP, and for GPUs � using NVIDIA CUDA.

4.2 Lecture

The lecture includes the following components:

1. Introduction to computing in parallel environments: model of a parallel appli-
cation: basic parameters of an application and a parallel system, topologies;
assignment criteria; latency and bandwidth; speci�cations of real systems.

2. Parallel architectures: Shared Memory, Distributed Shared Memory, Dis-
tributed Memory.

3. Parallel processing paradigms: master-slave, SPMD, pipelining, divide-and-
conquer; examples.

4. MPI: model of an application; execution, various implementations, queueing
systems; send communication modes; non-blocking communication; block-
ing communication; collective vs. point-to-point communication, creation of
data types and packing; communicators; dynamic load balancing: reparti-
tioning, �ghost nodes�; examples of applications in MPI � performance on real
clusters; spawning processes dynamically, one-way communication; check-
pointing of parallel aplications; MPI+multi-threading; Parallel I/O in MPI;
mapping paradigms to MPI.

5. OpenMP � API: directives and functions; synchronization constructs; access
to shared resources; minimization of synchronization and overheads; using
OpenMP for accelerators; examples; mapping paradigms to OpenMP.

6. CUDA � model of an application, grid parameters, performance vs. usage of
resources; optimized memory access patterns; using GPU shared memory;
examples; mapping paradigms to CUDA.

4.3 Laboratory tasks

Typically, there are 6 laboratory classes (90-minute each) during which students
are given tasks that usually require modi�cations of and building on the provided
sample code and the corresponding manual. Each student is expected to com-
plete the task either during a given lab session or during the following meetings
(penalties apply in case of delay). We o�er the following manuals along with the
corresponding exemplary codes:

1. MPI Embarrassingly parallel computations with parallel reduction of
results by the designated process. Example: parallel computations of a series
such as for computing the pi number. Even though partitioning of the series
among the processes for load balancing of computations is straightfoward,
it could still be done in various ways, which might potentially a�ect the
solution accuracy, depending on what elements are added in the process (for
instance, adding numbers with similar absolute values in each process vs.
adding both large and small numbers).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


Teaching high performance computing systems . . . 7

2. MPI dynamic master-slave example. The master partitions the input
data into chunks which are then distributed among slave processes. The lat-
ter return results to the master, waiting for subsequent data chunks. This
scheme, assuming that the ratio of time spent on computations to commu-
nication is high, and the number of data chunks is considerably larger than
the number of slave processes, allows for e�ective load balancing and high
speed-ups. Example: parallel numerical integration of a function on a given
range.

3. CUDA basics of parallel programming based on programming operations
on vectors and matrices such as weighted addition of vectors, multiplication
of a matrix and a vector, multiplication of a sparse matrix by a vector, dot
product. Gains from using CUDA shared memory are demonstrated.

4. OpenMP dynamic master-slave code in which threads fetch the avail-
able packet identi�ers in a critical section, fetch the packet afterwards, and
then process these in parallel. The supplied manual further discusses and
demonstrates that the critical section may become a bottleneck when the
number of threads is very large, and proposes to use named critical sections
to improve the performance for smaller thread groups. Example: parallel nu-
merical integration � the initial range is partitioned into a number of data
packets at least a few times (4 to 5+) larger than the number of threads.

5. MPI dynamic master-slave example with overlapping communication
and computations using non-blocking MPI communication routines. This
code extends the previous example with initial sending of a data packet per
slave, followed by non-blocking sends of another data packet per slave. This
facilitates overlapping computations in a slave by sending a new data packet
from the master, and receiving the previous result packet from the slave. For
applications using larger data packets this shall lead to the minimization
of the total application execution time [11]. MPI_Isend, MPI_Irecv and
MPI_Wait(all) routines are used.

6. MPI+Pthreads. Extension of Task 1 with multithreading. Multithreading
modes in MPI are discussed and Pthreads are spawned in each process for
multithreaded processing on a multi-core CPU or CPUs. Inter-thread com-
munication using MPI_THREAD_MULTIPLE is discussed vs. optimized
reduction within the processes and using MPI_Reduce. Example: parallel
computations of a series, e.g., computing the pi number.

5 Evaluation

5.1 Methodology

Within this work, we aim at the following targets:

1. Individual assessment of technologies by students (di�culty, usefulness).
2. Assessment of performance in a programmers' population sample by mea-

suring the di�erences in times as well as speed-ups. The di�erences can stem
from either a better selection of the algorithm and/or its parallel design
and/or implementation.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


8 P. Czarnul, M. Matuszek, A. Krzywaniak

3. Measuring the lengths of codes using respective APIs.

For these purposes, we collected both subjective opinions of our students (survey)
and objective measures, i.e., execution times of the codes for various technologies
and for various input data sizes. We shall note that for the latter we used an
isolated environment, the same that was used by the students to develop and
test the codes. What is important, the same application was implemented by
the students using various parallel programming APIs.

5.2 Computational task

Goldbach's conjecture states that any positive even integer number can be writ-
ten as a sum of two prime numbers [15]. Goldbach's conjecture can bene�t sig-
ni�cantly from the initial generation of the sieve of Eratosthenes, which is used
in the parallel veri�cation of the conjecture. The best strategy for veri�cation of
the conjecture for an [a, b] range might depend on the a and b values, as well as
b − a. Several strategies and parallel implementations were investigated by the
authors of [31], including the ones using OpenMP, MPI hybrid MPI-OpenMP
parallelism, as well as OpenACC GPU accelerated computing. The evaluation
of CUDA's Uni�ed Memory (UM) and dynamic parallelism (DP) for Goldbach's
conjecture was veri�ed in [18], assuming that the veri�cation is performed for a
vector of input numbers. The second mechanism, tested for numbers in the order
of 1010, resulted in performance loss compared to the standard, non-DP version.
On the other hand, veri�cation of Goldbach's conjecture for 10,000 numbers from
108 to 1012 using Uni�ed Memory resulted in practically the same performance
as in the standard non-UM version. In this case, this is a positive result since
UM-based implementation is typically more straightforward and shorter.

In this paper, we use Goldbach's conjecture to evaluate students' approaches
to parallel implementation and assess the group's relative performance. We asked
students to carry out 5 laboratory tasks, each meant to implement the veri�ca-
tion of Goldbach's conjecture, using the following 3 technologies: MPI, OpenMP,
CUDA, and their 2 combinations: MPI+OpenMP, MPI+Pthreads. Each pro-
gram was expected to verify the conjecture for all the numbers in the given
input [a, b] range.

5.3 Students' subjective evaluation of parallel programming APIs

Figure 1 presents students' subjective evaluation of how easy it was to program
with a given parallel programming API (higher grade means easier). It can be
seen that OpenMP, allowing for a relatively straightfoward extension of sequen-
tial codes with directives and library calls, is clearly perceived as the easiest to
use, followed by CUDA and MPI with practically the same median values.

5.4 Practical evaluation of students' codes using objective metrics

Given the limited laboratory time, students devised various implementations
that consequently resulted in various execution times, as presented next. Fig-
ures 2, 3 and 4 present boxplot type charts for execution times for the codes

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


Teaching high performance computing systems . . . 9

Fig. 1: Students' subjective
evaluation of programming easiness
using a particular programming API Fig. 2: Execution times for MPI codes

that were not based on the Eratosthenes sieve. This approach was adopted by
the majority of students for the codes implemented using a single technology:
MPI, CUDA, and OpenMP respectively.

The testbed environment consisted of 16 workstations, each equipped with
an Intel Core i7-7700 CPU with four physical cores and Hyperthreading, 16GB
of RAM and interconnected by a 1GBit Ethernet network. In the following
charts, rx, i.e., r1, r2, and r3, denotes three di�erent input data ranges of num-
bers to be veri�ed against the Goldbach conjecture, respectively. They are:
r1=[50.000.000:100.000.000], r2=[50.000.000:150.000.000], and r3=[50.000.000:
250.000.000].

Additionally, nx in the charts indicates x number of nodes used in the MPI
environment (with a single MPI process slot on each node) while tx indicates x
number of threads used in the OpenMP version of the code.

After running the students' codes in our environment, we present the execu-
tion times for the analyzed parallel programming APIs and the ranges in Figure 2
(MPI), Figure 3 (CUDA), and Figure 4 (OpenMP). Figures 5 and 6 present the
results for hybrid technologies, i.e., MPI+Pthreads and MPI+OpenMP respec-
tively, for con�gurations employing 8 threads per CPU and 16 MPI processes,
across all the input data ranges.

It should be noted that the objective of these tasks was to develop paral-
lelized and scalable (versus the number of processes or/and threads) code using
a given technology, rather than performing a direct comparison of the technolo-
gies performance.

Apart from the aforementioned results without the sieve, Table 1 summarizes
the results that utilized the sieve-based approach. It includes the proportions of
students utilizing a given technology who developed a sieve-based solution, and
the best times for the sieve-based approaches. E�cient sieve-based solutions were
proposed by the students for two technologies: OpenMP and MPI.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


10 P. Czarnul, M. Matuszek, A. Krzywaniak

Fig. 3: Execution times for CUDA
codes

Fig. 4: Execution times for OpenMP
codes

Fig. 5: Execution times for
MPI+Pthreads codes

Fig. 6: Execution times for
MPI+OpenMP codes

Fig. 7: Numbers of lines for the
analyzed codes

Version OpenMPMPI
Percentage
of sieve-
based
codes [%]

9.6% 6.9%

r1 best [s] 1.44 3.98
r2 best [s] 2.32 5.18
r3 best [s] 4.13 6.74

Table 1: Sieve based codes
Additionally, we assessed the speed-ups of the students' codes. Table 2 presents

the average speed-ups of MPI codes between 4 and 8, as well as between 4 and 15

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


Teaching high performance computing systems . . . 11

workers/slaves. Table 3 shows the speed-ups between 2 and 4, as well as between
4 and 8 threads using OpenMP.

Table 2: Speed-ups of MPI codes
r1 r2 r3 optimal

p4-p8 1.95 1.99 2.00 2.00
p4-p15 3.47 3.61 3.72 3.75

Table 3: Speed-ups of OpenMP codes
r1 r2 r3

t2-t4 1.90 1.88 NA
t4-t8 1.41 1.43 1.43

Figure 7 depicts boxplot graphs of lines of codes for the implementations
using 3 major technologies: CUDA, OpenMP, and MPI.

Furthermore, Figures 8 and 9 present the grading results from the theoretical
and laboratory course components of those students who passed the course, over
the period of the last 7 years (0.5 is the passing threshold, 1 is the maximum).

Fig. 8: Evaluation of theoretical
component in successive years

Fig. 9: Evaluation of laboratory
component in successive years

5.5 Discussion

We observed a systematic decrease in the population sample size during the
experiment progress, i.e., at the beginning of the course all the students at-
tempted to solve the assignments (MPI and OpenMP). As soon as they secured
the minimum required to pass the course, we observed a signi�cant drop in the
submitted assignments (CUDA, MPI+OpenMP, MPI+Pthreads). We shall note
that during the initial veri�cation of solutions handed in by the students during
the laboratory classes, the test ranges were smaller than these studied in the
paper. Consequently, some of the solutions resulted in timeouts in this analysis.

In terms of execution times for a particular API and the range size, we
see observe that the performance of students' codes can di�er by an order of
magnitude practically for all the APIs.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


12 P. Czarnul, M. Matuszek, A. Krzywaniak

From Table 1 we can conclude that for MPI and OpenMP there is a small
number of much faster codes that bene�t from implementations using the Er-
atosthenes sieve and other optimizations. We shall note that time could play
an important role in the submission of assignments, as students are generally
expected to deliver their solutions by the end of a 90-minute laboratory session,
on which the assignment was given. Later submissions resulted in penalties.
Consequently, students apparently leaned to simpler solutions �rst, in order to
secure passing a given assignment, and attempted the optimized versions when
time permitted. We conclude that the proportions listed in Table 1 re�ect the
work of the most ambitious students. Additionally, we see that in the case of
CUDA and hybrid codes students were not able to submit faster sieve-based
codes which might indicate that these technologies appeared more challenging
to develop optimized solutions, given the time limit.

In terms of speed-ups shown in Table 2, we can conclude that, since the
presented speed-ups are the average values that are so close to the optimal ones
(assuming the ideal scaling), using a provided well scaling template (for the
master-slave MPI exercise) results in very good speed-ups, especially since the
Goldbach conjecture code features a large compute/communication time ratio.
Still, we can observe the anticipated growth in speed-ups with the increasing
problem size. In the case of speed-ups obtained for the OpenMP codes shown
in Table 3, we should realize that they were run on an Intel i7-7700 CPU with
4 physical cores and HyperThreading (HT) for a total of 8 logical processors.
Thus, we can see that between 2 and 4 threads the speed-ups are very good
� 1.88 and 1.9 (for r3 and 2 threads we did not run the code due to its long
execution times). Using the HT technology resulted in approx. 41-43% gain over
a physical core performance, which is in line with other reference results [11].

Boxplots presenting the line counts of programmers' codes using OpenMP,
CUDA, and MPI, shown in Figure 7, reveal that, OpenMP codes were generally
the shortest, followed by those in CUDA, and then in MPI, the latter being
considerably longer. For the MPI codes, many students used the provided master-
slave template that could be �lled in with master and slave content speci�c to
Goldbach's conjecture implementation.

From Figures 8 and 9 we can see that both the exam and laboratory re-
sults were relatively stable over the period of 7 years. However, some di�erences
might be indicated. We can observe that for the 2021 COVID edition, the exam
median was noticeably higher and the interquartile range was narrower. Addi-
tionally, only for that year the outliers were close to the 50% passing threshold,
which denotes that the vast majority of the results was higher than 60%. We
attribute this observation to the remote/online mode of exam taking at that
time. Interestingly, students achieved relatively lower scores for the laboratory
assignments then.

Furthermore, for each technology, we measured the correlation between stu-
dents' subjective view of ease of use of a particular technology, and their code
execution times for that technology. We found out that there is no meaningful

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


Teaching high performance computing systems . . . 13

correlation between the two, as the correlation coe�cients obtained for MPI,
OpenMP, and CUDA were: -0.055, 0.152, and 0.066 respectively.

6 Conclusion and future work

In the paper, we presented details of the High Performance Computing Sys-
tems course that has been conducted at Gda«sk University of Technology for
several years already. Based on a speci�c laboratory exercise � veri�cation of
Goldbach's conjecture for a range of numbers, we analyzed the performance of
students' parallel codes solving that problem, implemented using several paral-
lel programming APIs, including: MPI, OpenMP, CUDA, MPI+Pthreads, and
MPI+OpenMP. We not only analyzed the execution times of a group of pro-
grammers with medians, boxplots and outliers giving relative spread of students'
performance, but also studied speed-ups for MPI and OpenMP for three input
range sizes. We distinguished sieve and non-sieve based solutions. We found out
that the students subjectively evaluate the ease of programming as greater for
OpenMP, compared to MPI and CUDA. We also provided medians and box-
plots of the codes' line counts, and of students' performance in the theoretical
and laboratory components of the course over the past 7 years.

Based on our �ndings, we concluded that using the proposed course format
with a single task problem allowed students to focus on the di�erences between
APIs and technologies used, rather than spend a considerable amount of time
getting to know the details of speci�c problems. In terms of evaluation, we con-
�rmed that using the same algorithmic approach, the performance of students'
codes can di�er by an order of magnitude, which is consistent with other �ndings
on programmers' performance [16].

In the future, we plan to repeat the experiments with other exercises as well
as look into the possible optimizations such as overlapping communication and
computations for codes with considerable communication and synchronization
times.

References

1. Adams, J., Brown, R., Shoop, E.: Patterns and exemplars: Compelling strategies for
teaching parallel and distributed computing to cs undergraduates. In: 2013 IEEE
International Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum. pp. 1244�1251 (2013). https://doi.org/10.1109/IPDPSW.2013.275

2. Al-Jody, T., Aagela, H., Holmes, V.: Inspiring the next generation of hpc engineers
with recon�gurable, multi-tenant resources for teaching and research. Sustainabil-
ity 13(21) (2021). https://doi.org/10.3390/su132111782

3. Alvarez, L., Ayguade, E., Mantovani, F.: Teaching hpc systems and par-
allel programming with small-scale clusters. In: 2018 IEEE/ACM Workshop
on Education for High-Performance Computing (EduHPC). pp. 1�10 (2018).
https://doi.org/10.1109/EduHPC.2018.00004

4. Ben-Nun, T., Hoe�er, T.: Demystifying parallel and distributed deep learn-
ing: An in-depth concurrency analysis. ACM Comput. Surv. 52(4) (aug 2019).
https://doi.org/10.1145/3320060

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


14 P. Czarnul, M. Matuszek, A. Krzywaniak

5. Bernreuther, M., Brenk, M., Bungartz, H.J., Mundani, R.P., Muntean, I.L.: Teach-
ing high-performance computing on a high-performance cluster. In: Sunderam,
V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) Computational Sci-
ence � ICCS 2005. pp. 1�9. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

6. Bro�anac, P., Novak, J., Boljat, I.: Has the time come to teach paral-
lel programming to secondary school students? Heliyon 8(1), e08662 (2022).
https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e08662

7. Carneiro Neto, J.A., Alves Neto, A.J., Moreno, E.D.: A systematic review on teach-
ing parallel programming. In: Proceedings of the 11th Euro American Conference
on Telematics and Information Systems. EATIS '22, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3544538.3544659

8. Chen, J., Impagliazzo, J., Shen, L.: High-performance computing and engineering
educational development and practice. In: 2020 IEEE Frontiers in Education Con-
ference (FIE). pp. 1�8 (2020). https://doi.org/10.1109/FIE44824.2020.9274100

9. Coates, A., Huval, B., Wang, T., Wu, D.J., Catanzaro, B.C., Ng, A.Y.: Deep learn-
ing with COTS HPC systems. In: International Conference on Machine Learning
(ICML) (2013)

10. Czarnul, P.: Integration of compute-intensive tasks into scienti�c work�ows in
beesycluster. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) Computational Science � ICCS 2006. pp. 944�947. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2006)

11. Czarnul, P.: Parallel Programming for Modern High Performance Computing Sys-
tems. CRC Press, Taylor & Francis (2018), iSBN 9781138305953

12. Czarnul, P.: Teaching high performance computing using beesycluster and
relevant usage statistics*. Procedia Computer Science 29, 1458�1467 (2014).
https://doi.org/https://doi.org/10.1016/j.procs.2014.05.132, iCCS

13. Czarnul, P., Matuszek, M.: Use of ict infrastructure for teaching hpc. In: 2019
IEEE 14th International Conference on Computer Sciences and Information
Technologies (CSIT). vol. 1, pp. xvii�xxi (2019). https://doi.org/10.1109/STC-
CSIT.2019.8929841

14. Daleiden, P., Ste�k, A., Uesbeck, P.M.: Gpu programming productivity in di�erent
abstraction paradigms: A randomized controlled trial comparing cuda and thrust.
ACM Trans. Comput. Educ. 20(4) (oct 2020). https://doi.org/10.1145/3418301

15. Guy, R.: Unsolved problems in number theory. Springer Science & Business Media
(2013)

16. Guzdial, M.: Is there a 10x gap between best and average program-
mers? and how did it get there? (November 2014), communications
of the ACM, https://cacm.acm.org/blogs/blog-cacm/180512-is-there-a-10x-gap-
between-best-and-average-programmers-and-how-did-it-get-there/fulltext

17. Holmes, V., Kureshi, I.: Developing high performance computing resources for
teaching cluster and grid computing courses. Procedia Computer Science 51, 1714�
1723 (2015). https://doi.org/https://doi.org/10.1016/j.procs.2015.05.310, interna-
tional Conference On Computational Science, ICCS 2015

18. Jarzabek, L., Czarnul, P.: Performance evaluation of uni�ed memory and
dynamic parallelism for selected parallel CUDA applications. J. Super-
comput. 73(12), 5378�5401 (2017). https://doi.org/10.1007/s11227-017-2091-x,
https://doi.org/10.1007/s11227-017-2091-x

19. de Jesus Oliveira Duraes, T., Sergio Lopes de Souza, P., Martins, G., Jose Conte,
D., Garcia Bachiega, N., Mazzini Bruschi, S.: Research on parallel computing teach-
ing: state of the art and future directions. In: 2020 IEEE Frontiers in Education
Conference (FIE). pp. 1�9 (2020). https://doi.org/10.1109/FIE44824.2020.9273914

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29


Teaching high performance computing systems . . . 15

20. Kurniawati, R.: Teaching parallel programming with java and pyjama. In: Pro-
ceedings of the 53rd ACM Technical Symposium on Computer Science Education
V. 2. p. 1109. SIGCSE 2022, Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3478432.3499115

21. Lamprou, A., Repenning, A.: Teaching how to teach computational thinking.
In: ITiCSE. Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3197091.3197120

22. López, P., Baydal, E.: Teaching high-performance service in a cluster comput-
ing course. Journal of Parallel and Distributed Computing 117, 138�147 (2018).
https://doi.org/https://doi.org/10.1016/j.jpdc.2018.02.027

23. Marzulo, L., Bianchini, C., Santiago, L., Ferreira, V., Goldstein, B., França, F.:
Teaching high performance computing through parallel programming marathons.
In: IPDPSW. pp. 296�303 (2019). https://doi.org/10.1109/IPDPSW.2019.00058

24. Neeman, H., Lee, L., Mullen, J., Newman, G.: Analogies for teaching parallel
computing to inexperienced programmers. SIGCSE Bull. 38(4), 64�67 (jun 2006).
https://doi.org/10.1145/1189136.1189172

25. Pan, Y.: Teaching parallel programming using both high-level and low-level lan-
guages (2001)

26. Pfalzgraf, A.M., Driscoll, J.A.: A low-cost computer cluster for high-performance
computing education. In: IEEE International Conference on Electro/Information
Technology. pp. 362�366 (2014). https://doi.org/10.1109/EIT.2014.6871791

27. Raj, R.K., Romanowski, C.J., Impagliazzo, J., Aly, S.G., Becker, B.A., Chen, J.,
Ghafoor, S., Giacaman, N., Gordon, S.I., Izu, C., Rahimi, S., Robson, M.P., Thota,
N.: High performance computing education: Current challenges and future direc-
tions. In: ITiCSE-WGR '20. Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3437800.3439203

28. Ro±ciszewski, P., Czarnul, P., Lewandowski, R., Schally-Kacprzak, M.: Ker-
nelhive: a new work�ow-based framework for multilevel high performance
computing using clusters and workstations with cpus and gpus. Concur-
rency and Computation: Practice and Experience 28(9), 2586�2607 (2016).
https://doi.org/https://doi.org/10.1002/cpe.3719

29. Rüde, U., Willcox, K., McInnes, L.C., Sterck, H.D.: Research and education in
computational science and engineering. SIAM Review 60(3), 707�754 (2018).
https://doi.org/10.1137/16M1096840

30. Shamsi, J.A., Durrani, N.M., Ka�, N.: Novelties in teaching high performance
computing. In: 2015 IEEE International Parallel and Distributed Processing Sym-
posium Workshop. pp. 772�778 (2015). https://doi.org/10.1109/IPDPSW.2015.88

31. Shaw, A., Varon, D.: Numerical veri�cation of goldbach's conjecture with paral-
lel computing (2018), harvard. CS205: Extreme Scale Data and Computational
Science. https://github.com/djvaron/Goldbach

32. Sitsylitsyn, Y.: A systematic review of the literature on methods and technologies
for teaching parallel and distributed computing in universities. Ukrainian Journal
of Educational Studies and Information Technology 11(2), 111�121 (Jun 2023).
https://doi.org/10.32919/uesit.2023.02.04

33. Trejo-Sánchez, J.A., Hernández-López, F.J., Uh Zapata, M.A., López-Martínez,
J.L., Fajardo-Delgado, D., Ramírez-Pacheco, J.C.: Teaching high-performance
computing in developing countries: A case study in mexican universities. In:
IPDPSW. pp. 338�345 (2022). https://doi.org/10.1109/IPDPSW55747.2022.00066

34. Xu, Z., Chi, X., Xiao, N.: High-performance computing environment: a review
of twenty years of experiments in China. National Science Review 3(1), 36�48 (01
2016). https://doi.org/10.1093/nsr/nww001, https://doi.org/10.1093/nsr/nww001

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_29

https://dx.doi.org/10.1007/978-3-031-63783-4_29
https://dx.doi.org/10.1007/978-3-031-63783-4_29

