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Abstract. Anomaly detection is a critical aspect of uncovering unusual
patterns in data analysis. This involves distinguishing between normal
patterns and abnormal ones, which inherently involves uncertainty. This
paper presents an enhanced version of the parallel UC2B framework for
anomaly detection, previously introduced in a different context. In this
work, we present an extension of the framework and present its large-
scale evaluation on the Supercomputer Fugaku. The focus is on assessing
its scalability by leveraging a great number of nodes to process large-
scale datasets within the cybersecurity domain, using the UNSW-NB15
dataset. The ensemble learning techniques and inherent parallelizability
of the Unite and Conquer approach are highlighted as key components,
contributing to the framework’s computational efficiency, scalability, and
accuracy. This study expands upon the framework’s capabilities and em-
phasizes its potential integration into an existing Security Orchestration,
Automation, and Response (SOAR) system for enhancing cyber threat
detection and response.

Keywords: Anomaly Detection · Linear Algebra · Unite and Conquer
Approach · Machine Learning · High performance computing · Ensemble
learning · Uncertainties · UC2B · UCEL · Cybersecurity.

1 Introduction

Anomaly detection is a crucial element in data analysis and has gained widespread
recognition for its ability to identify patterns or behaviors significantly deviating
from normal or expected observations, with diverse applications across various
domains [7].

In the field of finance, anomaly detection plays a pivotal role in detecting
fraud and suspicious financial activities [4]. By identifying unusual transactions,
atypical spending patterns, or fraudulent behaviors, anomaly detection con-
tributes to fortifying the security and protection of financial assets. Likewise, in
manufacturing, it is employed to monitor production processes, identifying fail-
ures or unexpected variations to enhance product quality, optimize operations,
and minimize downtime [24]. Additionally, in healthcare, anomaly detection aids
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in detecting unusual symptoms, identifying rare diseases, and analyzing medical
images for precise diagnoses and timely interventions [29].

In cybersecurity, anomaly detection serves as a vital tool for safeguarding
computer systems against malicious attacks [26]. It plays a crucial role in real-
time threat detection and prevention by identifying abnormal behaviors on net-
works, data breaches, hacking activities, and intrusion attempts, thereby en-
hancing system security and minimizing the impact of cyber threats.

Despite advancements in anomaly detection driven by large-scale datasets
and sophisticated machine learning algorithms, challenges persist due to the in-
creasing complexity and size of modern datasets [12]. Efficient processing and
analysis of data require substantial computational power, with deep learning
models relying on high-performance GPUs or specialized hardware accelerators
for training and fine-tuning. Real-time anomaly detection, on the other hand,
demands rapid analysis of incoming data streams, necessitating the processing
speed and scalability of modern hardware. Organizations must invest in pow-
erful computational resources to fully harness the potential of these advanced
techniques for effective anomaly detection in complex data.

To address these challenges, we have developed the parallel UC2B Framework
in [30], an acronym for Unite and Conquer with Bagging and Boosting. Unite
and Conquer is an iterative method that involves making several iterative meth-
ods collaborate by sharing their information. Bagging involves training multiple
models on different data subsets and combining their predictions, and boost-
ing improves a model’s accuracy by emphasizing misclassified examples [25]. In
previous experiments utilizing the parallel UC2B framework for anomaly de-
tection, specifically on the smallest data set of UNSW-NB15, notable efficiency
was demonstrated, achieving a detection rate ranging from 97% to 99% [30].
This framework leverages the Unite and Conquer methodology, integrating Bag-
ging and Boosting techniques to primarily enhance prediction accuracy. How-
ever, these experiments have brought to light scalability concerns, particularly
in managing the computational demands of extensive datasets. The number of
nodes is confined by the number of co-methods, as each co-method necessitates
a dedicated node for training. This interdependency introduces inefficiencies,
affecting both memory usage and computational complexity. Addressing these
challenges is crucial for the seamless implementation of the synchronous version
of Parallel UC2B in real-world anomaly detection solutions.

In this paper, we introduce an enhanced version of the UC2B framework, a
parallel anomaly detection system designed for cybersecurity threat detection.
Conducting experiments on the Supercomputer Fugaku with up to 40 nodes, our
versatile framework adeptly addresses diverse cybersecurity threats, with a spe-
cific emphasis on analyzing the biggest dataset of UNSW-NB15, which comprises
over 2.5 million samples [18]. The Parallel UC2B extension integrates multi-level
parallelism and double bagging, significantly enhancing processing efficiency.
Our objectives encompass advancing the framework, fortifying defenses against
emerging cyber threats, and facilitating its integration into existing SOAR sys-
tems. We validate its high accuracy, assess its effectiveness through confidence
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score calculations, and study its scalability under both weak and strong loads,
including its behavior with larger databases. Key elements of our work include:

– Enhanced exploration of an optimized configuration incorporating multi-
level parallelism, a fusion of double bagging and boosting, complemented by
a restarting strategy inspired by the unite and conquer method for anomaly
detection.

– Integration of a diverse array of components, encompassing various ML mod-
els, with inherent load balancing potential, distributed computation capa-
bilities, and a fault-tolerant implementation strategy.

– Adoption of both model parallelism and data parallelism.
– Implementation of a parallel framework designed to harness the performance

capabilities of high-performance computing architectures.
– Validation of the framework’s efficacy through a series of experiments exe-

cuted on the supercomputer Fugaku using 40 nodes.
– Specialized focus on the application of the framework within the cybersecu-

rity domain, leveraging the UNSW-NB15 dataset for evaluation.
– Integrating a robust uncertainty metric deepens predictive insights, bolster-

ing confidence in model performance and decision-making.

2 State of the art

The state-of-the-art in anomaly detection within the field of cybersecurity has
been advancing rapidly in recent years. Numerous studies and approaches have
been proposed to address the challenge of detecting unusual and potentially
harmful behavior in computer systems and networks. Some machine learning-
based techniques applied to anomaly detection, including Bagging (which in-
volves training multiple models on different data subsets and combining their
predictions) and Boosting methods (that improve a model’s accuracy by empha-
sizing misclassified examples [5]), run alongside spectral calculations [16] that
involve analyzing eigenvalue and eigenvector values.

More recently, Diop et al. applied the Unite and Conquer approach [11] used
in linear algebra to ensemble learning. The resulting technique, called UCEL,
iteratively boosts a set of methods that work like bagging, and iterations of this
boosting continue until the desired accuracy is achieved [8, 9]. This extended
method shows improved performance. Another combination of these techniques
was presented in the article [30] to improve the results of UCEL in terms of
detection rate.

Moreover, there have been significant efforts in evaluating these methods
and comparing their performance on various data sets, including the widely rec-
ognized UNSW-NB15 data set [18]. The UNSW-NB15 data set, with its large
number of simulated network traffic instances, is commonly used for evaluat-
ing the performance of anomaly detection algorithms in a realistic setting. It
contains a wide range of attack types and is characterized by its high volume
and high dimensionality, making it a challenging data set for anomaly detection
algorithms.
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In addition to the previously mentioned Bagging and Boosting methods and
spectral calculations, other notable methods include Variational Autoencoders
(VAE), which learn a probabilistic representation of normal data and identify
anomalies based on the reconstruction probability [3]. Generative Adversarial
Networks (GAN) have been applied to anomaly detection, where a generator
reproduces normal data and a discriminator distinguishes between real and gen-
erated data [2]. Hidden Markov Models (HMM) have been employed for anomaly
detection, extending the one-class support vector machine (SVM), by leverag-
ing latent dependency structures [13]. The approach achieves superior anomaly
detection performance compared to traditional one-class SVM, as demonstrated
through empirical evaluations on diverse datasets in computational biology and
computational sustainability domains. Recurrent Neural Networks (RNN), such
as LSTM, have been effective in capturing sequential dependencies for anomaly
detection in time series data [17]. These methods, along with preprocessing tech-
niques for feature selection and data normalization, have contributed to the ad-
vancement of anomaly detection in cybersecurity.

As the application of anomaly detection techniques expands beyond the cy-
bersecurity domain, researchers are actively exploring their adaptability to var-
ious specific application fields. This progression is exemplified by recent studies
proposing innovative approaches to address real-time monitoring challenges in
complex systems.

To solve the problem of real-time monitoring of the signals produced by the
accelerators, a fault detection method is proposed in [14]. This method, based
on data from the beam position monitoring system, can identify anomalies in
SLAC’s radio frequency (RF) stations and detect more events while reducing
false positives compared to diagnostics of existing RF stations.

Moreover, the method CoAD proposed in [15], trains anomaly detection mod-
els on unlabeled data, based on the expectation that anomalous behavior in one
sub-system will produce coincident anomalies in downstream sub-systems.

Furthermore, the lack of structured parallel implementation in anomaly de-
tection poses a significant challenge for the field [12]. Anomaly detection algo-
rithms often involve complex computations and deal with large datasets, making
them computationally demanding. While parallel computing has the potential
to accelerate these tasks by distributing the workload across multiple processing
units, achieving efficient parallel implementations is not straightforward [6, 23].
Many anomaly detection methods are not inherently parallelizable due to their
sequential nature and data dependencies, requiring substantial modifications for
parallel processing. Load imbalance among processing units, caused by the ir-
regularity of anomaly occurrence in data, further complicates the parallelization
process. Additionally, the absence of standardized parallel frameworks tailored
explicitly for anomaly detection hinders progress [10]. To address these issues,
focused research, collaboration between anomaly detection and parallel comput-
ing experts, and the development of specialized parallel frameworks are essential
to unlock the benefits of parallel computing in advancing anomaly detection
capabilities.
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3 Software Architectures of Enhanced Parallel UC2B

In various scientific disciplines, the escalating data generation surpasses compu-
tational capacities, compelling the integration of modeling, analysis, and high-
performance computing [21]. These challenges, spanning diverse fields, are rooted
in applied mathematics, including linear algebra and statistics, alongside ar-
tificial intelligence, which encompasses machine learning methods and high-
performance computing techniques. Within cybersecurity, the evolving subtlety
of security breaches extends investigation times, demanding a discerning ap-
proach to distinguish authentic alerts from false alarms. Expertise and timely
validation of ’false alerts’ are crucial in a Security Operations Center (SOC) [20].
This undertaking seeks to contribute to the resolution of these challenges, ex-
emplified through practical applications of data analysis in securing information
systems within organizations, such as advanced technology enterprises.

As outlined in the state-of-the-art section, the application of the Unite and
Conquer approach to Ensemble Learning methods, is another anomaly detec-
tion technique proposed by Diop et al. in [8], [9], called UCEL. In this paper,
we propose an enhanced version of UCEL which improves its performance. To
distinguish this extension from UCEL, we call it Parallel UC2B for Unite and
Conquer with Bagging-Boosting. The presence of several levels of boosting as
well as that of multi-level intrinsic parallelism in UC2B partly explain its better
performance relative to UCEL, in addition to a double bagging. Other charac-
teristics such as the heterogeneity of its components, its fault tolerance as well
as its potential for load balancing make UC2B a technique very well suited to
recent parallel and/or distributed architectures.

3.1 Unite and Conquer Approach

”Unite and Conquer” is a problem-solving paradigm that orchestrates multi-
ple iterative methods, or co-methods, to collectively address complex problems,
particularly in linear algebra [11]. Applied in resolving expansive, sparsely pop-
ulated linear systems and eigenvalue predicaments, this approach accelerates
convergence by aggregating intermediate outcomes from each co-method. The
strategic restarting approach plays a pivotal role in providing a better starting
point for each new cycle, enhancing overall convergence. Co-methods exchange
intermediate solutions to determine effective restarting conditions, resulting in
swifter global convergence. With intrinsic advantages like multi-level parallelism,
robust fault tolerance, adaptability to component heterogeneity, asynchronous
communication capabilities, and inherent load balancing potential, the ”Unite
and Conquer” approach is well-suited for cutting-edge computational architec-
tures. It optimally allocates computational resources, enhancing efficiency and
parallel processing benefits, accelerating problem resolution, and maximizing re-
source utilization.

The Unite and Conquer algorithm can be expressed in a mathematical form
as the following. Let P be the large linear algebra problem to be solved, L1, L2, ..., Ll

be a set of iterative methods that can solve P, Iki the the initial condition (with
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k = 0) and restarting condition (with k > 0) of Li, and θ be the threshold value.
Let f be a function defining the restarting strategy according to the intermedi-
ate results (Sk

1 , ..., S
k
ℓ ) with Sk

i the approximated solution obtained by Li at the
end of i-th iteration/cycle. An algorithm of Unite and Conquer can be defined
as follows:

Algorithm 1 Unite and Conquer Algorithm

Initialize Choose a starting matrix [I01 , . . . , I
0
ℓ ], let k = 0.

For i = 1 to ℓ do in parallel
Compute Sk

i by applying Li to P with initial conditionIki .
If Sk

i is sufficiently accurate, STOP all ℓ process and return Sk
i as the solution of P .

Share Sk
i information with all other processes j (j = 1, . . . , ℓ and j ̸= i).

Update and Restart [Ik+1
1 , . . . , Ik+1

l ]=f(Sk
1 , . . . , S

k
l ) and increment k.

Essentially, this approach boasts a simple yet versatile framework applica-
ble to various iterative methods, as exemplified in this paper. We specifically
explore integrating boosting techniques within bagging methodologies, intro-
ducing a second level of parallelism to enhance the model’s adaptability and
performance across diverse datasets and scenarios.

3.2 Parallel UC2B Insights

The Parallel UC2B framework aims to enhance anomaly detection accuracy and
efficiency by integrating the Unite and Conquer problem-solving approach with
Bagging, Boosting, and multi-level parallelism. The objective is to iteratively
improve accuracy, ensure high confidence scores, and expedite anomaly iden-
tification. Collaboration among parallel co-methods refines their performance
through multiple training cycles, culminating in a convergence state with sub-
stantial and stable improvements. Each co-method undergoes parallel training
in inner bags of the dataset, emphasizing a multi-level parallelism approach.

In light of the constraint that LM models in scikit-learn cannot be trained on
multiple nodes, we adopt a double bagging approach. This involves partitioning
the database into outer bags through ’Node-based dataset partitioning’ (cf. Fig.
1), ensuring the number of outer bags aligns with the total number of nodes di-
vided by the number of co-methods (ML models). Subsequently, we thoroughly
evaluate co-method performance using a validation set. Co-methods share their
misclassified data (False Positives/Negatives), incorporating the boosting prin-
ciple to adjust weights for misclassified samples during iterations based on co-
method performance metrics. This iterative process heightens the likelihood of
selecting crucial samples for constructing training data in subsequent cycles.

Resulting in inner bags of the original training data size from the boosted
training dataset, this collaborative process allows each co-method to learn from
its peers and gain insights into challenging data samples. The joint effort con-
tributes to the gradual refinement and improvement of the models.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_26

https://dx.doi.org/10.1007/978-3-031-63783-4_26
https://dx.doi.org/10.1007/978-3-031-63783-4_26


Enhancing the Parallel UC2B Framework 7

Fig. 1: Enhanced Parallel UC2B Architecture.

The goal of Parallel UC2B is versatility, addressing a wide spectrum of at-
tacks, whether internal or external, and anomalies, while maintaining reasonable
execution time for practical deployment. In tackling the challenge of detecting
sophisticated threats and anomalies, we seek to leverage insights from each co-
method. Given that UC approach learns the underlying global structure of data,
we provide the entire dataset to all methods in parallel. Each co-method then
creates duplicates of itself (depicted by yellow cylinders in 1) and segments the
dataset into multiple bags (illustrated by orange cylinders in 1), training each
copy of the co-method on a bag. This approach ensures that each co-method
learns from the entirety of the dataset and collaborates synchronously with the
other co-methods by sharing their outputs, updating the weights of misclassi-
fied instances (FP/FN chunk), and checking if satisfactory accuracy has been
achieved by testing on the validation dataset (purple arrows). In contrast, in
UCEL [9], the dataset is divided into bags, with each bag exclusively assigned to
a single co-method, limiting the number of bags. In Parallel UC2B, the number
of bags is independent of the co-methods, providing flexibility with ”n” bags for
each method.

In Unite and Conquer, our focus is primarily on synchronous communica-
tions among co-methods, with asynchronous communications also accommo-
dated. The collaborative mechanism integrates bagging and boosting techniques
for diverse data treatment, effectively balancing bias mitigation and variance
management. The training process incorporates feedback from all co-methods,
addressing performance metrics and instances of FP/FN. Furthermore, inher-
ent parallelism optimally utilizes computational resources, enhancing efficiency,
especially in ’parallel UC2B,’ where thread Parallelism and SIMD operations
drive concurrent task handling, data processing, and collaborative sharing among
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co-methods. This streamlined approach, complemented by efficient data In-
put/Output, ensures timely information exchange, supports boosting mecha-
nisms, and yields significant performance gains.

3.3 Algorithm of Enhanced Parallel UC2B

In the realm of machine learning, the choice of data analysis methods hinges on
the nature of available information, whether it’s labeled, unlabeled, or imbal-
anced. In corporate environments, routine activities prevail, leading to datasets
predominantly skewed towards normal behavior. The prevalence of normal data
introduces challenges for anomaly detection.

In this implementation, we employ Gaussian Naive Bayes (GNB), Isolation
Forest (IForest), Decision Tree (DT), and Random Forest (RF) as co-methods
in the Parallel UC2B framework. This collaborative approach addresses chal-
lenges faced by traditional supervised and unsupervised methods when dealing
with limited abnormal examples. Unsupervised techniques, adept at handling
imbalanced data, primarily focus on identifying deviations without delving into
their underlying causes. In contrast, supervised methods excel in scenarios with
balanced and labeled datasets, but achieving such balance is often impractical
in real-world applications.

Algorithm 2 Enhanced Parallel UC2B

1 Input:
2 Data set D.
3 Number of bags I.
4 Number of all process iterations n.
5 Number of learners M .
6 Sample weights W initialized to ones.
7 for i← 1 to n do:
8 for j ← 1 to M do in parallel:
9 for k ← 1 to I do in parallel:

10 Bk ← Bags Bootstrap sample from D with replacement.
11 yk ← Vector label issued Lj training on the bags Bk.
12 Predictions[j] ← Prediction using yk.
13 Calculate misclassification rates using Predictions and true labels.
14 β ← 1.1×misclassified + 0.9× classified
15 Sync and Share β and the results with all other processes.
16 Check for desired accuracy; if met, stop all processes and exit.
17 Restart by Updating the input data with adjusted weights for the next iteration:
18 W = W × β
19 D ← Updated D with adjusted sample weights W .
20 Output:
21 Obtain the boosted predictions after the desired iterations.

Our proposed approach begins with meticulous pre-processing of a dataset
containing more than 2.5 million samples. This includes crucial steps such as
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data cleaning, feature selection, as well as scaling and normalization procedures.
Subsequently, from this refined dataset, distinct sets for training, validation, and
testing are carefully curated.

Following the node-based dataset partitioning, each model is trained in paral-
lel to the others in inner parallel bags. Based on the predictions obtained, the co-
efficient β is calculated using the formula β = 1.1×misclassified+0.9×classified.
This coefficient is then used to update the instances that were misclassified for
a subsequent boosted iteration.

4 Experiments and Analysis

In this section, we present results from our experiments on the Supercomputer
Fugaku, utilizing 40 nodes for assessment. We’ll explore the Fugaku hardware
specifics to align with our implementation settings, followed by validation in the
first subsection and performance demonstration in the second.

Fugaku is a supercomputer that boasts a highly advanced hardware archi-
tecture, positioning it as the most powerful supercomputer in the world in 2020
and 2021 [27, 28], and it is currently ranked as the number 2 supercomputer
in 2023 [1]. It incorporates a state-of-the-art hardware design aimed at deliver-
ing exceptional performance and efficiency [19]. At its core, Fugaku utilizes the
A64FX processor [22], which is based on the ARM architecture. Each A64FX
chip comprises 48 computing cores, and each core is equipped with two 512-bit
wide SIMD units. Powered by the A64FX chip, incorporates high-bandwidth
memory (HBM2) modules, delivering substantial capacity and impressive band-
width. To facilitate swift data transfer and node communication, Fugaku utilizes
the custom-designed Tofu-D interconnect system. This network, based on a 6-
dimensional mesh/torus topology, ensures efficient and low-latency interactions
between nodes, enabling seamless data exchange and synchronization during
parallel computations.

4.1 Validation of the Approach

The goal of this validation is to showcase that the Parallel UC2B approach
achieves high accuracy with a robust confidence score.

We initiate our experiments by displaying the accuracy obtained on the train-
ing set during the UC iterations. As a reminder, the UC iterations involve the
re-injection of False Positives (FP) and False Negatives (FN), updating misclas-
sified instances through the β factor. Subsequently, we plot the curve obtained
on the test dataset, which has never been seen by the framework.

Accuracy is chosen for performance evaluation in our context as it represents
correct predictions relative to the total sample count. As depicted in Figure 2, il-
lustrating accuracies obtained in the training set, IForest emerges as the weakest
among the co-methods. While GNB, Decision Tree, and Random Forest exhibit
high accuracies, they lack stability. In contrast, Parallel UC2B demonstrates
convergence over UC iterations, achieving the highest stable accuracy.
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10 Z. Ziani et al.

Fig. 2: Train & Test Accuracies: 4 Co-methods & Parallel UC2B (4 UC Itera-
tions)

Transitioning to the test set graph, a similar pattern emerges. Other mod-
els display good accuracy but lack stability, while Parallel UC2B maintains its
superiority in accuracy and stability even on data unseen by the framework.

Fig. 3: The reduction of misclassified instances throughout the UC iterations.

This graph 3 illustrates the reduction of misclassified instances during the
UC iterations on a node. As the data is divided based on nodes, this graph vi-
sually depicts the decrease in the number of misclassified instances, attributed
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to the β factor updating these instances in each iteration.

Train Accuracy of Parallel UC2B 0.9999 0.9999 0.9999 0.9999

Test Accuracy of Parallel UC2B 0.9979 0.9979 0.9979 0.9980

Confidence Score of Parallel UC2B 0.9980 0.9980 0.9980 0.9981

Table 1: Score confidence of Parallel UC2B

To measure the model’s effectiveness, we employed the formula:

Confidence Score = 1− |Train Accuracy − Test Accuracy |

This score serves as a metric for assessing the model’s consistency and stabil-
ity across both training and test datasets. A higher Confidence Score, converging
towards 1, indicates comparable performance on both datasets, highlighting the
model’s robustness. Conversely, a score closer to 0 suggests substantial differences
between training and test data performances, potentially signaling instability or
overfitting. In our specific case, the confidence scores for various iterations of the
Parallel UC2B model consistently hover around 0.998. This steadfastness under-
scores a robust alignment between accuracy on training and test data, affirming
the model’s capability to generalize effectively to new data, which is a critical
characteristic for model reliability.

4.2 Performance Demonstration of the Approach

After validating the accuracy of the approach, achieving a 99% accuracy on
previously unseen test data and obtaining a very high confidence score, which
improves upon the results obtained with the UCEL [8] and the previous version of
Parallel UC2B [30], we will now focus on studying and evaluating the scalability
of the framework, both strong and weak, along with its speedup and accuracy
stability across different data sizes.

(a) Accuracy Stability (b) Strong Scalability

Fig. 4: Accuracy Stability and Strong Scalability with Fixed Data-size
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The graph 4a illustrates the accuracy achieved on a dataset comprising over
2.5 million samples as the number of nodes increases. Remarkably, the accuracy
remains stable, showing no more than a 0.007% degradation from 4 to 24 nodes.
Beyond 24 nodes, the accuracy plateaus at 0.9973, persisting even up to 40 nodes.
This suggests that scaling the framework with additional nodes has negligible
impact on accuracy.

As for graph 4b, it depicts the study of strong scalability, where we maintain
a fixed problem size, increase the number of nodes, and evaluate speedup. In
our case, the problem size exceeds 2.5 million, and even though the speed from
4 to 40 nodes doesn’t quite double, it shows almost linear scalability up to 20
nodes. For node 24, we observe a speedup that deviates from linearity, followed
by a near-linear recovery at node 28. The speed increase, while not doubling or
more, can be attributed to synchronous communications between co-methods.
Scaling from 4 to 40 nodes increases the number of communications tenfold.
Additionally, the β factor, updating misclassified samples, is implemented in
a way that each co-method needs to receive β for the entire 2.5 million data
samples. This explains the suboptimal speedup obtained in this figure.

(a) Speedup Vs Data Sizes (12 Nodes) (b) Weak Scalability

Fig. 5: Speedup with Fixed and Various Nodes and Various Data-sizes

The figure 5a illustrates the behavior of speedup using a fixed number of
nodes, 12 in our case, while increasing the database size. We observe a degrada-
tion in speedup as the database size grows, which is expected given the constant
number of nodes. However, starting from a database size of 1 million samples,
we notice that the speedup does not degrade significantly. Interestingly, the ex-
ecution time for 2.3 million samples is nearly the same as that for 2.6 million,
indicating that the framework can effectively handle very large databases.

The graph in 5b illustrates weak scalability, which involves increasing the
problem size in proportion to the addition of nodes. Ideally, for this experiment,
the execution time would remain constant, as the increase in the database size
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is accompanied by a corresponding increase in the number of nodes. However,
due to the same phenomenon explained in strong scalability, when the number
of nodes increases, the number of synchronous communications also increases
with the growth of the database size, leading to an increase in the size of β.
Nevertheless, the obtained curve is almost linear, indicating that the execution
time is proportional to the addition of nodes and datasize.

In summary of the interpreted results, the framework stands out for its robust
detection capability, marked by a high confidence score. Regarding its scalabil-
ity performance, the framework exhibits remarkable adaptability to large-scale
databases, maintaining stable accuracy even with an increased number of nodes.
While strong scalability shows a proportional trend in some sections, weak scal-
ability displays an almost linear trajectory. However, it is important to note an
impact on speed performance. As the database expands, synchronous commu-
nications and the size of β increase, contributing to a gradual rise in execution
time. This observation underscores the delicate balance between expanding com-
putational resources and addressing challenges related to increased inter-node
communication. The synchronous implementation of the framework is identified
as the source of these observations. These findings highlight the importance of
considering optimal system configurations for large-scale deployments, suggest-
ing a possible solution in developing the asynchronous version of the framework.

5 Conclusion

This study presents a comprehensive exploration of the enhanced Parallel UC2B
framework for anomaly detection, evaluated on the supercomputer Fugaku. The
core analysis revolves around assessing IForest, GNB, DT, and RF models within
the parallelization framework, with the Parallel UC2B model emerging as a
robust and accurate approach.

As highlighted earlier, the primary goal of this work is to seamlessly integrate
this framework into an existing SOAR, underscoring the critical importance
of detection rate and speed. Having successfully validated the detection rate,
our future endeavors will focus on refining the Parallel UC2B framework by
incorporating asynchronous communication capabilities. This enhancement aims
to further reduce execution time while leveraging more nodes for superior strong
and weak scalability. Additionally, we plan to conduct extensive testing across
diverse applications such as healthcare and finance.
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