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Abstract. In recent years, self-supervised learning has played a piv-
otal role in advancing machine learning by allowing models to acquire
meaningful representations from unlabeled data. An intriguing research
avenue involves developing self-supervised models within an information-
theoretic framework, e.g., feature decorrelation methods like Barlow Twins
and VICReg, which can considered as particular implementations of the
information bottleneck objective. However, many studies often deviate
from the stochasticity assumptions inherent in the information-theoretic
framework. Our research demonstrates that by adhering to these assump-
tions, specifically by employing stochastic embeddings in the form of a
parametrized conditional density, we can not only achieve performance
comparable to deterministic networks but also significantly improve the
detection of out-of-distribution examples, surpassing even the perfor-
mance of supervised detectors. With VICReg, specifically, we achieve an
average AUROC of 0.858 for the stochastic unsupervised detector, com-
pared to 0.796 for the supervised baseline. Remarkably, this improvement
is achieved solely by leveraging information from the underlying embed-
ding distribution.

Keywords: self-supervised learning · out-of-distribution detection ·
stochastic embeddings · uncertainty estimation · information theory

1 Introduction

Self-supervised learning (SSL) is an approach to learning representations of data
without labels, often utilizing the data itself as a supervisory signal. In recent
years, such methods have gained increasing popularity in computer vision and
have demonstrated significant success in various downstream tasks [29]. The
primary goal of SSL is to bring similar samples closer while pushing dissimilar
samples further apart. This objective enhances the model’s ability to discrimi-
nate between different data classes, contributing to its overall effectiveness.

One effective strategy for learning meaningful representations involves maxi-
mizing the similarity between various views of augmented images, thereby ensur-
ing invariance to these augmentations [7]. However, this approach risks encoun-
tering trivial solutions (i.e., where all embeddings collapse into a single point).
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Fig. 1. This schematic illustrates the multi-view encoding process. It begins with im-
age views (V), which are transformed via deterministic or stochastic pathways. The
deterministic pathway processes the input through encoder function f(·), leading to
deterministic representation space (H) and loss space (Z). The probabilistic pathways
(H-prob. and Z-prob.) introduce stochasticity by sampling from associated spaces using
stochastic encoders q(h|v) and q(z|v).

Methods such as Barlow Twins [40] and VICReg [4] employ feature decorrela-
tion mechanisms to address this issue. Interestingly, they are closely linked to
an information-theoretic framework as their objective can be derived using the
information bottleneck principle [2,33]. Nevertheless, the information-theoretic
framework typically assumes a source of stochasticity (noise) within the model.
The aforementioned methods do not fulfil this stochastic condition, as they are
simplified using deterministic networks and rely on a proxy objective. By align-
ing with the assumption of the information-theoretic framework (source of noise
within the model), we could effectively benefit from stochasticity for tasks such as
uncertainty estimation and out-of-distribution detection (OOD) [39]. Recent ad-
vancements in machine learning underscore the importance of quantifying these
uncertainties and identifying distributionally shifted (OOD) samples, particu-
larly in safety-critical applications such as medical imaging, active learning, and
autonomous driving [11].

Our study directly introduces stochasticity into the feature decorrelation-
based methods by parameterizing the conditional density of a model, i.e., pre-
dicting the parameters of the embeddings’ distribution. In essence, our goal is
twofold: first, to adhere to the stochastic assumptions required by the information-
theoretic framework, and second, to harness this stochasticity to enhance our
ability to detect OOD examples and handle uncertainty. We demonstrate that
leveraging stochastic embeddings enables us to outperform other supervised and
deterministic methods for OOD detection while also achieving comparable re-

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_25

https://dx.doi.org/10.1007/978-3-031-63783-4_25
https://dx.doi.org/10.1007/978-3-031-63783-4_25


Enhancing OOD detection through stochastic embeddings in SSL 3

sults when evaluated across various downstream tasks (linear classification, semi-
supervised learning, and transfer learning).

Our contributions are as follows:

1. We employed stochastic embeddings to feature decorrelation-based meth-
ods, adhering to the theoretical underpinnings of the information-theoretic
framework.

2. We showcased the effectiveness of our approach in detecting OOD samples by
leveraging the embedding distribution, outperforming traditional supervised
detectors.

3. We explored novel strategies for exploiting stochastic embeddings to accu-
rately identify OOD examples.

4. We conducted a comprehensive empirical evaluation to assess the impact of
stochastic embeddings on downstream tasks.

The paper’s remaining sections are organized as follows: Section 2 reviews
related works in SSL, focusing on representation learning methods and address-
ing challenges like trivial solutions and lack of stochasticity. Section 3 details our
approach for introducing stochasticity into feature decorrelation-based methods.
In Section 4, we present experiments evaluating our approach’s effectiveness in
downstream tasks and OOD detection. Lastly, Section 5 offers conclusions and
summarizes key findings.

2 Related works

The primary objective of self-supervised learning is to optimize a specific
loss function tailored to capture meaningful patterns or relationships within
unlabeled data. One approach, proven to be very successful in vision tasks, is
contrastive learning [7], which aims to maximize the agreement between posi-
tive (similar) pairs of data samples while minimizing it for negative (dissimi-
lar) pairs. More recent avenues are non-contrastive methods that adopt various
mechanisms to prevent representation collapse, eliminating the need for neg-
ative samples [34]. These mechanisms could include architectural constraints
[13], clustering-based objectives [6], or feature decorrelation [40,4]. These non-
contrastive methods indirectly optimize the uniformity property of the represen-
tation, aiming to prevent representation collapse [36]. In this context, we focus on
feature decorrelation-based techniques, particularly the Barlow Twins [40] and
VICReg [4]. The Barlow Twins method involves computing the cross-correlation
matrix from embeddings of augmented images. The objective is to minimize the
off-diagonal elements, encouraging feature decorrelation while promoting data
invariance by aiming to set the diagonal elements to one. VICReg introduces
an additional term into the loss function, which controls the variance of each
dimension within the embeddings. Consequently, this facilitates straightforward
computation of the covariance of the embeddings and eliminates the necessity
for normalization.
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OOD detection methods in machine learning are crucial for identifying
instances during the testing phase that deviate semantically from the cate-
gories encountered in the training data, thereby preventing misclassification
[11]. While supervised detectors [16,24] have demonstrated success, they rely
on label information and a classifier to derive their scores. On the other hand,
distance-based methods [23,31] utilize representations (features) for detecting
OOD examples, yet many of them still necessitate computing class-conditional
statistics from the training data. In fully unsupervised OOD detection, density-
based and reconstruction-based methods leverage data density or reconstruction
techniques, often incorporating generative models [39].

Our research focuses on self-supervisedmethods forOOD detection. Pre-
vious studies have explored various avenues, including combining self-supervised
and discriminative objectives [16], employing hard data augmentations for sam-
ple separation [35], leveraging contrastively learned features [3,32], and inte-
grating probabilistic modelling to estimate uncertainty [19,26]. For instance,
[19] utilizes the von Mises Fischer distribution to model embeddings, with the
concentration parameter serving as an uncertainty metric. Similarly, [26] in-
vestigates SimSiam [8] within the variational inference framework, employing
a power spherical distribution to characterize the embedding distribution. Our
study adopts a similar approach, leveraging embedding distribution character-
istics to identify uncertain and OOD examples. However, we consider feature
decorrelation-based methods within the information-theoretic framework, repre-
senting embeddings with a different distribution than the aforementioned studies
and learning a different objective (Section 3.2).

The information-theoretic perspective offers crucial insights into the un-
derlying mechanics of self-supervised learning. While models like InfoMax [17]
prioritize capturing maximal data information, the Information Bottleneck (IB)
principle emphasizes balancing informativeness and compression [2]. In this con-
text, Barlow Twins exemplifies an IB aiming to maximize information between
the image and representation while minimizing information about data augmen-
tation, rendering the representation invariant to these augmentations. Another
approach, the multi-view information bottleneck (MIB) framework [10], seeks
to capture predictive information shared across different data views. This is
achieved by maximizing mutual (shared) information between views in their
embeddings while minimizing redundant information not shared between them.
Shwartz-Ziv et al. [33] demonstrated that the VICReg objective can also be de-
rived from an information-theoretic standpoint, exploiting a lower bound derived
from the MIB framework.

3 Methodology

In this section, we begin by outlining the setup of the feature decorrelation-
based SSL framework for deterministic (point estimate) embeddings. Following
this, we extend this setup to incorporate stochasticity and introduce stochastic
(probabilistic) embeddings with regularization. Lastly, we introduce methods
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to leverage the stochastic nature of the embeddings, offering stochastic OOD
metrics. Figure 1 illustrates the workflow of deterministic and stochastic self-
supervised learning variants.

Fig. 2. Diagram of three approaches to SSL: (1) Deterministic, with deterministic
mappings using fθ and gϕ, (2) H-prob, introducing stochasticity with qθ before deter-
ministic projection gϕ, and (3) Z-prob, with deterministic mapping fθ and stochastic
projection qϕ. Losses Linv(z, z

′) and Lreg(z, z
′) are computed using the embeddings.

Ldiv loss is the stochastic regularization loss (see Section 3.3).

3.1 Deterministic self-supervised learning

We sample an image x from a dataset D and create two views v and v′ by apply-
ing transforms t and t′ sampled from a distribution T . These views are then fed
into an encoder fθ, parameterized by θ, to create representations h = fθ(v) and
h′ = fθ(v

′). Next, the representation vectors are passed through the projector
gϕ, parameterized by ϕ, to obtain embeddings z = gϕ(h) and z′ = gϕ(h

′). In a
batch represented by Z = [z1, . . . , zn] and Z ′ = [z′1, . . . , z

′
n], each containing n

embedding vectors of dimension d, corresponding to embedded image views, we
define z(i) = [z1(i), . . . , zn(i)] as the i-th variable across all samples in the batch.
The loss function L(Z,Z ′) is then applied to these embeddings Z and Z ′.

In Barlow Twins, the loss function is computed using the cross-correlation
matrix R on embeddings, which are mean-centred along the batch dimension:

Rij = corr(z(i), z
′
(j)) =

cov(z(i), z
′
(j))

σz(i) · σz′
(j)

, (1)

where z(i) and z′(j) represent the i-th and j-th component of embedding vec-
tors across all samples in the batch, while σz(i) and σz′

(j)
denote the standard
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deviations of z(i) and z′(j) respectively. From the cross-correlation matrix, we

compute: (1) invariance term Linv that optimizes the diagonal elements to be
close to 1, aiming to enforce invariance to data augmentations; and (2) regular-
ization term Lreg that pushes the off-diagonal elements towards 0 to promote
feature decorrelation and prevent collapse:

Linv(Z,Z
′) =

∑
i

(1−R(i,i))
2, Lreg(Z,Z

′) = λ
∑
i

∑
j ̸=i

R2
(i,j)

In contrast, VICReg computes the loss function with three terms. The in-
variance term is calculated using mean-squared error loss scaled by α coefficient
and divided by number of samples in batch n:

Linv(Z,Z
′) =

α

n

n∑
b=1

∥zb − z′b∥22. (2)

The regularization term comprises two components - covariance and variance:

Lcov(Z) =
1

d

∑
i

∑
j ̸=i

C(i,j), Lvar(Z) =
1

d

d∑
i=1

max(0, γ − σz(i)+ϵ), (3)

where C(i,j) is the element of the covariance matrix, i.e., C(i,j) = cov(z(i), z(j)).
The covariance term involves summing the squared off-diagonal coefficients of the
covariance matrix. Meanwhile, the variance term is a hinge function that operates
on the standard deviation of the embeddings across the batch dimension. Both
regularization terms are calculated separately for Z and Z ′ using τ and ν scalars
as loss coefficient:

Lreg(Z,Z
′) = τ [Lvar(Z) + Lvar(Z

′)] + ν[Lcov(Z) + Lcov(Z
′)], (4)

The final loss function in both Barlow Twins and VICReg is then formulated
as the sum of invariance and regularization terms: LSSL = Linv + Lreg.

3.2 Stochastic embeddings

Drawing inspiration from [10] and [33], we propose to reformulate our self-
supervised objective as an information maximization problem and extend it to
stochastic embeddings. We aim to maximize the mutual information between
the views V and V ′ and their corresponding embeddings Z and Z ′, i.e., I(Z;V ′)
and I(Z ′;V ), respectively. We utilize the lower bound from [33]:

I(Z;V ′) = H(Z)−H(Z|V ′)

≥ H(Z) + Ev′ [log q(z|v′)]
≥ H(Z) + Ez|v[Ez′|v′ [log q(z|z′)]]

(5)
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where H(Z), is implicitly optimized by the regularization term Lreg, while the
expectations Ez|v[Ez′|v′ [log q(z|z′)]] (square log loss) are optimized by the in-
variance term Linv. To compute the expected loss, we evaluate these expecta-
tions over empirical data distribution. Specifically, we backpropagate through K
Monte Carlo (MC) samples using the reparametrization trick [18]:

Ez|v[Ez′|v′ [log q(z|z′)]] ≃ 1

nK

n∑
i=1

K∑
k=1

log q(zik|z′ik). (6)

We introduce two variations of the model, which differ in terms of choice of the
stochastic space and, therefore, the variational conditional density q(z|v). Figure
2 depicts the workflow of probabilistic (stochastic) variations of self-supervised
learning.

Stochastic loss space (Z-prob.) In this model variant, we introduce the
stochasticity into the loss space by parametrizing the projector conditional den-
sity qϕ(z|h), i.e., we make the projector stochastic (see Figure 2 at the bottom).
Specifically, we employ a two-step process for encoding image views. Initially,
we utilize a deterministic encoder fθ to transform the image view v into a rep-
resentation h, i.e., h = fθ(v). Subsequently, we employ a stochastic projector
qϕ(z|h) to sample latent variables z based on h. Our conditional density is de-
fined as qϕ,θ(z|v) = qϕ(z|fθ(v)), and the sampling process is represented as

z ∼ N
(
z|µϕ(h), σ

2
ϕ(h)I

)
, where µϕ(h) and σ2

ϕ(h) denote the mean and variance

functions determined by the stochastic projector, respectively. The same proce-
dure is applied to the second image view v′ to generate the representation h′

and the corresponding embedding z′, utilizing identical encoder and projector
parameters denoted by θ and ϕ.

Stochastic representation space (H-prob.) In this model variant, we shift
the stochasticity from the loss space Z to the representation space H (see Figure
2 in the middle). We define the conditional density as qϕ,θ(z|v) = gϕ(qθ(h|v))
and sampling process as h ∼ N (h|µθ(v), σ

2
θ(v)I). Then, we obtain the embed-

ding z by mapping the representation h with a projector, gϕ. We apply the same
procedure for the second image view v′ to produce the representation h′ and the
embedding z′, utilizing the same encoder and projector parameters θ and ϕ. In
particular, to utilize the bound from Eq. 5, we must also account for the presence
of h. We decompose the joint distribution as q(v, h, z) = q(z|h)q(h|v)q(v), where
z depends on h. The computation of q(z|v) requires the marginalization of h,
i.e. q(z|v) =

∫
dhq(z, h|v) =

∫
dhq(z|h)q(h|v). Consequently, we can take expec-

tations with respect to q(h|v) and lower bound term from Eq. 5 using Jensen’s
inequality:

Ev′ [log q(z|v′)] ≥ Eh′|v′ [log q(z|h′)]. (7)

By taking the expectation over both Z and Z ′, we will obtain the final objective:

Ez|h,h|v[Ez′|h′,h′|v′ [log q(z|z′)]], (8)
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which involves an additional expectation step that we take using MC estimation.

3.3 Stochastic regularization

Moving from point estimates to stochastic embeddings, we introduce an ad-
ditional layer of uncertainty, which helps capture the inherent ambiguity and
variability in the data. However, it also raises the challenge of regularizing this
stochasticity to prevent trivial solutions and obtain reliable uncertainty esti-
mates. To address this issue, we follow [2] and formulate an additional regular-
ization term to the loss function in the form of a KL divergence between the
stochastic embeddings q(·|v) and q(·|v′), and a predefined prior q̂(·), typically
N (0, 1):

Ldiv(·, ·) =
β

2
[KL(q(·|v)||q̂(·)) + KL(q(·|v′)||q̂(·))], (9)

where (·, ·) is either (h, h′) or (z, z′). This regularization, controlled by β parame-
ter, acts as a bottleneck, constraining the capacity of our stochastic embeddings,
which proved to be effective in previous work [1,2] in terms of improving robust-
ness and disentanglement.

Consequently, the overall objective for our stochastic self-supervised learning
framework is defined as LStochastic-SSL = Linv + Lreg + Ldiv.

3.4 Stochastic OOD detectors

We aim to utilize the stochastic nature of our embeddings to improve their abil-
ity to distinguish between in-distribution and OOD samples. To achieve this, we
introduce new stochastic scoring methods that exploit the inherent variabil-
ity in the embeddings. Notably, these methods do not require any training labels
and do not depend on the information of OOD data. We propose the following
scoring methods:

– Log-prob prior (LogP): This score is derived by assessing the prior density
q̂ at the test input x∗, denoted as q̂(x∗). As we use KL regularization, the
OOD examples may not be pushed towards the prior, and the log-prob for
these examples could be higher.

– Sigma mean (Sigma): This score computes the mean sigma value of the

embedding, expressed as 1
d

∑d
i=1 σ(x

∗)(i), where i denotes the index of the
embedding vector with dimension d, and σ is the variance predictor of the
conditional density model. Higher sigma values indicate greater uncertainty
in the embedding distribution, potentially signalling an unfamiliar example.

– KLD-Kth-nearest (KLD-KN): In this approach, based on the test input
x∗, we find its distance to the K-th nearest example xk from the training
samples D, measured by the KL divergence, i.e., KL(q(·|xk)||q(·|x∗)). This
method operates under the assumption that OOD examples, which the model
has not encountered, may appear in a ”hole” on a manifold. Thus, examining
nearby examples can serve as a meaningful scoring metric.
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– Euclidean-Kth-nearest (Euclid-KN): This score serves as the determin-
istic counterpart to the KLD-KN score. We utilize the Euclidean distance
instead of KL divergence, i.e., ||xk−x∗||2. We implement this score to assess
whether the KLD-KN score effectively exploits the embedding variance.

4 Experiments

We pretrain our model in a self-supervised manner (without labels), adopting
the same image augmentations and closely adhering to the original works in
determining the loss coefficients [40,4]. Due to computational constraints, we
opt for the smaller ResNet-18 [14] architecture as our backbone encoder and a
smaller non-linear projection head (3-layer MLP, each of 1024 dimensions). We
train the model using the AdamW [25] optimizer with a batch size of 256. We
make our code publicly available at https://github.com/graphml-lab-pwr/

stochastic-embeddings-ssl.

4.1 Downstream tasks evaluation

Setup. In these tasks, the model is pretrained once for 100 epochs on the Im-
ageNet dataset [30]. Our experiments and previous works showed that Barlow
Twins and VICReg exhibit low sensitivity to model intialization [4]. Moreover, we
utilize the N (0, 1) prior q̂(·) and 12 MC samples. Next, we employ three down-
stream tasks: linear classification, semi-supervised and transfer learning [12].
For linear classification (Linear), we train a linear classifier (single linear layer)
on the frozen representations from our pretrained backbone encoder and cor-
responding image labels. A similar process is repeated for Transfer learning

task, where we employ the SUN397 [37] and the Flowers-102 [28] datasets. In
the Semi-supervised learning task, we fine-tune both the backbone encoder and
the linear classifier. We utilize subsets of the ImageNet dataset corresponding to
1% and 10% of the labels [8].

Table 1. Comparison of top-1 accuracy (Acc@1) and expected calibration error (ECE)
for ImageNet tasks. Both Barlow Twins and VICReg exhibit low variance, allowing for
a single-run performance comparison.

Linear Semi-supervised Transfer learning

1% 10% SUN397 flowers-102

Acc@1(↑) ECE(↓) Acc@1(↑) ECE(↓) Acc@1(↑) ECE(↓) Acc@1(↑) ECE(↓) Acc@1(↑) ECE(↓)

V
IC

R
eg Deterministic 0.490 0.011 0.315 0.044 0.509 0.055 0.477 0.112 0.649 0.445

H-prob. 0.451 0.013 0.313 0.220 0.498 0.114 0.460 0.038 0.622 0.315
Z-prob. 0.484 0.012 0.310 0.042 0.507 0.054 0.478 0.112 0.629 0.435

B
a
rl
ow

Deterministic 0.495 0.008 0.316 0.040 0.518 0.138 0.482 0.115 0.645 0.428
H-prob. 0.451 0.010 0.309 0.217 0.495 0.111 0.457 0.023 0.637 0.302
Z-prob. 0.489 0.010 0.313 0.039 0.506 0.054 0.481 0.111 0.645 0.447
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Results. We present the results in Table 1. Our observations show that stochas-
tic embeddings, particularly those in the loss space (Z-prob.), exhibit competitive
performance compared to deterministic embeddings. For linear classification and
transfer learning tasks, Z-prob. embeddings tend to outperform stochastic em-
beddings in the representation space (H-prob.) across both the Barlow Twins
and VICReg methods in terms of accuracy. However, the difference is lower
in the semi-supervised task, especially for 1% of available labels. Noticeably,
in transfer learning, H-prob embeddings maintain lower ECE scores for both
datasets, indicating better calibration, but they tend to exhibit higher ECE for
semi-supervised. The performance variation across different datasets underscores
the importance of dataset characteristics in model evaluation. We hypothesize
that the superior performance of Z-prob. embeddings compared to H-prob. is at-
tributable to the representation bottleneck created by the H-prob. model, which
leads to an early representation compression, potentially removing data invari-
ance at the representation level. As demonstrated in previous studies [5], such
premature compression can negatively impact the performance of SSL models.

4.2 OOD detection

Setup. We utilize the same setup for the backbone as in the ablation study
and select the best-performing model (see Section 4.3). Next, we investigate
the OOD capabilities of our methods, following a similar evaluation procedure
to [38] and report the results with the commonly used AUROC metric. We
consider the original test set of CIFAR-10 as IN data and assess its ability to
distinguish between other Near (MNIST [22], SVHN [27], Places365 [41], Tex-
tures [9]) and Far (CIFAR-100 [20], TinyImageNet [TIN] [21]) OOD datasets.
We evaluate our proposed stochastic detectors (LogP, Sigma, KLD-KN) against
commonly used methods in OOD detection problems. Specifically, we compare
them with classification-based methods such as MaxSoftmax probability (MSP)
[15] and ODIN [24], as well as distance-based methods like Gram matrices [31]
and Mahalanobis distance (MDS) [23]. Contrary to our detectors, these methods
require label information from the training data: MaxSoftmax and ODIN rely on
a trained classifier, while Gram and Mahalanobis necessitate the computation of
class-conditional statistics. Moreover, we provide a comparison between stochas-
tic KLD-KN and its deterministic counterpart Euclid-KN (we select K based on
the hyperparameter search [38]). Finally, we evaluate our methods against SSD
[32], a framework for unsupervised OOD detection in self-supervised learning,
which leverages Mahalanobis distance on k-means detected clusters.

Results. Table 2 presents the results from our experiment on stochastic em-
beddings. As observed, leveraging the intrinsic properties of stochastic embed-
dings, such as their variance (Sigma) or latent space manifold (KLD-KN), can
be highly effective as an OOD detector. For both VICReg and Barlow Twins,
the KLD-KN detection score surpasses the performance of supervised detectors
(MSP, ODIN) and significantly exceeds that of the Euclidean-KN, its determin-
istic counterpart. Furthermore, simple Sigma provides better scoring than the
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distances-based methods such as Mahalanobis, Gram and SSD for both VICReg
and Barlow Twins while reaching the performance of classification-based de-
tectors for VICReg, thereby demonstrating its ability to take into account the
stochasticity of the embeddings.

Table 2. The AUROC performance of OOD detection methods. ∗ denotes supervised
detectors, while † denotes unsupervised detectors requiring fitting labels.

Near OOD Far OOD

Detector MNIST SVHN Places365 Texture CIFAR-100 TIN Avg.

V
IC

R
eg

MSP∗ 0.837 0.790 0.780 0.769 0.799 0.800 0.796
ODIN∗ 0.862 0.668 0.806 0.778 0.818 0.819 0.792
Gram† 0.946 0.927 0.599 0.727 0.545 0.583 0.721
MDS† 0.935 0.928 0.577 0.851 0.506 0.546 0.724
SSD 0.935 0.928 0.565 0.850 0.514 0.538 0.722
LogP 0.926 0.742 0.651 0.550 0.658 0.598 0.688
Sigma 0.890 0.858 0.815 0.645 0.730 0.769 0.784
KLD-KN 0.954 0.972 0.821 0.874 0.742 0.783 0.858
Euclid-KN 0.936 0.907 0.776 0.805 0.706 0.731 0.810

B
a
rl
ow

T
w
in
s

MSP∗ 0.888 0.812 0.768 0.783 0.787 0.790 0.805
ODIN∗ 0.929 0.672 0.800 0.821 0.809 0.815 0.808
Gram† 0.956 0.960 0.594 0.771 0.551 0.598 0.738
MDS† 0.983 0.935 0.589 0.817 0.508 0.537 0.728
SSD 0.978 0.946 0.544 0.856 0.504 0.530 0.726
LogP 0.830 0.749 0.628 0.549 0.648 0.572 0.663
Sigma 0.858 0.913 0.727 0.791 0.570 0.611 0.745
KLD-KN 0.906 0.910 0.840 0.759 0.705 0.759 0.813
Euclid-KN 0.992 0.954 0.721 0.825 0.668 0.688 0.808

Table 3 compares the performance of probabilistic and deterministic em-
beddings as an average over all datasets. We can see that classification-based
detectors work best for deterministic embeddings, as their performance is often
correlated with downstream performance. However, other distance- and feature-
based detectors have higher AUROC for the stochastic embeddings, meaning we
have a latent space more suited for detecting examples outside of IN distribution.

4.3 Ablation study

Setup. The model is pretrained three times with different seeds for 200 epochs
each time on the CIFAR-10 dataset [20] to evaluate different model hyperpa-
rameters. In particular, we assess the impact of various priors, β scales, and
the number of MC samples. We compare the standard normal prior, N (0, 1),
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Table 3. Comparison of AUROC performance (averaged over all datasets) for deter-
ministic and stochastic embeddings in OOD detection.

MSP ODIN Gram MDS SSD LogP Sigma KLD-
KN

Euclid-
KN

V
IC

R
eg Deterministic 0.806 0.805 0.694 0.695 0.695 0.000 0.000 0.000 0.769

H-prob. 0.792 0.790 0.721 0.723 0.720 0.688 0.736 0.858 0.810
Z-prob. 0.796 0.792 0.704 0.724 0.722 0.683 0.784 0.785 0.796

B
a
rl
ow

Deterministic 0.808 0.812 0.739 0.693 0.694 0.000 0.000 0.000 0.774
H-prob. 0.805 0.808 0.738 0.687 0.688 0.663 0.745 0.813 0.762
Z-prob. 0.803 0.802 0.719 0.728 0.726 0.659 0.687 0.774 0.808

with a Mixture of Gaussians (MoG),1 aiming to assess the impact of employing
a more expressive distribution for modelling stochastic embeddings. Addition-
ally, we explore how the β scale influences the bottleneck and, consequently, the
capacity of the embeddings.2 Finally, we explore the advantages of utilizing mul-
tiple MC samples to estimate the expectation from Equation 6. Like downstream
task evaluations, we train a linear classifier on the fixed representation from our
pretrained backbone encoder.

Table 4. Comparison of top-1 accuracy (Acc@1) and expected calibration error (ECE)
for the ablation study.

Prior (# of MC samples)

Normal(1) Normal(12) MoG(1) MoG(12)

Embeddings Beta Acc@1(↑) ECE(↓) Acc@1(↑) ECE(↓) Acc@1(↑) ECE(↓) Acc@1(↑) ECE(↓)

V
IC

R
eg

Z-prob.
1e-3 0.824 0.022 0.826 0.021 0.793 0.021 0.793 0.022
1e-4 0.834 0.020 0.831 0.021 0.830 0.019 0.832 0.020
1e-5 0.834 0.018 0.831 0.022 0.836 0.021 0.830 0.021

H-prob.
1e-3 0.804 0.018 0.817 0.025 0.802 0.010 0.810 0.012
1e-4 0.823 0.010 0.828 0.011 0.826 0.009 0.825 0.010
1e-5 0.826 0.009 0.829 0.011 0.824 0.011 0.824 0.011

B
a
rl
ow

T
w
in
s

Z-prob.
1e-1 0.821 0.022 0.819 0.026 0.748 0.021 0.746 0.025
1e-2 0.827 0.031 0.827 0.033 0.817 0.020 0.821 0.019
1e-3 0.823 0.031 0.826 0.025 0.823 0.020 0.824 0.019

H-prob.
1e-2 0.790 0.014 0.805 0.015 0.788 0.011 0.801 0.010
1e-3 0.799 0.010 0.809 0.011 0.782 0.031 0.804 0.012
1e-4 0.801 0.011 0.803 0.009 0.796 0.013 0.800 0.010

1 The MoG prior has the following form: 1
M

∑M
m=1 N (µm, diag(σ2

m)), whereM denotes
the number of mixtures, while µm and σm denote trainable parameters of a specific
Gaussian in the mixture model.

2 The variability in the loss function’s magnitude and method-specific sensitivities ne-
cessitated the selection of distinct beta (β) scale hyperparameters for each approach,
as documented in Table 4.
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Results. We report the results for the classification task in Table 4. Contrary to
our initial expectations, the influence of MoG on performance appears insignifi-
cant, often leading to a deterioration in the model’s efficacy. We have observed
that smaller values of β tend to yield superior model performance, whereas
higher values may degrade efficacy. However, excessively reducing β results in a
corresponding reduction in the variance of the embeddings, rendering them more
deterministic. In the case of H-prob. embeddings, increasing the number of MC
samples enhances model performance, particularly with higher values of β. This
suggests that employing more MC samples provides a more accurate and less
biased estimation of expectations. Conversely, we found that the number of MC
samples has a less significant effect on the performance of Z-prob. embeddings.
While Z-prob. embeddings generally outperform H-prob. embeddings in terms
of accuracy, the H-prob. embeddings offer better calibration, measured through
the ECE.

5 Conclusions

In our study, we make significant strides in advancing the field by integrat-
ing stochastic assumptions directly into the information-theoretic-based self-
supervised methods. Specifically, we introduce stochastic embeddings within
feature decorrelation-based methods, demonstrating their potential to achieve
performance competitive with the fully deterministic networks. Additionally, we
delve into innovative strategies for effectively leveraging stochastic embeddings
to identify OOD examples accurately. Our findings reveal that our methods
exhibit robust OOD sample detection capabilities, surpassing traditional super-
vised detectors’ performance. Moreover, we provide a comprehensive empirical
evaluation, elucidating the impact of various hyperparameters on the training
process. This showcases the potential of our approach and suggests avenues for
future research in self-supervised learning optimization.
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