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Abstract. The numerical solution in sense of Prager&Synge is defined as a hy-

persphere containing a true solution of a system of partial differentiation equa-

tions (PDE). In the original variant Prager&Synge method is based on special 

orthogonal properties of PDE and may be applied only to several equations. 

Herein, the Prager&Synge solution (center and radius of the hypersphere) is es-

timated using the ensemble of numerical solutions obtained by independent al-

gorithms. This approach is not problem dependent and may be applied to arbi-

trary system of PDE. Several options for computation of the Prager&Synge so-

lution are considered. The first one is based on the search for the orthogonal 

truncation errors and their transformation. The second is based on the orthogo-

nalization of approximation errors obtained using the defect correction method. 

It applies the superposition of numerical solutions. The third option uses the 

width of the ensemble of numerical solutions. The numerical tests for the two 

dimensional inviscid flows are presented that demonstrate the acceptable effec-

tivity of the approximation error estimates based on the solution in the Prag-

er&Synge sense. 

 

Keywords: Prager&Synge method, a posteriori error estimation, ensemble of 

numerical solutions. 

1 Introduction 

We discuss a notion of numerical solution in the sense of Prager&Synge 

(some hypersphere containing the true solution) from the viewpoint of the approxima-

tion error estimation that is the necessary component of the verification of numerical 

solutions. The verification of the numerical solution is required by the modern stand-

ards [1,2] and is based on the a priori and a posteriori error estimates. The Prag-

er&Synge method [3,4,5] is historically the first approach to a posteriori error estima-

tion, unfortunately, highly underestimated. Below we consider an universal version of 

this method, using notations that follows. hhhuA   is a discrete approximation  

of a system of partial differential equations, 
M

h Ru   denotes the numerical solution 
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(grid function), 
M

h Ru ~  is the projection of a true solution onto the considered grid, 

hhh uuu ~~   is the approximation error, hu  is an estimate of the approximation 

error. 

A priori error estimates have the form 
n

h Chu ~
 ( n  is the order of approxi-

mation, h  is a grid step). These estimates describe the properties of the algorithm and 

do not depend on the specific solution. Unfortunately, the unknown constant C  re-

stricts the practical applications of this approach. 

A posteriori error estimate has the form )(~
hh uIu   defined by a computable 

error indicator )( huI , which depends on the concrete numerical solution hu  and has 

no unknown constants. The main domain of a posteriori error estimation is related 

with the finite-element analysis [3-8]. For the problems governed by the equations of 

the hyperbolic or mixed type (typical CFD problems), the progress in the a posteriori 

error estimation is limited. The standards [1,2] recommend the Richardson extrapola-

tion (RE) [9,10,11] for the approximation error estimation. However, for the com-

pressible flows, the application of standard RE is impossible due to the absence of the 

global convergence order [12]. The generalized Richardson extrapolation (GRE) 

[10,11] provides an estimate for the spatial distribution of the convergence order. 

Unfortunately, GRE demonstrates the high computational burden since it requires at 

least four consequent refinement of the mesh. 

Thus, the computationally inexpensive a posteriori error estimators are of current 

interest in the CFD domain. By this reason we consider, herein, the famous Prag-

er&Synge [3,4,5] method, which seems to be highly underestimated both from the 

viewpoint of general idea and from the viewpoint of applicability domain. The new 

options are considered that realize the solution in the sense of Prager&Synge (a hy-

persphere containing the projection of the true solution on computational grid). 

As the first option, we construct an artificial approximation error using the esti-

mate of the truncation errors performed by forward postprocessor and the estimate of 

the approximation error by an adjoint postprocessor. 

As the second option, we construct an artificial solution by the superposition of 

numerical solutions (obtained by independent algorithms) that provides the approxi-

mation error, orthogonal to the error of certain analyzed solution. 

Both these options are intrusive and are implemented by rather complex algo-

rithms. 

As the third option, we apply the method based on the width of the ensemble of 

solutions ([14]), which may be considered as some nonintrusive approximation of the 

version of the Prager@Synge method, based on the superposition of solutions.  

The two-dimensional compressible flows, governed by the Euler equations, are 

used in the numerical tests in order to compare the above mentioned algorithms. The 

error estimates by modified Prager&Synge are compared with the “true” discretiza-

tion errors obtained by subtracting the analytical solutions from the numerical solu-

tions. 
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2 Prager&Synge method 

 The “hypercircle method” by Prager@Synge [3,4,5] is the oldest algorithm for a 

posteriori error estimation. At present, the term "hypercircle" is used in distant sci-

ence domains, so, in order to avoid confusion, we mark this method as the "Prag-

er&Synge method". We provide herein some presentation of the original Prag-

er&Synge method with illustrations and citations.  

 Initially, the Prager&Synge method was applied for the solution of the Poisson 

equation  

                                    u2
, fu  .                                                          (1) 

 

Two additional linear subspaces of functions are used: 

-the subspace of gradients ixv  /  (
1Hv ) with boundary conditions fv  , 

-the subspace of functions 
1Hq , such that )(qdiv . 

The following orthogonality condition is valid for these functions ( u~  is the exact 

solutions of the Poisson equation)  

 

                          0))~(),~((  uquv .                                       (2) 

 

Usually v  is assumed to be a numerical solution hu . The scalar products and 

norms correspond to 2L  and its finite-dimensional analogue.  

 The orthogonality relation (Eq. (2)) engenders the inequality for the approxi-

mation error, since the leg of a right triangle is less the hypotenuse 

 

                                        quuu hh  )~(  .                                         (3) 

 

So, the Prage@Synge method provides a posteriori error estimation from purely 

geometrical ideas without unknown constants. Since we are unable to compete with 

authors of the method in vividness, we provide the citation from [5]:  

 “Imagine a flat piece of country. Imagine in it two strait narrow roads which 

intersect at right angles. Imagine two blind men set down by helicopter, one on each 

road. Provide them with a long measuring tape, stretching from the one man to the 

other man. Let the tape be embossed, so they can read it, even though blind. Without 

moving, let them tighten the tape and read it. Suppose it reads 100 yards apart. 

 We are to ask each of them how far he is from the cross roads.  

 These men, though blind, are very intelligent, and they know, that the hypote-

nuse of a right-angled triangle is greater than either the other two sides. So each of 

the men says that his distance from the cross-roads is less than (or possible equal to) 

100 yards”. 

Fig. 1 provides the illustration from [5] for this “Two blind men” problem. 
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Fig. 1. “Two blind men and their hypercircle [5]” 

 

Unfortunately, the classic variant of the Prager&Synge method has significant re-

strictions: 

 it may be applied to rather narrow domain of equations (Poisson equation, bi-

harmonic equation), which does not include such equations as Euler on Navier-

Stokes, 

it provides the norm of the error of the solution gradient (Eq. 3) and is unable to es-

timate the norm huu ~
 of the solution error, which is of the primal interest in prac-

tice. 

Below we try to demonstrate that the method by Prager&Synge may be significant-

ly modified to avoid these restrictions. 

3 The numerical solution in Prager&Synge sense 

The main (and underestimated) idea by Prager&Synge consists in the original con-

cept of the numerical solution. We designate it as the numerical solution in the Prag-

er&Synge sense.  

The numerical solution, defined by the standard way, is considered to be an ele-

ment of the sequence of solutions 
mhu  at refining grids (grid step 0mh  at 

m ) that is assumed to converge to the exact solution 
mm hh uu ~ . The mesh 

adaptation and refinement are the key elements enabling the success of this approach. 

 In contrast, Synge stated ([4], p. 97): " In general, a limiting process is not 

used, and we do not actually find the solution.... But although we do not find it, we 

learn something about its position, namely, that it is located on a certain hypercircle 

in function space". 
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In the finite-dimensional case the hyprecircle by Prager&Synge is equivalent to 

the hypersphere. So, the numerical solution in sense of Prager&Synge may be defined 

as a hypersphere with the center  

 

                                                    hh uC                                                       (4) 

and a radius hR   

 

                                                hhh RCu ~
.                                            (5) 

This hypersphere contains the true solution. 

Equations (4),(5) demonstrated that the numerical solution by Prager&Synge is 

naturally related with the a posteriori error estimation. In the contrast to the standard 

approach to approximation, a convergence of numerical solution is not obligatory. 

The mesh refinement is not mandatory also and should be performed only if the mag-

nitude of hR  is not acceptable from the viewpoint of practical needs (that may be 

checked using Cauchy–Bunyakovsky–Schwarz inequality for valuable functionals 

(for example, [14])). In this way, the natural stopping criterion for the mesh refine-

ment termination may be stated. So, the solution in sense of Prager&Synge is free 

from the "tyranny" of the mesh refinement and adaptation that governs the modern 

CFD applications. 

Unfortunately, the standard domain of the Prager&Synge method applicability is 

very narrow. Fortunately, the domain of the Prager&Synge method applicability may 

be extended to an arbitrary PDE system that we try to show. 

In the spirit of the Prager&Synge solution we search for an auxiliary solution u  

such that 

 

                            0)~,~()~,~( )()(   uuuuuu i

hhh

i

h .                  (6) 

 

If the auxiliary solution u  is determined, the numerical solution in the Prag-

er&Synge sense is defined, since  uuuu i

hh

i

h

)()( ~
 and the centre and the 

radius of the hypersphere containing the true solution are determined. 

4 The methods for approximation of Prager&Synge solution 

 We consider several algorithms for calculation of the Prager&Synge numerical 

solutions. In general, all of them are based on the usage of the ensemble of numerical 

solutions obtained by independent algorithms. The main differences between these 

algorithms concern their computational complexity. 
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4.1. Truncation error based estimation of Prager&Synge solution 

Truncation errors 
)(i

hu  may be estimated either by the differential approximation 

[18] or by the special postprocessor [19] acting on the numerical solution. Numerical 

tests [14,17] demonstrate that the truncation errors 
)(i

hu  on the ensemble of inde-

pendent solutions are close to orthogonal. The approximation error 
)(i

hu  may be 

estimated using the truncation error by solving a special problem for disturbances (see 

for instance [20]) 

 

                             )(1)( i

hh

i

h uAu  .                                       (7) 

 

However, it is more interesting to express the orthogonality condition (Eq. (6)) in 

terms of nonintrusively computable truncation errors. Let's select some vector 
)(i

hu   and transform it using forward and adjoint operators: 

 

                                           *

hh AAu  .                                              (8) 

 

Expression (8) may be inverted to obtain 

 

                                             

 uAA hh  1*1
.                                                     (9) 

 

The orthogonality condition 
)(i

hu   is equivalent to relation (6) since 

 

0),(),(),(),( )(1)(11*1)()(  







 uuuAuAuAAuu i

hh

i

hhh

i

h

i

h  . (10) 

 

Finally 

 

                                                *1

hh AuAu  



 .                                           (11) 

 

Equation (11) demonstrates that u  may be computed nonintrusively using the 

adjoint postprocessor that implements the solution of adjoint problem (similarly to 

[16,19]). 

The search for 
)(i

hu   may be conducted as follows: 

1. By choice of arbitrary 
)(i

hu   (under condition 
)(i

hu  ). 

2. By selection of   that is equal to the truncation error of an additional nu-

merical solution  
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                                                    )(k

hu  .                                        (12) 

 

The latter option is caused by the numerical tests [17] that demonstrate the trun-

cation errors, corresponding to independent algorithms, to be close to orthogonal.  

If  *

hh AAu   is available, we may compute the auxiliary solution by the de-

fect correction approach 

 

                                   )(1





  uAu  .                                       (13) 

 

It enables to obtain the inequality 

 

                                   h

k

h

k

h Ruuuu  

)()( ~
.                                      (14) 

 

The centre 
)(k

hh uC   and radius  uuR k

hh

)(
 determine the numerical so-

lution in the sense of the Prager&Synge.  

Unfortunately, this algorithm (Eqs. (8)-(14)) is extremely complicated from the 

algorithmic viewpoint (mainly due to the application of the adjoint solver) and unsta-

ble (due to the differentiation of a non regular function by the adjoint solver). The 

numerical tests demonstrated highly pessimistic estimations (too great estimates of 

the error norm), so, the above discussion is mainly of the heuristic value and illus-

trates the existence of auxiliary solution u  that determines the solution in sense of 

Prager&Synge. 

 

4.2. Approximation error based estimation of the solution in Prager&Synge 

sense 

We may construct the auxiliary solution u  in another way using the superposi-

tion of N  numerical solutions (obtained by independent algorithms on the same grid) 

 

                            
)()(

1

i

hi

i

hi

N

i

uwuwu 


 ,                                               (15) 

                                             1
1




i

N

i

w .                                                              (16) 

First, we select some basic numerical solution 
)0(

hu  (centre of the hypersphere) 

and estimate corresponding approximation error 

hhhhhh uuuuAu ~~ )0()0()0(1)0(     using the defect correction approach. Sec-

ond, we search for the auxiliary solution u  that is defined by the approximation 

error u  orthogonal to the error of the basic numerical solution 

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_24

https://dx.doi.org/10.1007/978-3-031-63783-4_24
https://dx.doi.org/10.1007/978-3-031-63783-4_24


8 

 

                                            0),( )0(  uuh .                                                      (17) 

 

Under conditions (15) 
)(~ i

hi uwu   . We assume the existence of u  due to 

Eq. (11).  

We search for weights }{ iw  that ensure the orthogonality condition in the varia-

tional statement  

 

                                      ))(min(arg}{ wwi


 ,                                                   (18) 

 

                                  2/),()( 2)()0( i

hih uwuw 


 .                                            (19) 

 

The gradient of expression (19) has the appearance 

 

                ),())(,( )()0()()0( k

hh

i

hih

k

k uuuwu
w








 .                         (20) 

 

The steepest descent is used for the calculation of weights }{ iw   

 

                                                 k

n

k

n

k ww 1
.                                             (21) 

 

In order to avoid the shift of the exact solution the normalization is used past the 

termination of iterations 

 

                                             
111 /~   nn

k

n

k Sww ,                                                   (22) 

                                               
1

1

1 



  n

k

N

i

n wS .                                                      (23) 

The angle between u  and 
)0(

hu  

                              



















)()0(

)()0( ),(
arccos

i

hih

i

hih

uwu

uwu
                               (24) 

 

is used as the orthogonality criterion applied to check the quality of numerical results 

(convergence of iterations (Eq. (21)). 

The basis 
)(),()(1)( i

h

corri

h

i

hh

i

h uuuAu     contained from 2 to 5 vectors in 

numerical tests. The estimation of 
)(i

hu  at first step of the algorithm is similar to the 
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defect correction approach. However, the expression 
)(i

hiuwu   contains the su-

perposition of true approximation errors. We apply only angles between approxima-

tion errors 
)(1)( i

hh

i

h uAu   obtained by the defect correction and we search not for 

the refined solution, but for the hypersphere, containing the projection of true solution 

on the selected grid. We use the ensemble of 1N  numerical solutions. In order to 

enhance the reliability we consequently select a solution from the ensemble and de-

fine it as the basic solution (centre) 
)0(

hh uC  . After this we estimate the radius 

 uuR h

)0(
. Finally, we select the maximum radius and the corresponding cen-

tre point over all tries as the solution in the Prager&Synge sense. 

 

 

4.3. Nonintrusive option for estimation of Prager&Synge solution 

 The inequalities similar to the Eqs. (5) and (14) are obtained in [13,21,22] (triangle 

inequality) and [14] (width of ensemble). These approaches may be treated as some 

approximations of the Prager&Synge method, since the distance between solutions is 

used as the majorant of error, which circumstance is valid for errors that are close to 

orthogonal. Unfortunately, the approximation errors 
)(k

hu  are correlated near dis-

continuities (the errors involve waves with the positive and negative parts) and, by 

this reason, are not exactly orthogonal. In several cases the lack of the rigorous or-

thogonality may be compensated by some additional information. As such infor-

mation we consider, herein, the maximum distance (ensemble width) between solu-

tions over the ensemble of N  independent solutions  

 

                           Nkiuud ik

ki
,...,1,max )()(

,
max                                      (25) 

and assume 

                                                max

)( du k  .                                                      (26) 

 

The numerical tests by [14] confirm that the inequality (26) becomes more reliable 

as the number of the ensemble elements increases. So, the estimation of the width of 

the ensemble (Eq. (25)) and inequality (26) may be considered as some approximation 

of the Prager&Synge solution. 

5 Test problem and numerical algorithms 

The above considered methods for the estimation of the Synge solution (a poste-

riori error estimation) are verified by the numerical tests. The numerical solutions for 

the Euler equations  
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 

0









k

k

x

U

t


,                                           

                         
   

0









k

ikiki

x

PUU

t

U 
,                          

                           
 

0
)( 0 










k

k

x

hU

t

E 
,                                 

 

describing the flow of the inviscid compressible fluid, are used. The system is two-

dimensional, hUUh  2/)( 2

2

2

10 , eh  , 2/)(( 2

2

2

1 UUeE   are en-

thalpy and energies, RTP   is the state equation, vp CC /  is the specific 

heats relation. 

The Edney-I and Edney-VI flow structures [15] are analyzed due to the existence 

of analytical solutions used for the estimation of the "exact" discretization error 

h

kk uuu ~~ )()(  . This error is obtained by the subtraction of the numerical solu-

tion from the projection of the analytical one onto the computational grid. Fig. 2 pro-

vides the spatial density distribution for Edney-I flow pattern ( 4M , flow deflec-

tion angles 
o201   (upper) and 

o152   (lower)). Fig. 3 provides the density 

distribution for Edney-VI ( 5.3M , angles 
o151   and 

o252  ). Figs. 2 

and 3 illustrate two patterns for the interaction of two shock waves (inflow at left 

boundary). The pattern by Fig. 2 corresponds crossing shocks, the pattern by Fig. 3 

corresponds two merging shocks. 
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Fig. 2. Density isolines for Edney I flow structure 
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Fig. 3. Density isolines for Edney VI flow structure 

 

We analyze the set of numerical solutions obtained by the numerical methods cov-

ering the range of approximation order from one to four. The methods are used that 

follow. First order algorithm by Courant-Isaacson-Rees [23], second order MUSCL 

based algorithm that uses approximate Riemann solver by [24], second order relaxa-

tion based algorithm [25], third order algorithm based on the modification of 

Chakravarthy-Osher method [26], fourth order algorithm by [27], second order algo-

rithm by [28]. 

6 The results of numerical tests  

The quality of a posteriori error estimation is described by the effectivity index  

 

                                            

h

h

eff
u

u
I ~


 .                                                       (27) 

 

The condition for existence of the Prager&Synge solution is related with the effi-

ciency index by the inequality 1effI . The relation 13  effI  is stated by [7] for 

the finite-element applications, which imply sufficiently smooth solutions.  

We performed numerical experiments for several cases including different flow 

structures (Edney-I, Edney-VI), different flow parameters (Mach numbers in the 

range 53 , shock angles in the range 
o3010 ) and uniform grids of 100100 , 

200200  and 400400  nodes. Below several typical results are presented as the 

illustrations of different methods for calculation of the Prager&Singe solution. 

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_24

https://dx.doi.org/10.1007/978-3-031-63783-4_24
https://dx.doi.org/10.1007/978-3-031-63783-4_24


12 

The truncation error based estimation (Eqs. (8)-(14)) provides nonrealistic pessi-

mistic results for the efficiency index 2010~ effI . In combination with the ex-

tremely algorithmic complexity these results make this option non competitive.  

The approximation error based estimation (Eqs. (15)-(24)) provides acceptable 

results. 

The results provided by nonintrusive option (Eq. (25),(26) are close in the values 

of the efficiency index to results obtained by the approximation error based estimation 

(Eqs. (15)-(24)). 

Herein, we consider the numerical tests for the algorithm described in the Section 

4.2 and based on the superposition of independent numerical solutions. The Edney-VI 

shock interaction pattern ( 5.3M , 
o151  , 

o252  ) was used for the 

numerical tests on the grids containing 100100  and 400400  nodes. 

At first step the solution obtained by the method [24] is used as the basic solution 
)0(

hu , which is considered as the centre of the hypersphere containing the true solu-

tion (more correctly, the projection of the true solution on considered grid). The addi-

tional solutions 
)1(

hu  [23], 
)2(

hu  [26], 
)3(

hu  [27], 
)4(

hu  [28], 
)5(

hu  [25] are used in dif-

ferent combinations in order to generate some orthogonal error and the superposition 

of solutions as the approximation of the auxiliary solution 
)(i

hiuwu  . 

The value  uuR h

)0(
 is the radius of the hypersphere with the centre 

)0(

hh uC  , which contains the true solution  

First, two solutions (
)1(

hu  [23], 
)2(

hu  [26],) are used to determine the radius of the 

hypersphere. The weight values are 790.01 w , 79.12 w , the value of the 

angle between u  and 
)0(

hu , 6.87 . The true error norm, Prager&Synge 

estimates of error norm and the efficiency index having the form 

uuuuI hheff
~/ )0()0(    are provided in the Table 1. 

Table 1. True error norm, error norm estimation and efficiency index 

uuh
~)0(   uuh

)0(

 

effI  

0.114     1.115 9.780 

 

Second, three solutions (
)1(

hu  [23], 
)2(

hu  [26], 
)3(

hu  [27]) are used. The weight 

values are 579.01 w , 654.02 w , 925.03 w , the angle 0.90  and 

38.3effI .  
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Third, four solutions (
)1(

hu  [23], 
)2(

hu  [26], 
)3(

hu  [27], 
)4(

hu  [28]) are used. The 

corresponding weights are: 415.01 w , 315.02 w , 475.03 w , 

624.04 w , the angle 
o9.89  and  741.1effI . 

Fourth, five solutions (
)1(

hu  [23], 
)2(

hu  [26], 
)3(

hu  [27], 
)4(

hu  [28], 
)5(

hu  [25]) are 

used. The corresponding weights are: 453.01 w , 239.02 w , 391.03 w , 

532.04 w , 290.05 w , angle 
o8.89  and 438.1effI . 

At the next steps all other numerical solutions are consequently selected as the 

basic solution 
)0(

hu  and the radius  uuR h

)0(
 is computed. 

The numerical tests on the grids containing 400400  nodes are performed in 

order to study the influence of the mesh step on results.  

The minimum value the effectivity index over all tests was greater the unit that 

confirms the successive estimation of the Prager&Synge solution.  

The maximum value the effectivity index over all basic solutions is presented by 

the Table 2 in the dependence on the number of additional solutions for two different 

grids. 

 

Table 2. The efficiency index in dependence on the number of solutions 

N of solutions 2 3 4 5 

)100100( effI

 

10.810 3.680 1.931 1.583 

)400400( effI

 

9.081 1.754 1.437 1.329 

 

One may see from the Table 2 that the magnitude of the effectivity index de-

creases as the number of solutions in use is enhanced. In general, two auxiliary solu-

tions provide too pessimistic estimations of the approximation error. In the range of  

3-5 solutions the values of the effectivity index are quite acceptable. Some saturation 

of the effectivity index is observable at increasing of the number of solutions. The 

grid resolution rather weakly affects the effectivity index. 

In general, the numerical tests demonstrate the following situation. 

The version of the Prager@Synge method based on the adjoint postprocessor and 

the defect correction (Eqs.(8-14))) overestimates the error and provides the effectivity 

index in the range 2010~ effI  that is too pessimistic. 

The version of the Prager@Synge method based on the superposition of solutions 

(Eq. (15)) provides the effectivity index in the range 7.33.1~ effI . 
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The effectivity index, based on the ensemble width (Eq. (26)), is in the range 

5.21.1~ effI  for the considered ensemble of numerical solutions engendered by 

six algorithms. 

7 Conclusion 

The original concept of the numerical solution is the main idea of the Prag-

er&Synge method. This solution is not based on asymptotics at grid step diminishing 

and enables to avoid the modern “tyranny" of mesh refinement. Instead of the se-

quence of solutions, occurring at the grid size diminishing, the Prager&Synge solution 

deals with the hypersphere containing the projection of the true solution on a compu-

tational grid. The numerical solution is the centre of this hypersphere. The Prag-

er&Synge solution provides a natural way to a posteriori error estimation and natural 

criterions for the mesh refinement termination related with the required tolerance of 

valuable functionals. 

The limited domain of application is the main drawback of the Prager&Synge 

method in the original form. The universal versions of Prager&Synge method that 

may by applied to an arbitrary PDE system are discussed. They include intrusive and 

nonintrusive options for the calculation of the Prager&Synge numerical solution. 

The intrusive version is based on the superposition of numerical solutions and is 

specified by the moderate complexity of the algorithm. 

The nonintrusive version (based on the width of ensemble) is some approximate 

variant of the intrusive version with the minimum complexity of the algorithm. 

These approaches to the computation of the numerical solution in the sense of the 

Prager&Synge are compared for the two dimensional compressible flows with the 

shock waves and demonstrated the acceptable value of efficiency index for the error 

norm estimation. 
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