
Direct Solver Aiming at Elimination of
Systematic Errors in 3D Stellar Positions

Konstantin Ryabinin1[0000−0002−8353−7641],
Gerasimos Sarras1[0009−0005−5316−4062], Wolfgang Löffler1[0009−0003−1319−5601],

and Michael Biermann1[0000−0002−5791−9056]

Astronomisches Rechen-Institut, Center for Astronomy of Heidelberg University,
Mönchhofstr. 12–14, 69120 Heidelberg, Germany
konstantin.riabinin@uni-heidelberg.de,

gerasimos.sarras@uni-heidelberg.de, loeffler@ari.uni-heidelberg.de,

biermann@ari.uni-heidelberg.de

Abstract. The determination of three-dimensional positions and veloc-
ities of stars based on the observations collected by a space telescope
suffers from the uncertainty of random as well as systematic errors. The
systematic errors are introduced by imperfections of the telescope’s op-
tics and detectors as well as in the pointing accuracy of the satellite.
The fine art of astrometry consists of heuristically finding the best possi-
ble calibration model that will account for and remove these systematic
errors. Since this is a process based on trial and error, appropriate soft-
ware is needed that is efficient enough to solve the system of astrometric
equations and reveal the astrometric parameters of stars for the given
calibration model within a reasonable time. In this work, we propose a
novel architecture and corresponding prototype of a direct solver opti-
mized for running on supercomputers. The main advantages expected of
this direct method over an iterative one are the numerical robustness,
accuracy of the method, and the explicit calculation of the variance-
covariance matrix for the estimation of the accuracy and correlation of
the unknown parameters. This solver is supposed to handle astromet-
ric systems with billions of equations within several hours. To reach the
desired performance, state-of-the-art libraries for parallel computing are
used along with the hand-crafted subroutines optimized for hybrid par-
allelism model and advanced vector extensions of modern CPUs. The de-
veloped solver is tested using the mock science data related to the Japan
Astrometry Satellite Mission for INfrared Exploration (JASMINE).

Keywords: Astrometry · Data Fitting · Least Squares Method · Eigen-
problem · Pseudo-Inverse Matrix · High-Performance Computing · Model
Errors.

1 Introduction

The Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE) is
a proposal by the Institute of Space and Astronautical Science (ISAS) for a near-
infrared space telescope mission by the Japan Aerospace Exploration Agency

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


(JAXA). With its three years mission length JASMINE aims at two comple-
mentary science goals: firstly, an astrometric survey of the three-dimensional
positions and motions of stars around the centre of our Milky Way, and sec-
ondly, a survey aiming at discovering Earth-like exo-planets in the habitable
zone around cool red dwarf stars, i.e. stars smaller and cooler than our Sun.

The three-dimensional positions of the stars in the Galactic Centre region are
being directly determined by geometric methods, i.e. the change of the aspect
angle (parallax angle) of the target star as seen in spring and autumn for opposite
locations of the Earth’s orbit around the Sun. Since there exist no coordinate
markers in space, these aspect angles can only be measured as relative angles
between the set of target stars. The mathematical problem of the astrometric
data reduction is thus the very same as the geodetic reduction of measured field
angles into three-dimensional geographical positions of landscape marks on the
surface of Earth. The main difference between geodesy and modern space-based
astrometry are the micro-arcsecond accuracy requirements on the calibration
of the optical and electronic imaging properties and spatial orientation of the
measuring instrument. In space these can only be determined by measuring the
very same aspect angles between the different stars.

At the core of the “fine art of astrometry” lies thus finding the best formu-
lation of such a calibration model as well as the subsequent determination of its
parameters with high accuracy. As this is an iterative process based on trial and
error, there is a need for a software that can solve a given astrometric problem
in short time with high accuracy and precision.

The fundamental problem of space-based astrometry is, however, that the
number of stars being observed and the number of angles being measured is
always extremely large compared to the data storage size and computing power
available at the time. In the past the astrometric problem at hand was thus
simplified mathematically and the exact solution was approximated iteratively.

The main motivations to choose a direct approach over an iterative one, are
the following. From an algorithmic perspective, the direct method terminates in
a finite number of steps, thus avoiding arbitrary stopping criteria introduced by
an iterative scheme [3]. From an astrometric perspective, only the direct methods
can provide estimates of the variances of the unknown parameters and of the
residuals based on the covariance matrix which is explicitly calculated and stored
in memory for further use. Once these estimates are available, then the scientific
investigation of the statistical properties of the solution can start with the aim
to identify systematic errors, remove hidden model biases/incompleteness and
calibrate out further non-random uncertainties of the model to reach the desired
accuracy of the astrometric mission.

This paper is a first step towards the cluster-based implementation of the
method and algorithm for a direct non-iterative solution to the JASMINE as-
trometric problem of determining the three-dimensional positions and velocities
of stars around the centre of our Milky Way.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


2 The Astrometric Problem

The method for solving geodetic and astrometric problems, the so-called ad-
justment via mediating observations has been developed in the year 1794 by
Carl Friedrich Gauß (eventually published in 1823, [9]) and a few years later in
1805 independently by Adrien-Marie Legendre [12]. In this type of problem the
unknowns p = (p1, . . . pι, . . . pI)

T are not directly accessible to observation, but
each of the observations o = (o1, . . . oℓ, . . . oL)

T can, in principle, be expressed
as a problem-dependent function of these unknowns

o = f(p) (1)

with oℓ = fℓ(p1, . . . pι, . . . pI). (2)

In general the function f will be non-linear. If an estimate p̂ for the unknowns
p exists, the problem can, however, be linearised around p̂ using a Taylor ex-
pansion and then neglecting all terms of second order and higher.

In the full multi-dimensional case this kind of linearisation yields

o1
...
oℓ
...
oL

 ≃



ô1
...
ôℓ
...
ôL

+



∂
∂p1

f1 · · · ∂
∂pι

f1 · · · ∂
∂pI

f1
...

. . .
...

. . .
...

∂
∂pℓ

fℓ · · · ∂
∂pι

fℓ · · · ∂
∂pI

fℓ
...

. . .
...

. . .
...

∂
∂pL

fL · · · ∂
∂pι

fL · · · ∂
∂pI

fL



∣∣∣∣∣∣∣∣∣∣∣∣∣
p̂︸ ︷︷ ︸



p1 − p̂1
...

pι − p̂ι
...

pI − p̂I

 (3)

o ≃ ô + D ∆p̂, (4)

where c = ô = F (p̂) are the estimates for the observations o calculated from the
estimate parameters p̂. ∆p̂ are the updates of the estimate unknowns p̂. The
matrix D holding the Jacobian derivatives of the functions fℓ with respect to
the unknowns p is called the design matrix of the problem.

Subtracting ô = c from Eqn (4) we arrive at the linear observation equation

o− c = D ∆p̂. (5)

The basic interpretation of this observation equation is that the knowledge
and understanding of the problem including an initial estimate p̂ for the un-
knowns p is being used to compute in a first step an estimate prediction c where
and when the observations o will be made. The inevitable difference between the
estimated prediction c and the actual observation o is then used in a second step
to compute the update ∆p̂ to the estimate p̂ that would be needed to account
for that difference between estimated prediction and actual observation, or

o− c−D ∆p̂
!
= 0. (6)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


3 Methods

3.1 The Astrometric Least-Squares Solution

Given the system of linear observation equations

l = Dx (7)

with the unknowns x = ∆p̂ and differences l = o − c between observations
and calculated predictions, a unique solution exists if the number of unknowns
I is equal to the number of observations L and if all observations are linearly
independent, i.e. if each observation adds unique information to the system. Then
the matrix D is square, has no zero eigenvalues, has a non-zero determinant and
is therefore invertible. The solution is then given by

x = D−1l. (8)

In an astrometric problem we have, however, many more observations than
we have unknowns. This problem is redundant to a degree L−I. Due to the errors
inherent to each observation, the observation equations do, however, not only
provide redundant information to the problem but also inconsistencies. There
exists no longer an exact solution to the problem.

But the observations can be combined in such a way that an approximate
solution can be computed which fits the problem in question to some degree.
Following the approach published by Legendre [12] the best approximate solution
is given by

x̂ = (DTD)−1DTl = N−1DTl, (9)

which minimises the square sum of the residuals, i.e. the quadratic sum of the
differences between the individual observations and the computed solution.

If the number of independent, i.e. absolute observations is greater or equal
to the number of unknowns, then the matrix D has full rank and the normal
matrix N = DTD is regular and positive definite.

If the observations are, however, not independent but, for example, relative to
each other, as is the case in astrometry, then the matrix D is rank deficient. This
means that the normal matrix N is singular and no unique inverse exists. The
solution to the problem is no longer unique (with respect to rotation and spin).
This can be fixed by adding either constraints to the equations such that the
constrained normal matrix becomes regular, or by computing a pseudo-inverse
matrix to get one arbitrary astrometric solution and then de-rotating and de-
spinning that particular solution in a post-processing step to get the one physical
solution.

3.2 The Hipparcos, Gaia and JASMINE Astrometric Solutions

As mentioned already in the introduction, the fundamental problem of space-
based astrometry is the sheer amount of unknowns (ten billions in the case of

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


the ESA Gaia astrometry mission) to solve for using an even larger amount of
angle measurements (more than two trillion measurements in the case of Gaia),
which hitherto prevented any attempt at solving the astrometric problem directly
without cutting it into smaller pieces first and then iterating for the full solution.

In the case of the ESA Hipparcos astrometry mission [6] the global astro-
metric problem with 3 · 106 unknowns was first split into many independent
and much smaller astrometric solutions along rings on the celestial sphere made
up by the observations during 4.5 revolutions of the satellite around its slowly
precessing spin axis. These astrometric solutions computed for each of these
rings were then combined into one spherical solution in a second step by simply
rotating the rings for a best fit. From this spherical solution, updated spatial ori-
entations of the individual rings were derived and these two steps then iterated
for convergence. In addition, the astrometric problem for each individual ring
was reduced in size by forward eliminating the attitude unknowns (describing
the spatial orientation of the instrument) from the normal equations before the
remaining normal matrix was inverted.

In the case of the ESA Gaia astrometry mission [8], the Astrometric Global
Iterative Solution (AGIS) [13] is employing a block-iterative scheme, in which
the normal matrix for the 8.9 · 109 unknowns is blocked along the astrometric
unknowns, the attitude unknowns describing the orientation of the instrument
and the calibration unknowns of the instruments, and in which the off-diagonal
blocks are all set to zero. This results in a normal matrix in which the three non-
zero diagonal blocks are block- or band-diagonal themselves and thus trivially or
at least easily inverted. Each of these three main diagonal blocks is inverted and
solved for separately by assuming a prior solution for the other two blocks. This
solution of one block is serving as prior solution for the other two. The solving
of these three blocks is iterated until convergence is achieved.

In contrast to this, the Gaia One Day Astrometric Solution (ODAS) [14]
comprised the much smaller but still quite challenging astrometric problem with
5 · 105 unknowns spanning only one ring containing the observations made dur-
ing about 4.5 revolutions of the satellite around its own slowly precessing spin
axis. Here the size of the problem was reduced by only forward-eliminating the
astrometric unknowns. The remaining reduced normal matrix was then directly
inverted using a singular value decomposition.

The aim of the current work is to find out whether such a direct astrometric
solution based on forward elimination and then direct inversion using singular
value decomposition can be applied to astrometric problems much larger than
the ODAS problem, i.e. to the full JASMINE astrometric problem solving for up
to 2.5 · 107 unknowns covering the full 18 months of astrometric mission time.
Thus was born the idea of the Astronomisches Rechen-Institut (ARI) JASMINE
Astrometric Solution (AJAS).

3.3 The ARI JASMINE Astrometric Solution

The observations in AJAS are two-dimensional. The primary data of these ob-
servations are the 2D coordinates (κ, µ) of the corresponding centroid of the light

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


spot (trace of a star detected by a telescope) expressed in the coordinate system
of the telescope detector, and the guessed identifier of a source. The pixel coor-
dinates (κ, µ) are determined via segmentation of the exposure into spots and
calculation of their centroids. Source identifiers are determined via a so-called
cross-match procedure, in which the catalog of known stars is used as a priori
data. Both procedures are parts of raw data processing and lay beyond the scope
of this work.

A system of astrometric equations is built based on some reference frame.
In AJAS, we have chosen the telescope’s field of view reference frame (FoVRS),
because it simplifies the subsequent calculations. Being two-dimensional, each
observation contributes twice to the system of astrometric equations spawning
two equations for perpendicular directions (η, ζ) of the FoVRS. The unknowns
in each equation are the set of calibration (nuisance) and source parameters.
The coefficients are the derivatives of field angles η and ζ with respect to the
corresponding parameters.

The design matrix of the AJAS astrometric problem is D = (C0 C1 S), where
C0 is a lower-order calibration part encoding the attitude of the satellite tele-
scope, C1 is a higher-order calibration part taking care of the above-mentioned
imperfections of the telescope optics, and S is a part related to source parame-
ters. In the end, only the unknowns related to S have a scientific meaning, still,
all the unknowns should be determined to ensure the error calculus.

The vector side l of the system is built based on the difference between
observed and calculated η and ζ coordinates of the observations:

l =

(
ηobsℓ − ηcalcℓ

ζobsℓ − ζcalcℓ

)
ℓ=1,L

=

(
ηobs(κℓ, µℓ)− ηcalc(tℓ, λℓ)
ζobs(κℓ, µℓ)− ζcalc(tℓ, λℓ)

)
ℓ=1,L

,

where L is the total number of observations, tℓ is the timestamp of observation
ℓ, and λℓ is the source assigned to the observation ℓ.

For the very simple case with a single detector, 4 exposures, 40 observa-
tions, 10 sources, 2 source parameters per source, 6 nuisance parameters per
observation in the lower-order calibration part, and 6 nuisance parameters per
observation in the higher-order calibration part, the design matrix D looks like
in Fig. 1a. For the real data, D will be way bigger, but the overall structure will
be retained.

For a 3-year JASMINE mission, 4 detectors and ∼106 exposures are planned.
Around 1.15 ·105 sources are expected to be observed with a total number of ob-
servations to be around 8.25 ·109 observations, and 5 astrometric parameters per
source should be determined (2 celestial coordinates, 2 proper motion compo-
nents, and parallax). For this amount of input data, the number of rows in D will
be 1.65 · 1010 (twice as many, as observations, because of two coordinates η and
ζ). The number of columns in C0 will be 2.4 · 107 (count of detectors × count of
exposures × 2 coordinates × count of lower-order calibration parameters). The
exact number of columns in C1 depends on the particular higher-order calibra-
tion model but is expected to be no more than 100. The number of columns in
S will be 5.75 · 105 (count of sources × count of source parameters).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


Fig. 1: Structure of the matrix D (a), structure of the matrix M (b), and main
blocks of the matrix M (c), gray indicates zero values, green-to-blue indicates
non-zero values

Altogether, this gives a size of D to be in the order of 1010 × 107. Despite
sparsity, this matrix is far too big to be treated directly. Instead, another system
is to be solved, which is based on the reduced normal matrix M derived from
the normal matrix N :

Nx = DTl, N = DTD =

(
CT
0C0 CT

0O
OTC0 OTO

)
, x =

(
xC0

xO

)
, O = (C1 S) .

The matrix M is built using a forward elimination of the CT
0C0 component

of N : (
I VO
0 M

)(
xC0

xO

)
=

(
Vl
bO

)
,

where

V =
(
CT
0C0

)−1

CT
0 , M = OTPO, bO = OTPl, P = I − C0V , (10)

and I is the identity matrix. Then, the system to be solved is:

MxO = bO. (11)

The structure of the matrix M is shown in Fig. 1b and Fig. 1c. It is symmet-
ric, singular, positive semi-definite. Its size is driven by the sum of the column
numbers of C1 and S and is expected to be within 106 × 106 for the JASMINE
mission.

From (11), the unknowns related to C1 and S can be calculated as:

xO = M+bO = ZE−1ZTbO, (12)

where M+ is pseudo-inverse, Z is a matrix of eigenvectors, and E is a diagonal
matrix of eigenvalues of M. The M+ is the covariance matrix which stores the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


standard error estimates of the higher calibration parameters a s well as of the
source parameters and is needed for the statistical analysis of the residuals.

The rest of the unknowns (related to C0) can be determined via a backsub-
stitution:

xC0
=

(
CT
0C0

)−1

CT
0 (l−OxO) . (13)

Finally, for the error calculus, the residuals are calculated as

r = l−OxO − C0xC0 , (14)

where they should follow a normal distribution based on the assumption that
the observational errors are uncorrelated to each other and follow also a normal
distribution.

The scientific goal of the JASMINE mission is the determination of the 3D
angular positions of the stars on the celestial sphere with a target accuracy
of down to 10 µas. The accuracy of the instrument calibration must therefore
be better than this. And that means that we have to calibrate the geometric
locations of the photosensitive elements in the focal plane to an accuracy of at
least 20 nm or 100 silicon atom diameters.

This kind of calibration accuracy cannot be achieved in the laboratory on-
ground before launch. Launching the instrument into space will change its geom-
etry in an uncertain way at a far greater scale. The instrument calibration must
therefore be based on the very same observational data that determine the stellar
positions. This can be achieved by setting up a calibration model and treating
its parameters as unknowns of the overall problem. Any error or uncertainty
in the formulation of the calibration model will show up as systematic effect in
the distribution of the residuals defined in Eqn 14 and their standard errors.
These systematics need to be accounted for in the formulation of an improved
calibration model and a new solution based on this improved model should be
computed to reduce this model uncertainty.

Solving the overall astrometric problem requires therefore a speedy and accu-
rate method with which to compute the solution for a whole series of increasingly
more accurate calibration models. The actual and detailed formulation of these
calibration models is, however, based on mining the residual data and their
standard errors for correlations and systematics.

3.4 Approaches to Build a Direct Astrometric Solver

The direct astrometric solver is defined by Eqns (11–14). Each formula allows
for parallel calculations, therefore, the direct solver can reach correspondingly
high performance. The most computationally intensive part is the calculation of
the pseudo-inverse matrix M+ (Eqn (12)), and specifically, the calculation of
eigenvalues e and eigenvectors Z of the matrix M. This is because M is nearly
a dense matrix, while the rest of operands is rather sparse. So, the general archi-
tecture of parallelism for the direct solver should be chosen in a way that ensures

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


the best performance of the eigenproblem solution. The rest of the operations
should be implemented in the same architecture to minimize the overhead of
moving the intermediate data. In this regard, our first experiments were aimed
at finding the most optimal hardware and software configuration to solve an
eigenproblem of a real symmetric matrix of size 106 × 106 (as this is the upper
estimation for the matrix M in the JASMINE mission).

A state-of-the-art library to solve the eigenproblem for dense matrices is
EigenExa [16]. It is written in modern Fortran and implements a hybrid paral-
lelism model based on MPI and OpenMP standards. Compared to ScaLAPACK
library [2], which is a de facto standard for distributed parallel computations
involving linear algebra subroutines, EigenExa has the following distinctive fea-
tures [16]:

1. The traditional way to solve the eigenproblem in ScaLAPACK is using the
Householder transformation [18] of the input symmetric real matrix M to
tridiagonal form T , then performing the Divide-and-Conquer (DC) algo-
rithm [4] or the more modern and efficient algorithm of Multiple Relatively
Robust Representations (MRRR) [5] to find the eigenvalues and eigenvectors
of T , and then transforming the eigenvectors back to the initial matrix M
(while eigenvalues of T match eigenvalues of M since Householder transfor-
mation preserves the spectrum). Instead, EigenExa transforms the matrix
M to a pentadiagonal form P , then performs a modified version of the DC
algorithm to reveal eigenvalues and eigenvectors and transforms the eigen-
vectors back to matrix M. This approach reduces the number of numerical
operations involved in the calculation [7].

2. EigenExa uses fine-tuned symmetric multiprocessing parallelism inside the
distributed processes allowing for a better ratio of computation operations
to service operations.

3. EigenExa implements a set of data arrangement optimizations, which im-
prove the CPU cache usage (including reducing the cache thrashing).

These features significantly increase the overall processing speed. According
to our experiments on small-scale matrices (order of 104×104) and small process
grid (4 nodes with 2 cores each), the average speedup of EigenExa compared to
ScaLAPACK (with MRRR) is about a factor of 10. For big-scale matrices, as
reported by Sakurai et al. [16] and Imamura et al. [11], EigenExa is capable of
solving the eigenproblem for 106 × 106 matrix in less than 1 hour using 82944
nodes with 8 cores each of the K supercomputer or 4096 nodes with 48 cores
each of the Fugaku supercomputer, whereby the scaling is close to linear. This
brings us to the conclusion, that the cluster-based architecture with a hybrid
model of parallelism is the way to implement a direct astrometric solver to meet
our performance requirements.

4 Proposed Architecture of the Direct Astrometric
Solver

We adopt the model of hybrid parallel computations within AJAS.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


AJAS is a software pipeline written in C++ and optimized for CPU clusters.
Its schema is shown in Fig. 2.

Fig. 2: Direct astrometric solver pipeline

AJAS consists of 3 modules (MBuilder, MInverter, and MResidualer) ex-
ecuted sequentially, while each one performs calculations using a hybrid par-
allelism. The reason for grouping the pipeline steps into these modules is the
semantics of operations. Currently, the outlier filtering step (8) is not yet imple-
mented, but very probably it will be attached to MResidualer in the future.

The communication between processes adheres to the Message Passing Inter-
face (MPI) standard. Each process is supposed to run on an individual cluster
node, whereby Π available nodes are logically organized as a square-shaped⌊√

Π
⌋
×

⌊√
Π
⌋
grid. Each process utilizes multi-threading to organize a fine-

grain parallelism. The workload is balanced dynamically based on the actual
dimensions of the problem.

4.1 Matrix Building Module

The MBuilder module (comprising step (1) in Fig. 2) is responsible for build-
ing the reduced normal matrix M and vector bO of the astrometric equations
system. It computes the following formulas derived from (10):

M =

N∑
n=1

Υ∑
τ=1

OT
nτPnτOnτ , (15) bO =

N∑
n=1

Υ∑
τ=1

OT
nτPnτ lnτ , (16)

where Onτ = (C1,nτ Snτ ), Pnτ = I − C0,nτ

(
CT
0,nτC0,nτ

)−1

CT
0,nτ , N is the

number of telescope detectors, Υ is the number of exposures made during the
mission.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


Each process of MBuilder composes a block of the matrix M and a block
of the vector bO by computing NΥ/Π “layers” (double-sum internals from (15)
and (16)) in a multi-threaded way. The elements of these layers, which belong to
the matrix and vector blocks of a particular process, are summed up locally; the
rest is transmitted for summation to other processes. The result blocks of M are
then processed by the MInverter module. Upon calculation, the intermediate
data are stored in binary files for subsequent use by the MResidualer module.

To save memory and numerical operations, the layers are compressed ex-
ploiting the fact that their components are rather sparse. The zero elements
are predicted analytically and excluded from both storage and calculations. To
tackle this, a customized code for matrix operations (matrix-matrix and matrix-
vector multiplication, matrix addition, etc.) has been implemented. The stored
and summed/transmitted layer components with their minimal compression ra-
tios and memory footprint fractions are listed in Table 1. The actual values
depend on the calibration model, which will be adjusted during the real mission.
On one hand, the more complicated the calibration model is the more unknowns
are introduced to the system of astrometric equations but on the other, they will
also contain more zero entries. So, the compression ratio will grow.

Table 1: Approximate values for data components compression and memory
footprints calculated for the expected JASMINE data

Element Compression ratio Fraction of total memory footprint

S
to
re
d
o
n
d
is
k

C0,nτ 2 1.16 · 10−4

C1,nτ 8 6.95 · 10−4

Snτ 1.15 · 105 1.93 · 10−4

lnτ 1 3.86 · 10−5(
CT

0C0

)−1
2 6.73 · 10−7

S
to
re
d
in

R
A
M
;

tr
a
n
sm

it
te
d
a
n
d

su
m
m
ed

u
p

CT
1,nτPnτC1,nτ 61 1.28 · 10−5

ST
nτPnτC1,nτ 892 3.47 · 10−3

ST
nτPnτSnτ 1.24 · 104 9.95 · 10−1

CT
1,nτPnτ lnτ 4 1.35 · 10−6

ST
nτPnτ lnτ 111 1.93 · 10−4

The communication and data access schemes of MBuilder are a potential
bottleneck that should be investigated and optimized further.

4.2 Matrix Inversion Module

The MInverter module inverts the previously created matrix M and calcu-
lates the part of the astrometric system’s solution implementing Eqn (12). As
mentioned above, M is singular, so it is inverted by a singular value decompo-

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


sition [1], whereby the diagonalization is performed using the eigenvectors and
reciprocal eigenvalues.

The eigenproblem is efficiently solved by the EigenExa library (Fig. 2, step 2).

It requires M to be distributed over the square-shaped
⌊√

Π
⌋
×
⌊√

Π
⌋
process

grid using the block-cyclic distribution pattern [15], whereby despite the matrix
symmetry, all the elements of M should be presented for the sake of optimal
processing. Moreover, to minimize the probability of cache thrashing, blocks are
padded in memory with some empty rows and columns (the exact number of
which is calculated by EigenExa).

When EigenExa finishes, each cluster node has a corresponding block of
the eigenvector’s set Z stored in RAM using the same block-cyclic layout and
paddings as the blocks of the input matrix M. Along with it, each node has a
copy of the full set of eigenvalues e.

Following the pipeline shown in Fig. 2, the next step is the eigenvalues fil-
tering (step 3). It is very lightweight and performed by each node individually.
The filtering zeroes out the expected zero eigenvalues that are numerically close
to but not exactly equal to zero.

Next, the pseudo-inverse is computed (step 4). For the sake of efficiency, first,
each node scales each i-th column of the Z block with

√
1/ei, if ei > 0, and

0, if ei = 0. As long as M is positive semi-definite, all the eigenvalues are non-
negative. This allows us to reformulate Eqn (12) as M+ = ZeZT

e, where Ze is
scaled Z.

This, in turn, allows the use of the ScaLAPACK PDSYRK function that effi-
ciently multiplies a real matrix by its transpose. For this operation, the block-
cyclic layout of Z is reused, so no data is moved or copied in memory. The
blocks of multiplication results overwrite the blocks of matrix M, so no addi-
tional memory is allocated.

Step 5 is the multiplication of the M+ matrix by the vector bO, which has
been distributed over the nodes in a block-cyclic way by the MBuilder module.
The ScaLAPACK PDSYMV function is used to perform the matrix-vector multi-
plication. The result vector xO is gathered on the first node and stored in a
file.

4.3 Residuals Calculation Module

The MResidualer module adopts Eqns (13) and (14) (corresponding to the steps
(6) and (7) in Fig. 2) split into blocks by detectors and exposures:

xC0,nτ =
(
CT
0,nτC0,nτ

)−1

CT
0,nτ (lnτ −OnτxO,nτ ) , (17)

rnτ = lnτ −OnτxO,nτ − C0,nτxC0,nτ . (18)

It reuses the components stored by MBuilder. The calculations are embar-
rassingly parallel (having no dependencies and no inter-process communication)
and distributed over Π available cluster nodes so that each one has to process
NΥ/Π blocks.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


5 Discussion

To preliminarily validate the AJAS software, we created a set of unit tests for
all its modules. For this, we recreated the AJAS pipeline in pure sequential code
without any optimizations (using just trivial matrix-matrix and matrix-vector
operations) in Python using the NumPy library [10]. This pipeline “twin” can
handle very small-scale problems only but allows us to ensure that the AJAS
pipeline’s numerical part works correctly on all the steps.

To test the accuracy of AJAS, we compared the solution of different small-
scale systems found by AJAS, by singular value decomposition [1] of reduced
normal matrix M implemented in Python (using NumPy) and by QR decom-
position [17] of the design matrix D implemented in Julia. The comparison
showed the equality of those solutions up to the machine epsilon.

To preliminary test the efficiency of the AJAS implementation, we run it
on 2 × 2 process grid using 4 nodes of the Baden-Württemberg cluster bwUni-
Cluster 2.0, which is available for academic use for the universities of Baden-
Württemberg (Germany). Each node has 40 Intel®Xeon Gold 6230 2.1 GHz
CPU cores and 96 Gb RAM. To allow for basic profiling, we also developed a
simple generator for mock science data in Julia language that produces artificial
observations. The needed amount of calculations in AJAS is mainly driven by
the size of the M matrix, so we generated the data in the amount needed to
build matrices of size m×m, where m = 104; 2 · 104; 3 · 104; 4 · 104.

The approximate time dependencies of the AJAS pipeline steps revealed
from the profiling are the following (m ≈ AΛ, A is the number of astrometric
parameters, Λ is the number of sources observed, Υ is the number of exposures
made, L is the total number of observations made, N is the number of detectors
in the telescope):

1. Building of the matrix M: t1 = t1(NΥ,L,m2) ≈ 1.7 · t2.
2. Finding eigenvalues and eigenvectors of M: t2 = t2(m

2).
3. Filtering eigenvalues: t3 = t3(m) ≈ 0.
4. Calculating pseudo-inverse matrix M+: t4 = t4(m

2) ≈ 0.4 · t2.
5. Calculating part of system updates: t5 = t5(m) ≈ 10−3 · t2.
6. Performing backsubstitution: t6 = t6(NΥ,L) ≪ t2.
7. Calculating residuals: t7 = t7(NΥ,L) ≪ t2.

As seen in the list above, the timing of steps (1)–(5) depends on the size
of M (while the timing of (1) depends mainly on the number of detectors,
exposures, and observations). In terms of the amount of computations, step (2)
is the heaviest one. However step (1) takes the longest execution time because of
the intensive disk and RAM access, as well as inter-process communication. Step
(3) is negligibly fast because it implies just a single scan of eigenvalues zeroing
out the values smaller than a given threshold. The timing of steps (6) and (7)
depends on the number of detectors, exposures, and observations, but is much
smaller than the timing of step (2).

To run a bigger problem that will be close to the real JASMINE size, a larger
process grid on the cluster is required. 3 years of JASMINE operation will result

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


in the system of approx. 1.65 ·1010 astrometric equations with 2.5 ·107 unknowns
and the matrix M will be around 6 · 105 × 6 · 105, which requires 10.5 Tb of
RAM and 7 Tb of disk storage to run the pipeline.

6 Conclusion

The paper delineates the novel approach to the development of the direct astro-
metric solver aimed at revealing stellar properties from the observations made
by a space telescope. AJAS, the software implementation of the solver, is op-
timized for execution on CPU clusters. The computational core is based on
the EigenExa, ScaLAPACK, Intel®oneMKL, and Intel®MPI libraries, which
ensure high performance in computations and communication between the dis-
tributed cluster nodes. Preliminary testing on realistic mock science data and a
small-scale process grid on the cluster demonstrate the viability of the proposed
approach and architecture. The high performance and numerical accuracy of
the solver are crucial to allow for multiple runs in a reasonable time, which is
needed to fine-tune the calibration model parameters in order to mitigate the
model’s uncertainty. Thereby, the correctness of the astrometric solution will be
improved by a proper accounting for the stellar properties, orientation of the
space telescope, and imperfections of its optics.

The foremost step for future work is the detailed testing of the developed
software on the larger process grids on the clusters to reveal and eliminate bot-
tlenecks in computation and communication routines as well as to confirm the
predictions of the time needed to handle the astrometric problems of realistic
size.

7 Acknowledgments

This work was financially supported by the German Aerospace Agency (Deutsches
Zentrum für Luft- und Raumfahrt e.V., DLR) through grant 50OD2201. The au-
thors acknowledge support by the state of Baden-Württemberg through bwHPC.
The authors also thank the National Astronomical Observatory of Japan (NAOJ)
fruitful discussions for the mission specifics.

References

1. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses. Theory and Applications.
Springer, New York (2003). https://doi.org/10.1007/b97366

2. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA (1997)

3. Bombrun, A., Lindegren, L., Holl, B., Jordan, S.: Complexity of the gaia as-
trometric least-squares problem and the (non-)feasibility of a direct solution
method. Astronomy & Astrophysics 516, A77 (2010). https://doi.org/10.1051/
0004-6361/200913503

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://doi.org/10.1007/b97366
https://doi.org/10.1007/b97366
https://doi.org/10.1051/0004-6361/200913503
https://doi.org/10.1051/0004-6361/200913503
https://doi.org/10.1051/0004-6361/200913503
https://doi.org/10.1051/0004-6361/200913503
https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23


4. Cuppen, J.J.M.: A divide and conquer method for the symmetric tridiagonal eigen-
problem. Numerische Mathematik 36(2), 177–195 (1980). https://doi.org/10.
1007/BF01396757

5. Dhillon, I.S., Parlett, B.N., Vömel, C.: The Design and Implementation of the
MRRR Algorithm. ACM Transactions on Mathematical Software 32(4), 533–560
(2006). https://doi.org/10.1145/1186785.1186788

6. ESA: The Hipparcos and Tycho Catalogues. ESA SP-1200 (1997), https://www.
cosmos.esa.int/web/hipparcos/catalogues

7. Fukaya, T., Imamura, T.: Performance Evaluation of the Eigen Exa Eigensolver on
Oakleaf-FX: Tridiagonalization Versus Pentadiagonalization. In: 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshop. pp. 960–969
(2015). https://doi.org/10.1109/IPDPSW.2015.128

8. Gaia Collaboration, Prusti, T., de Bruijne, J.H.J., Brown, A.G.A., Vallenari, A.,
Babusiaux, C., Bailer-Jones, C.A.L., Bastian, U., Biermann, M., Evans, D.W.,
et al.: The Gaia mission. Astronomy & Astrophysics 595, A1 (Nov 2016). https:
//doi.org/10.1051/0004-6361/201629272

9. Gauß, C.F.: Theoria Combinationis Observationum Erroribus Minimis Obnoxiae.
In: Commentationes Societatis Regiae Scientiarum Gottingensis recentiores – Clas-
sis Physicae, vol. 5. Henrich Dieterich, Göttingen (1823), https://archive.org/
details/theoriacombinat00gausgoog

10. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M.,
Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Ŕıo, J.F., Wiebe, M.,
Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Ab-
basi, H., Gohlke, C., Oliphant, T.E.: Array programming with NumPy. Nature
585(7825), 357–362 (Sep 2020). https://doi.org/10.1038/s41586-020-2649-2,
https://doi.org/10.1038/s41586-020-2649-2

11. Imamura, T., Terao, T., Ina, T., Hirota, Y., Ozaki, K., Uchino, Y.: Performance
benchmark of the latest EigenExa on Fugaku (2022), https://sighpc.ipsj.or.
jp/HPCAsia2022/poster/108_poster.pdf

12. Legendre, A.M.: Nouvelles Méthodes Pour La Détermination des Orbites des
Comètes. Firmin Didot, Paris (1805), https://archive.org/details/61Legendre

13. Lindegren, L., Lammers, U., Hobbs, D., O’Mullane, W., Bastian, U., Hernàndez,
J.: The astrometric core solution for the Gaia mission. Overview of models, al-
gorithms, and software implementation. Astronomy & Astrophysics 538, A78
(Feb 2012). https://doi.org/10.1051/0004-6361/201117905, http://cdsads.

u-strasbg.fr/abs/2012A%26A...538A..78L

14. Löffler, W., Bastian, U., Biermann, M., Jordan, S., Brüsemeister, T., Stampa, U.,
Bernstein, H.H.: The one-day astrometric solution for the gaia mission. Astronomy
& Astrophysics (in preparation)

15. Ostrouchov, S.: Block Cyclic Data Distribution (1995), https://www.netlib.org/
utk/papers/factor/node3.html

16. Sakurai, T., Futamura, Y., Imakura, A., Imamura, T.: Scalable Eigen-Analysis
Engine for Large-Scale Eigenvalue Problems, pp. 37–57. Springer Singapore, Sin-
gapore (2019). https://doi.org/10.1007/978-981-13-1924-2_3

17. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia (1997)

18. Wilkinson, J.H.: Householder’s method for symmetric matrices. Numerische Math-
ematik 4(1), 354–361 (1962). https://doi.org/10.1007/BF01386332

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_23

https://doi.org/10.1007/BF01396757
https://doi.org/10.1007/BF01396757
https://doi.org/10.1007/BF01396757
https://doi.org/10.1007/BF01396757
https://doi.org/10.1145/1186785.1186788
https://doi.org/10.1145/1186785.1186788
https://www.cosmos.esa.int/web/hipparcos/catalogues
https://www.cosmos.esa.int/web/hipparcos/catalogues
https://doi.org/10.1109/IPDPSW.2015.128
https://doi.org/10.1109/IPDPSW.2015.128
https://doi.org/10.1051/0004-6361/201629272
https://doi.org/10.1051/0004-6361/201629272
https://doi.org/10.1051/0004-6361/201629272
https://doi.org/10.1051/0004-6361/201629272
https://archive.org/details/theoriacombinat00gausgoog
https://archive.org/details/theoriacombinat00gausgoog
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://sighpc.ipsj.or.jp/HPCAsia2022/poster/108_poster.pdf
https://sighpc.ipsj.or.jp/HPCAsia2022/poster/108_poster.pdf
https://archive.org/details/61Legendre
https://doi.org/10.1051/0004-6361/201117905
https://doi.org/10.1051/0004-6361/201117905
http://cdsads.u-strasbg.fr/abs/2012A%26A...538A..78L
http://cdsads.u-strasbg.fr/abs/2012A%26A...538A..78L
https://www.netlib.org/utk/papers/factor/node3.html
https://www.netlib.org/utk/papers/factor/node3.html
https://doi.org/10.1007/978-981-13-1924-2_3
https://doi.org/10.1007/978-981-13-1924-2_3
https://doi.org/10.1007/BF01386332
https://doi.org/10.1007/BF01386332
https://dx.doi.org/10.1007/978-3-031-63783-4_23
https://dx.doi.org/10.1007/978-3-031-63783-4_23

