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Abstract. This paper addresses the challenge of classifying objects based
on fragmented data, particularly when dealing with characteristics ex-
tracted from images captured from various angles. The complexity in-
creases when dealing with fragmented images that may partially overlap.
The paper introduces a classi�cation model utilizing neural networks,
speci�cally multilayer perceptron (MLP) networks. The key concept in-
volves generating local models based on local tables comprising charac-
teristics extracted from fragmented images. Since the local tables may
have di�erent sets of attributes due to varying perspectives, missing at-
tributes in the tables are imputed by introducing arti�cial objects. The
local models, now with identical structures are created and the aggrega-
tion of these models into a global model is carried out using weighted
averages. The model's e�cacy is evaluated against existing literature
methods using various metrics, demonstrating superior performance in
terms of F-measure and balanced accuracy. Notably, the paper investi-
gates the impact of the number of generated arti�cial objects on classi�-
cation quality, revealing that a higher number generally improves results.

Keywords: Fragmented Image Classi�cation · Neural Networks · Arti-
�cial Objects · Characteristics Generated From Images.

1 Introduction

Every so often in computer vision and object recognition tasks, the goal is not
necessarily to create a virtual representation of an object, but to assign it to a
certain class, based on its characteristics. Such a situation occurs in instances
such as recognizing the architectural style of a building, the type of vehicle or
type of land based on a satellite image. The situation becomes more complicated
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when not a single image represents an entire object, but rather many fragmented
images that may partially overlap. Here, one can think about a set of cameras
that perceive an image of an object from di�erent angles. Fragmented images can
partially overlap � the cameras can observe (in some part) the same fragment of
the object. In this paper, an assumption of not having fragmented images as such,
but rather characteristics that have been extracted from these images is made.
These object characteristics are stored in decision tables, also known as local
tables and may contain common attributes and objects. By common objects
in tables, we mean a situation where characteristics extracted from images of
the same object are stored in di�erent tables. There may be inconsistencies
among tables in that an image in question may have been distorted in some
way, resulting in a completely di�erent value on conditional attributes or even
decision attribute for the same object.

The paper proposes a classi�cation model based on such fragmented data.
The main idea of the model is to use neural networks (speci�cally MLP networks)
to generate local models based on each local table. These models are then aggre-
gated into a global model using trained weights from the local models. However,
aggregation of MLP networks is not possible to realize without the local mod-
els having the same structure. This constraint can be satis�ed by ensuring the
presence of the same conditional attributes in all local tables, which, of course
is not originally ful�lled due to di�erent cameras observing di�erent parts of
an object and, consequently, di�erent set of characteristics being stored in local
tables. So, to achieve homogeneity in local tables, it is necessary to modify them
before generating local models. This is done by generating arti�cial objects �
supplemented with values for missing attributes. After such modi�cation, local
models with identical structures are built from local tables. Local models are
then aggregated into a global model. Finally, the global model is re�ned using a
small set of objects.

Figure 1 shows the stages of building the global model. In the �rst and second
steps, characteristics of objects are extracted from fragmented images and local
decision tables are created with di�erent sets of conditional attributes � sets of
attributes are not necessarily disjoint. It should be noted that this part is not
addressed directly in this paper, since the data used retains characteristics of
objects extracted from images and were obtained from the repository. Then, in
order to unify the local tables, values are imputed for missing attributes in all
local tables. For an original object, more than one arti�cial object can be created,
making the cardinality objects in local tables dynamic. The fourth step describes
building local neural networks, and the �fth aggregates these local networks into
a global model � weights from local models are used for this purpose. Finally,
this global model is trained using a small set of objects.

The main contribution of this paper is a proposal of a classi�cation model
based on characteristics obtained from fragmented images. Comparing the clas-
si�cation quality of the proposed model with known methods from the literature,
it was shown that the proposed model, on average, generates better F-measure
and balanced accuracy results. An important result of the paper is to examine
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Fig. 1. Global model generation stages.

the e�ect of the number of arti�cial objects generated on classi�cation quality.
Here, usually a higher number of objects improves the quality of classi�cation.
The paper also provides some guidance for which data the proposed model is
suitable.

An e�ective and excellent model for image recognition is convolution neu-
ral networks [15]. There are many applications of image-based object recogni-
tion, among which are handwriting recognition [13], X-ray analysis [5], plant
disease identi�cation [3], facial emotion recognition [1]. However, it should be
admitted that there are not many papers dedicated to the subject of processing
fragmented images. Papers on fragmented images are usually concerned with
completing the object that are presented in a fragmentary way on the image �
examples are cracks in a roadway [14] or fragments of a plant leaf [2], coloring
and fragmentation of image where the objects are located [9]. Identifying frag-
mented images is an infrequently addressed area of study. This challenge often
involves working with sets of images captured from diverse perspectives, where
each image is obtained by a distinct camera viewing the object from di�erent
angles [11]. When dealing with fragmented image data, recognizing the depicted
object becomes more challenging. In a related paper [7], the proposed methodol-
ogy involves assembling fragmented portions of photos to reconstruct a complete
image, aligning and merging components to form a cohesive whole. It is impor-
tant to note that this approach assumes non-overlapping fragmented data for
e�ective implementation. The �rst research on classi�cation based on dispersed
and fragmented images was presented in the paper [10]. In this paper we present
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an approach that builds a common model which given the characteristics of an
object, can recognize the class from which it comes from.

In Section 2, the proposed classi�cation model is described. Section 3 ad-
dresses the data sets that were used and presents the conducted experiments
and discussion on obtained results. Section 4 is on conclusions.

2 Model and methods

There is an assumption that features are extracted from fragmented images
and stored in a tabular form. More formally, some characteristics of images are
available in a dispersed form, that is, in the form of a set of local tables. A set
of decision tables Di = (Ui, Ai, d), i ∈ {1, . . . , n} is available, where Ui is the
universe comprising objects � images; Ai is a set of attributes that describe the
image; d is a decision attribute � object shown in the image; A =

⋃n
i=1 Ai is

the union of attributes present in all local tables. Objects and attributes in local
tables can be di�erent but some may be common.

The aim is to to generate local neural network models (MLP models) based
on each local table. To construct a global model, the structure of such local
models must be identical, and this can only be achieved if all local tables have
the same sets of attributes. Each table Di is modi�ed so that the full set of
attributes A is included. This is done by generating new objects with completed
values on the missing attributes. Suppose the object x̄ ∈ Ui has a decision value
v, d(x̄) = v, v ∈ V d, where V d is the set of values of the decision attribute d and
b ∈ A\Ai. For each decision table Dj , i ̸= j for which b ∈ Aj the following values
are computed: MIN b

j,v = minx∈Uj ,d(x)=v b(x), MAXb
j,v = maxx∈Uj ,d(x)=v b(x),

AV Gb
j,v = avgx∈Uj ,d(x)=v b(x), MEDb

j,v = medianx∈Uj ,d(x)=v b(x). In this way,
individual values assigned to attribute b for each local table are derived. The �nal
value, which completes the object x̄ in table Di is determined by applying one
of four statistical measures (minimum, maximum, mean, or median) to the local
values obtained in the previous step. Consequently, there are sixteen potential
combinations with one chosen randomly for determining the value of attribute
b. As an illustration, consider a scenario where the maximum is selected for
calculating local values, and the median is chosen for the aggregate value. In
this case, the determination of the value for attribute b is as follows: b(x̄) =
medDj :b∈AjMAXb

j,v. This method is repeated for each attribute that does not
belong to the set Ai but occurs in other local tables. By the procedure described
above, one can generate several arti�cial objects based on an original object.
A parameter k is used to determine the number of arti�cial objects generated
based on a single original object. This expanded approach has been tested, and
the corresponding results are detailed in the experimental section of the paper.
In this way, a set of modi�ed local tables D̄i = (Ūi, A, d), i ∈ {1, . . . , n} with
equal sets of attributes is obtained.

The local tables D̄i are used in subsequent steps for training MLP neural
networks. The input layer is de�ned as the cardinality of A. The number of
neurons in the output layer corresponds to the number of decision classes, where
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each neuron determines the probability of the test object belonging to a speci�c
decision class. In the experimental section, the consideration is given to one or
two hidden layers. The number of neurons in the hidden layer is determined
proportionally to the number of neurons in the input layer, exploring di�erent
proportions ranging from 0.25 to 5 times the number of input layer neurons. In
the case of two hidden layers, all combinations of neuron numbers are explored,
with the �rst layer being chosen from the set {0.25×I, 0.5×I, 0.75×I, 1×I, 1.5×
I, 1.75×I, 2×I, 2.5×I, 2.75×I, 3×I, 3.5×I, 3.75×I, 4×I, 4.5×I, 4.75×I, 5×I},
and the second layer chosen from the set {1× I, 2× I, 3× I, 4× I, 5× I} where I
is the number of neurons in the input layer. The ReLU (Recti�ed Linear Unit)
function is employed as the activation function for the hidden layer. For the
output layer, the softmax activation function is utilized. The neural network is
trained using the back-propagation method, speci�cally employing a gradient
descent method with an adaptive step size. The model employs the categorical
cross-entropy loss function in conjunction with the Adam optimizer for optimal
performance.

Since all the local models created have the same structure, the global model
is created by a weighted sum of the trained weights from local models. Prior
to this aggregation, weights from each local model are adjusted by the formula:
ωi = ln( 1−ei

ei
), where ei is the classi�cation error of the i−th local model on the

training set Ūi. In summary, the global model is created as follows: initially, the
network's structure is speci�ed, then its weights assigned based on the weighted
sum of weights from the local models. The �nal stage involves retraining the
global network. For this step, training objects must possess values of all at-
tributes A. This can be a certain set of examples/objects that an expert will
describe and classify by capturing all the characteristics of an object at once. In
the experiments conducted in this paper, such a validation set derived from the
test set.

3 Data sets and results

3.1 Data and measures

The proposed system was tested on three data sets from the UC Irvine Machine
Learning Repository [6, 8, 12]. Vehicle Silhouettes � aims to classify vehicle sil-
houettes into one of four types, considering characteristics extracted from images
taken from various angles: eighteen quantitative attributes, four decision classes,
846 objects (592 training, 254 test set). Landsat Satellite � involves classifying
earth types in satellite images based on multispectral pixel values in a 3 × 3
neighborhood: thirty-six quantitative attributes, six decision classes, 6435 ob-
jects (4435 training, 1000 test set). Dry Bean � focuses on classifying types of
beans using characteristics extracted from high-resolution images subjected to
segmentation and feature extraction stages: seventeen quantitative attributes,
seven decision classes, 13611 objects (9527 training, 4084 test set).

The data pre-processing involved random dispersion into 3, 5, 7, 9, and 11
local tables. Each local table included a reduced set of attributes with all objects
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from the original table. The data sets exhibited imbalance, with varying object
counts across decision classes in both training and test sets. Two variants were
considered for each data set: experiments on dispersed imbalanced data and on
balanced data modi�ed using the Synthetic Minority Over-sampling Technique
(SMOTE) method [4].

The quality of classi�cation was evaluated based on the test set with the
following accuracy measures. Classi�cation accuracy measure (acc) � a frac-
tion of the total number of objects in the test set that were classi�ed cor-
rectly; Recall � an assessment of the classi�er's ability to correctly recognize
a given class; Precision (Prec.) � a measure of how often the classi�er does
not make a mistake when classifying an object to a given class, F-measure (F-
m.) � an assessment of the classi�er's ability to keeping accuracies balanced.

F-measure = 2 · Precision· Recall
Precision+ Recall ; Balanced accuracy � an average value of

Recall for all decision classes. Balanced accuracy (bacc) ensures that the perfor-
mance assessment considers the classi�cation accuracy of all classes equally.

The e�ect of the number of arti�cial objects created based on the original
object from the local table on the quality of classi�cation was tested. The fol-
lowing numbers of arti�cial objects used were examined {1, 2, 3, 4, 5}. During
the experiments, di�erent structures of local networks with one or two hidden
layers were also tested. Moreover, di�erent number of neurons in hidden lay-
ers were studied. The following values were tested: for the �rst hidden layer
{0.25, 0.5, 0.75, 1, 1.5, 1.75, 2, 2.5, 2.75, 3, 3.5, 3.75, 4, 4.5, 4.75, 5}× the number of
neurons in the input layer; for the second hidden layer {1, 2, 3, 4, 5}× the num-
ber of neurons in the input layer. A validation set was obtained by dividing the
original test set randomly but in a strati�ed manner into two equal parts. First,
one part is used as the validation set (for re-training process) and the second
part is used to assess the quality of classi�cation. Then the roles reverse as the
second part acts as the validation set. Finally, both results are averaged. Each
experiment is repeated three times; in the following tables, all results given are
the average of these three runs.

3.2 Results analysis

Due to space limit, results obtained for all parameters are not shown (however,
they will be made available upon request sent to the authors). Tables 1, 2 and 3
show the best (in terms of classi�cation accuracy) results obtained. The tables
also show in bold the best result for each of the considered data sets.

The proposed approach was compared with three other approaches. The �rst
approach (MLP ensemble) uses a homogeneous ensemble of MLP networks. The
�nal decision was determined by soft voting since networks generated from the
local tables could be not aggregated due to their di�erent structures. The second
approach uses an ensemble of classi�ers (KNN, DT, NB). This ensemble of clas-
si�ers method consists of creating three base classi�ers: k−nearest neighbors,
decision tree and naive bayes classi�er based on each local table. The param-
eter k = 3 and the Gini index as a splitting criterion when building decision
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Table 1. Results of Prec., Recall, F-m., bacc and acc for the global neural network.

Data set No. No. One hidden layer Two hidden layer

tables artif. Prec. Recall F-m. bacc acc Prec. Recall F-m. bacc acc
obj.

Vehicle 1 0.707 0.627 0.599 0.627 0.627 0.718 0.713 0.696 0.685 0.713

imba- 2 0.671 0.681 0.656 0.655 0.681 0.703 0.715 0.701 0.68 0.715

lanced 3 3 0.665 0.665 0.665 0.665 0.665 0.711 0.713 0.705 0.684 0.713

4 0.685 0.68 0.665 0.651 0.68 0.738 0.74 0.737 0.721 0.74

5 0.69 0.685 0.669 0.656 0.685 0.726 0.739 0.723 0.705 0.739

1 0.685 0.673 0.658 0.646 0.673 0.713 0.715 0.707 0.692 0.715

2 0.682 0.689 0.664 0.653 0.689 0.727 0.734 0.724 0.714 0.734

5 3 0.669 0.671 0.645 0.639 0.671 0.711 0.72 0.714 0.694 0.72

4 0.647 0.672 0.641 0.631 0.672 0.741 0.732 0.731 0.714 0.732

5 0.713 0.689 0.655 0.65 0.689 0.695 0.702 0.693 0.67 0.702

1 0.653 0.682 0.65 0.645 0.682 0.735 0.735 0.727 0.708 0.735

2 0.701 0.697 0.674 0.669 0.697 0.728 0.717 0.711 0.691 0.717

7 3 0.703 0.696 0.672 0.669 0.696 0.732 0.724 0.722 0.704 0.724

4 0.701 0.706 0.688 0.682 0.706 0.725 0.73 0.72 0.701 0.73

5 0.698 0.707 0.689 0.687 0.707 0.711 0.72 0.713 0.691 0.72

1 0.705 0.697 0.689 0.674 0.697 0.746 0.752 0.739 0.719 0.752

2 0.669 0.678 0.662 0.656 0.678 0.728 0.74 0.727 0.706 0.74

9 3 0.706 0.717 0.699 0.688 0.717 0.713 0.723 0.708 0.687 0.723

4 0.683 0.686 0.661 0.663 0.686 0.737 0.744 0.735 0.718 0.744

5 0.712 0.703 0.681 0.671 0.703 0.733 0.734 0.723 0.704 0.734

1 0.675 0.694 0.672 0.666 0.694 0.74 0.743 0.732 0.717 0.743

2 0.709 0.714 0.698 0.69 0.714 0.752 0.756 0.744 0.726 0.756

11 3 0.673 0.688 0.671 0.659 0.688 0.726 0.739 0.718 0.703 0.739

4 0.658 0.664 0.641 0.634 0.664 0.75 0.744 0.736 0.724 0.744

5 0.712 0.694 0.678 0.665 0.694 0.73 0.735 0.726 0.711 0.735

Vehicle 1 0.69 0.703 0.678 0.678 0.703 0.722 0.726 0.713 0.702 0.726

ba- 2 0.714 0.685 0.664 0.67 0.685 0.713 0.731 0.717 0.699 0.731

lanced 3 3 0.687 0.677 0.669 0.654 0.677 0.746 0.743 0.734 0.712 0.743

4 0.693 0.697 0.684 0.676 0.697 0.751 0.761 0.741 0.728 0.761

5 0.694 0.703 0.683 0.665 0.703 0.756 0.762 0.753 0.736 0.762

1 0.699 0.71 0.689 0.674 0.71 0.748 0.748 0.73 0.725 0.748

2 0.704 0.72 0.698 0.682 0.72 0.728 0.714 0.705 0.694 0.714

5 3 0.692 0.717 0.696 0.684 0.717 0.734 0.734 0.721 0.701 0.734

4 0.733 0.714 0.671 0.685 0.714 0.749 0.749 0.742 0.725 0.749

5 0.686 0.703 0.682 0.675 0.703 0.723 0.739 0.717 0.702 0.739

1 0.715 0.723 0.708 0.692 0.723 0.751 0.759 0.749 0.732 0.759

2 0.715 0.726 0.708 0.691 0.726 0.755 0.753 0.75 0.731 0.753

7 3 0.724 0.735 0.72 0.7 0.735 0.755 0.765 0.753 0.732 0.765

4 0.713 0.724 0.684 0.679 0.724 0.767 0.756 0.751 0.734 0.756

5 0.732 0.724 0.711 0.7 0.724 0.769 0.77 0.758 0.741 0.77

1 0.74 0.743 0.732 0.715 0.743 0.744 0.745 0.743 0.721 0.745

2 0.704 0.724 0.703 0.689 0.724 0.718 0.72 0.71 0.692 0.72

9 3 0.707 0.711 0.695 0.681 0.711 0.743 0.741 0.739 0.718 0.741

4 0.699 0.714 0.701 0.682 0.714 0.744 0.757 0.743 0.723 0.757

5 0.728 0.722 0.704 0.693 0.722 0.757 0.76 0.747 0.732 0.76

1 0.706 0.714 0.701 0.681 0.714 0.768 0.768 0.762 0.746 0.768

2 0.709 0.713 0.704 0.68 0.713 0.702 0.722 0.694 0.684 0.722

11 3 0.687 0.705 0.689 0.667 0.705 0.75 0.747 0.742 0.727 0.747

4 0.71 0.71 0.705 0.682 0.71 0.723 0.73 0.721 0.698 0.73

5 0.726 0.738 0.719 0.703 0.738 0.749 0.755 0.745 0.726 0.755

trees were used. The �nal decision of the ensemble was also made by soft voting.
Both approaches are implemented in the Python programming language using
implementations available in the sklearn library.

The results obtained for the proposed approach and the two approaches dis-
cussed above are given in Table 4. The best obtained F-measure, balanced accu-
racy and accuracy values for each data set and dispersed version are presented
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Table 2. Results of Prec., Recall, F-m., bacc and acc for the global neural network.

Data set No. No. One hidden layer Two hidden layer

tables artif. Prec. Recall F-m. bacc acc Prec. Recall F-m. bacc acc
obj.

Satellite 1 0.8 0.795 0.783 0.762 0.795 0.806 0.818 0.803 0.775 0.818

imba- 2 0.798 0.796 0.778 0.759 0.796 0.82 0.822 0.818 0.798 0.822

lanced 3 3 0.796 0.792 0.78 0.759 0.792 0.822 0.829 0.822 0.8 0.829

4 0.782 0.799 0.778 0.758 0.799 0.821 0.828 0.822 0.798 0.828

5 0.795 0.799 0.786 0.763 0.799 0.819 0.822 0.815 0.792 0.822

1 0.806 0.81 0.798 0.773 0.81 0.818 0.824 0.818 0.795 0.824

2 0.806 0.805 0.787 0.763 0.805 0.827 0.829 0.826 0.803 0.829

5 3 0.789 0.801 0.781 0.761 0.801 0.831 0.833 0.829 0.803 0.833

4 0.791 0.802 0.785 0.763 0.802 0.836 0.841 0.834 0.809 0.841

5 0.793 0.795 0.779 0.757 0.795 0.832 0.839 0.831 0.803 0.839

1 0.799 0.805 0.792 0.77 0.805 0.817 0.821 0.814 0.792 0.821

2 0.814 0.809 0.798 0.776 0.809 0.831 0.838 0.831 0.807 0.838

7 3 0.811 0.804 0.786 0.767 0.804 0.831 0.84 0.832 0.81 0.84

4 0.8 0.804 0.791 0.768 0.804 0.826 0.833 0.824 0.793 0.833

5 0.802 0.793 0.777 0.759 0.793 0.837 0.839 0.834 0.808 0.839

1 0.8 0.808 0.799 0.775 0.808 0.831 0.832 0.825 0.803 0.832

2 0.813 0.81 0.791 0.769 0.81 0.825 0.831 0.821 0.797 0.831

9 3 0.806 0.813 0.8 0.778 0.813 0.835 0.839 0.827 0.8 0.839

4 0.806 0.808 0.79 0.766 0.808 0.831 0.836 0.829 0.804 0.836

5 0.818 0.804 0.781 0.759 0.804 0.834 0.839 0.834 0.807 0.839

1 0.808 0.813 0.802 0.777 0.813 0.833 0.837 0.832 0.807 0.837

2 0.815 0.808 0.792 0.77 0.808 0.832 0.839 0.832 0.809 0.839

11 3 0.817 0.812 0.793 0.769 0.812 0.825 0.833 0.823 0.796 0.833

4 0.805 0.81 0.796 0.772 0.81 0.825 0.835 0.825 0.798 0.835

5 0.8 0.808 0.791 0.769 0.808 0.832 0.835 0.827 0.801 0.835

Satellite 1 0.734 0.78 0.749 0.712 0.78 0.799 0.806 0.791 0.758 0.806

ba- 2 0.753 0.77 0.747 0.721 0.77 0.802 0.803 0.797 0.768 0.803

lanced 3 3 0.787 0.773 0.765 0.745 0.773 0.793 0.8 0.792 0.762 0.8

4 0.773 0.772 0.758 0.734 0.772 0.805 0.809 0.802 0.776 0.809

5 0.784 0.783 0.774 0.748 0.783 0.807 0.808 0.799 0.772 0.808

1 0.771 0.776 0.766 0.732 0.776 0.812 0.811 0.803 0.776 0.811

2 0.766 0.777 0.755 0.723 0.777 0.805 0.808 0.798 0.765 0.808

5 3 0.791 0.791 0.784 0.757 0.791 0.796 0.803 0.789 0.759 0.803

4 0.801 0.79 0.776 0.747 0.79 0.798 0.803 0.796 0.769 0.803

5 0.794 0.791 0.78 0.755 0.791 0.807 0.814 0.806 0.775 0.814

1 0.796 0.79 0.781 0.753 0.79 0.804 0.807 0.793 0.763 0.807

2 0.773 0.791 0.768 0.739 0.791 0.808 0.814 0.803 0.774 0.814

7 3 0.771 0.785 0.768 0.738 0.785 0.812 0.814 0.81 0.784 0.814

4 0.811 0.791 0.771 0.749 0.791 0.807 0.813 0.806 0.778 0.813

5 0.789 0.78 0.772 0.746 0.78 0.809 0.814 0.807 0.778 0.814

1 0.778 0.788 0.764 0.734 0.788 0.818 0.822 0.813 0.786 0.822

2 0.786 0.786 0.775 0.745 0.786 0.808 0.81 0.8 0.77 0.81

9 3 0.782 0.78 0.764 0.737 0.78 0.805 0.815 0.803 0.773 0.815

4 0.787 0.787 0.771 0.742 0.787 0.812 0.819 0.807 0.775 0.819

5 0.781 0.792 0.771 0.742 0.792 0.803 0.81 0.801 0.769 0.81

1 0.79 0.798 0.785 0.756 0.798 0.812 0.815 0.809 0.783 0.815

2 0.778 0.791 0.773 0.739 0.791 0.803 0.81 0.803 0.773 0.81

11 3 0.801 0.795 0.773 0.745 0.795 0.795 0.805 0.795 0.758 0.805

4 0.79 0.788 0.775 0.745 0.788 0.807 0.812 0.804 0.779 0.812

5 0.782 0.791 0.774 0.744 0.791 0.797 0.812 0.8 0.77 0.812

in bold in the table. These three measures were chosen for analysis as F-measure
and balanced accuracy best illustrate the model's overall ability to correctly iden-
tify all decision classes and balance between precision and recall. The accuracy
measure was also compared, but it is less signi�cant in general, as it can lead
to incorrect conclusions in the case of imbalanced data. As can be seen in the
vast majority of cases, the proposed approach gives better results for all three
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Table 3. Results of Prec., Recall, F-m., bacc and acc for the global neural network.

Data set No. No. One hidden layer Two hidden layer

tables artif. Prec. Recall F-m. bacc acc Prec. Recall F-m. bacc acc
obj.

Dry Bean 1 0.913 0.912 0.912 0.923 0.912 0.921 0.92 0.92 0.931 0.92

imba- 2 0.918 0.917 0.917 0.927 0.917 0.921 0.921 0.921 0.931 0.921

lanced 3 3 0.912 0.911 0.911 0.921 0.911 0.92 0.919 0.919 0.93 0.919

4 0.914 0.913 0.913 0.922 0.913 0.92 0.92 0.92 0.93 0.92

5 0.915 0.914 0.914 0.925 0.914 0.919 0.919 0.919 0.93 0.919

1 0.912 0.912 0.912 0.922 0.912 0.918 0.918 0.918 0.928 0.918

2 0.916 0.915 0.915 0.925 0.915 0.92 0.92 0.919 0.93 0.92

5 3 0.914 0.913 0.913 0.923 0.913 0.918 0.917 0.917 0.927 0.917

4 0.914 0.914 0.914 0.924 0.914 0.918 0.918 0.917 0.927 0.918

5 0.915 0.915 0.915 0.925 0.915 0.918 0.918 0.918 0.928 0.918

1 0.914 0.914 0.913 0.923 0.914 0.917 0.917 0.917 0.928 0.917

2 0.914 0.914 0.914 0.924 0.914 0.919 0.919 0.919 0.93 0.919

7 3 0.914 0.913 0.913 0.923 0.913 0.915 0.915 0.915 0.925 0.915

4 0.913 0.913 0.913 0.923 0.913 0.916 0.916 0.916 0.927 0.916

5 0.913 0.913 0.913 0.922 0.913 0.916 0.915 0.915 0.924 0.915

1 0.915 0.914 0.914 0.924 0.914 0.916 0.915 0.915 0.925 0.915

2 0.914 0.913 0.913 0.923 0.913 0.918 0.918 0.918 0.929 0.918

9 3 0.914 0.913 0.913 0.923 0.913 0.915 0.915 0.915 0.924 0.915

4 0.913 0.912 0.912 0.922 0.912 0.914 0.913 0.913 0.922 0.913

5 0.913 0.912 0.912 0.921 0.912 0.915 0.915 0.915 0.924 0.915

1 0.914 0.913 0.913 0.922 0.913 0.915 0.914 0.914 0.924 0.914

2 0.914 0.914 0.914 0.924 0.914 0.918 0.918 0.918 0.928 0.918

11 3 0.912 0.911 0.911 0.92 0.911 0.909 0.908 0.908 0.916 0.908

4 0.913 0.912 0.912 0.922 0.912 0.912 0.912 0.912 0.92 0.912

5 0.913 0.913 0.913 0.922 0.913 0.91 0.91 0.91 0.918 0.91

Dry Bean 1 0.913 0.912 0.912 0.922 0.912 0.92 0.919 0.919 0.93 0.919

ba- 2 0.916 0.915 0.915 0.927 0.915 0.924 0.923 0.923 0.935 0.923

lanced 3 3 0.912 0.911 0.911 0.921 0.911 0.92 0.92 0.919 0.931 0.92

4 0.916 0.916 0.916 0.926 0.916 0.92 0.919 0.919 0.929 0.919

5 0.914 0.914 0.914 0.923 0.914 0.92 0.92 0.919 0.929 0.92

1 0.916 0.916 0.916 0.926 0.916 0.918 0.917 0.917 0.927 0.917

2 0.917 0.916 0.916 0.928 0.916 0.921 0.921 0.921 0.932 0.921

5 3 0.914 0.913 0.913 0.923 0.913 0.92 0.919 0.919 0.929 0.919

4 0.914 0.913 0.913 0.923 0.913 0.918 0.918 0.918 0.929 0.918

5 0.918 0.917 0.917 0.927 0.917 0.919 0.919 0.919 0.928 0.919

1 0.913 0.912 0.911 0.922 0.912 0.919 0.919 0.919 0.93 0.919

2 0.914 0.914 0.914 0.923 0.914 0.918 0.918 0.918 0.928 0.918

7 3 0.914 0.913 0.913 0.922 0.913 0.918 0.918 0.917 0.927 0.918

4 0.913 0.912 0.912 0.921 0.912 0.919 0.918 0.918 0.928 0.918

5 0.914 0.913 0.913 0.922 0.913 0.918 0.918 0.917 0.927 0.918

1 0.913 0.913 0.913 0.922 0.913 0.917 0.917 0.916 0.926 0.917

2 0.908 0.907 0.907 0.915 0.907 0.919 0.919 0.919 0.929 0.919

9 3 0.912 0.912 0.912 0.921 0.912 0.916 0.916 0.916 0.925 0.916

4 0.914 0.913 0.913 0.923 0.913 0.917 0.917 0.917 0.926 0.917

5 0.913 0.912 0.912 0.921 0.912 0.918 0.917 0.917 0.926 0.917

1 0.912 0.912 0.912 0.922 0.912 0.917 0.917 0.917 0.926 0.917

2 0.91 0.909 0.909 0.918 0.909 0.916 0.915 0.914 0.925 0.915

11 3 0.913 0.912 0.912 0.921 0.912 0.92 0.92 0.919 0.929 0.92

4 0.912 0.911 0.911 0.92 0.911 0.917 0.916 0.916 0.926 0.916

5 0.913 0.913 0.913 0.922 0.913 0.914 0.914 0.913 0.922 0.914
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compared measures. However, in the case of the Satellite data set, the proposed
approach does not perform well. This is due to the data having the greatest
variation in attributes present in local tables(very few overlapping attributes).
To conclude, when a camera points at an object and generates attributes the
majority of are not present in any other local tables, then the proposed approach
does not perform better than the classi�er ensemble approach. However, in other
cases, when the cameras are more densely arranged, overlapping in terms of at-
tributes then the proposed approach de�nitely performs better. It should also be
noted that the number of objects in the training set does not a�ect the quality of
classi�cation generated by the proposed approach, i.e. for both small and large
training sets the proposed approach gives good results.

Now, the results for all three measures generated by the analyzed approaches
will be compared. To prove that the obtained di�erences in F-measure values
are signi�cant, the Friedman test was performed. Three dependent samples of
30 observations was used, with the test con�rming that there is a statistically
signi�cant di�erence in the F-measure obtained for the three approaches consid-
ered, χ2(29, 2) = 10.034, p = 0.007. Additionally, comparative box-plot for the
F-measure with three methods was created (Figure 2). As can be observed, on
average, the values of the F-measure for the proposed approach are the largest.
The post-hoc Dunn Bonferroni test was also performed which con�rmed a signif-
icant di�erence in average F-measure values between the three approaches. The
results (signi�cant were presented in bold) can be found in Table 5. In the end,
it can be said that the proposed approach improves the quality of classi�cation
compared to approaches known from the literature in terms of the F-measure.

Fig. 2. Comparison of F-measure obtained for approaches: the proposed approach with
global model; homogeneous ensemble with MLP networks (MLP ensemble) and the
ensemble of classi�ers: k−nearest neighbors, decision tree and naive bayes classi�er
(KNN, DT, NB).

Next the Friedman test was performed in order to show that the obtained
di�erences in balanced accuracy values are signi�cant. For balanced accuracy, the
Friedman statistics was 7.983, p = 0.018 indicating that there is a statistically
signi�cant di�erence in the balanced accuracy obtained for the three approaches
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Table 4. Results of Prec., Recall, F-m., bacc and acc for the global neural network;
homogeneous ensemble with MLP networks (MLP ensemble) and the ensemble of clas-
si�ers (KNN, DT, NB).
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considered in the paper. Additionally, comparative box-plot for the balanced
accuracy was created (Figure 3). As can be seen also here, the average of balanced
accuracy is the highest for the proposed approach. The post-hoc Dunn Bonferroni
test con�rmed a signi�cant di�erence in balanced accuracy values between one
pair: the proposed approach & MLP ensemble with p = 0.035. So it can be
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Table 5. p-values for the post-hoc Dunn Bonferroni test for F-measure

Proposed approach MLP ensemble KNN, DT, NB
Proposed approach � 0.011 0.035

MLP ensemble 0.011 � 1
KNN, DT, NB 0.035 1 �

concluded that both the proposed approach and the ensemble of classi�ers KNN,
DT, NB get the best balanced accuracy results.

Fig. 3. Comparison of balanced accuracy obtained for approaches: the proposed ap-
proach with global model; homogeneous ensemble with MLP networks (MLP ensemble)
and the ensemble of classi�ers: k−nearest neighbors, decision tree and naive bayes clas-
si�er (KNN, DT, NB).

As we know, accuracy values can be deceptive and often do not take minority
classes into account, nonetheless, comparative analysis was carried out for this
measure. For accuracy, the Friedman statistics was 6.889, p = 0.032 indicating a
reject of the null hypothesis, but as can be seen in Figure 4, the average accu-
racy values are similar. Also, the post-hoc Dunn Bonferroni test did not con�rm
a signi�cant di�erence between any pair of approaches. Thus, as a conclusion,
it can be con�rmed that the proposed approach on average improves values of
F-measure and balanced accuracy. Of course, comparing the results obtained for
each data set separately (Table 4), it can be seen that for some data sets this
improvement is signi�cant, while for others the proposed approach does not im-
prove the quality of classi�cation. The situation in which the proposed approach
does not do well is when we have a very large number of conditional/descriptive
attributes and a relatively small number of local tables/cameras.

Next, the impact of the number of arti�cial objects used in the proposed
approach on the quality of classi�cation is analyzed. The comparison, as before,
was be made using three measures: F-measure, balanced accuracy and accuracy.
To test whether the di�erent number of arti�cial objects used generated a signif-
icant di�erence in results, �ve groups were created 1AO, 2AO, 3AO, 4AO, 5AO
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Fig. 4. Comparison of accuracy obtained for approaches: the proposed approach with
global model; homogeneous ensemble with MLP networks (MLP ensemble) and the
ensemble of classi�ers: k−nearest neighbors, decision tree and naive bayes classi�er
(KNN, DT, NB).

� results obtained for 1, 2, 3, 4, 5 arti�cial objects used. Each group contained
60 observations (results obtained for all data sets and all versions of disper-
sion). The Friedman test con�rmed a statistically signi�cant di�erence in the F-
measure obtained for the �ve groups considered, χ2(59, 4) = 10.830, p = 0.029.
The Wilcoxon each-pair test con�rmed the signi�cant di�erences between the
average F-measure values for the following pairs: 1AO & 4AO with p = 0.01,
1AO & 5AO with p = 0.001, 3AO & 4AO with p = 0.005, 3AO & 5AO with
p = 0.0002. Additionally, a comparative graph for the F-measure with di�erent
number of arti�cial objects used was created (Figure 5). It can be seen that the
results obtained for using 4 and 5 arti�cial objects are better than those obtained
with fewer arti�cial objects.

Fig. 5. Comparison of F-measure accuracy obtained for the proposed approach with
1, 2, 3, 4, 5 arti�cial objects generated (1AO, 2AO, 3AO, 4AO, 5AO).

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_21

https://dx.doi.org/10.1007/978-3-031-63783-4_21
https://dx.doi.org/10.1007/978-3-031-63783-4_21


14 K.F. Marfo, M. Przybyªa-Kasperek, P. Sulikowski

Similar analyses were performed for balanced accuracy and accuracy. Fried-
man's test con�rmed a signi�cant di�erence for accuracy with statistics 15.501, p =
0.004. The Wilcoxon each-pair test con�rmed the signi�cant di�erences between
the average accuracy values for the following pairs: 1AO & 4AO with p = 0.044,
1AO & 5AO with p = 0.002, 2AO & 5AO with p = 0.009, 3AO & 4AO with
p = 0.002, 3AO & 5AO with p = 0.0001. Also, the comparative graph for ac-
curacy values (Figure 6) proves that for 5 and 4 arti�cial objects the generated
results are better. For the balanced accuracy, the Friedman test does not con-
�rm a signi�cant di�erence in the mean value for di�erent numbers of arti�cial
objects used. Nonetheless, it can be concluded that larger numbers of arti�cial
objects used to build the global model improve its quality. Thus, the proposed
method of generating arti�cial objects with missing values in local tables has a
positive e�ect on the model accuracy, and a larger number of arti�cial objects
increases the quality of the model.

Fig. 6. Comparison of accuracy accuracy obtained for the proposed approach with 1,
2, 3, 4, 5 arti�cial objects generated (1AO, 2AO, 3AO, 4AO, 5AO).

4 Conclusion

In this paper, a situation in which local decision tables containing partial charac-
teristics of objects from fragmented images was considered. Then, based on the
local tables, tables with arti�cial objects were generated by �lling the missing
values of characteristics. Finally, local models were built based on local tables,
which were �nally aggregated into a global model.

In conclusion, it is important to note that while the proposed approach con-
sistently enhances classi�cation quality on average, its e�cacy may vary across
di�erent data sets. The method excels particularly in scenarios with a substantial
number of attributes and a relatively small number of local tables/cameras.

In summary, our study establishes the superiority of the proposed approach
in terms of F-measure and balanced accuracy, showcasing its potential to el-
evate classi�cation performance. The positive correlation between the number
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of arti�cial objects and model quality reinforces the practical applicability of
our method. These �ndings contribute valuable knowledge to the �eld of clas-
si�cation based on fragmented images, o�ering a promising avenue for further
research and application in real-world scenarios.
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