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Abstract. This paper focuses on enhancing the lifespan of the Wireless
Sensor Networks (WSNs) by integrating a distributed Learning Automa-
ton into its operation. The proposed framework seeks to determine an
optimized activity schedule that extends the network’s lifespan while
ensuring that the monitoring of designated target areas meets predefined
coverage requirements. The proposed algorithm harnesses the advantages
of localized algorithms, including leveraging limited knowledge of neigh-
boring nodes, fostering self-organization, and effectively prolonging the
network’s longevity while maintaining the required coverage ratio in the
target field.

Keywords: Wireless sensor networks · Self-organization · Learning
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1 Introduction

Wireless Sensor Network (WSN) is a distributed network comprised of small,
battery-powered devices, referred to as sensors, capable of sensing and collecting
data from their surrounding environment. These sensors communicate with
one another wirelessly using radio frequency waves and collaborate to perform
specific tasks, such as monitoring environmental parameters like temperature,
humidity, or air quality. Data is then collected and sent for further processing
via a specialized sink node.

The sensors in WSNs are typically low-power and have limited computing
capabilities, making energy efficiency a crucial aspect of their design. Lifetime
optimization in WSNs refers to maximizing the duration of operation or the
network lifetime of a WSN. The lifetime of a WSN is defined as the time elapsed
between the deployment of the network and the time when the first node in the
network runs out of energy.

This work will focus on the power management aspect of maximizing the
lifetime of WSNs. Usually, a collective of sensors that oversee specific areas often
display redundancy, where multiple sensors can cover the same monitored targets,
and the forms of redundancy can vary. The optimal utilization of this redundancy
within WSNs and determining the potential scheduling sequence of sensors is
essential in prolonging the network’s lifetime. Effectively resolving this coverage
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issue can lead to the indirect maximization of the WSN lifetime. Therefore,
implementing scheduling schemes that alternately regulate the active and sleep
states of the sensor nodes, also known as node wake-up scheduling protocols, is a
viable technique for enhancing the network’s lifetime.

We present a framework for building sensors’ activity schedule that addresses
the abovementioned challenges, building on the capabilities introduced in prior
publications [1, 3]. The main contribution of this paper lies in developing and
implementing a versatile, LA agent-based model supporting the optimal activity
schedule of individual sensors, aiming to extend the network’s autonomous
lifetime.

The rest of this paper is organized as follows. We introduce the theoretical
background of the problem and review related literature in Section 2. Section 3
describes our proposed optimization approach. We present the findings of our
experiments in Section 4. The last section concludes the paper.

2 Theoretical background

We consider a WSN comprising N sensors S = {s1, s2, ..., sN } randomly deployed
over a two-dimensional rectangular area of x × y [m2]. The area contains M
targets T = {t1, t2, ..., tM } (also called Points of Interest (POI)) that are uniformly
distributed with a step of g. All sensors are assumed to have the same sensing
range Ri

s and battery capacity bi.
Each sensor can operate in one of two modes: an active mode when the battery

is turned on, a unit of energy is consumed, and the POIs within its sensing range
are monitored; and a sleep mode when the battery is turned off, and the POIs
within its sensing range are not monitored.

The i-th sensor’s mode during the j-th time interval is denoted by αj
i , where

αj
i ∈ 0, 1. A value of αj

i equal to 1 indicates that the i-th sensor is in active mode
during the j-th time interval, and 0 indicates that it is in sleep mode. Assuming
that battery activation and deactivation occur at discrete time intervals, a quality
of service (QoS) measure can be used to evaluate the performance of the WSN.
The network coverage can be determined by the ratio of the number of POIs
monitored by active sensors to the total number of POIs as follows:

COV (tj) =
|M |obsj

|M |
. (1)

At any given time, this ratio should not fall below a predetermined value
of q (0 < q ≤ 1). While maintaining complete coverage of the area is desirable,
achieving a high coverage ratio (80–90 %) may be more relevant in some cases.
The lifetime of a WSN (further denoted as LF(q)) can be defined as the number
of k consecutive time intervals tj in the schedule during which the coverage of
the target area is within a range of δ from a specified coverage ratio q, as follows:

LF (q) = max{k|(∀j) j < k, abs(COV (tj) − q) ≤ δ}. (2)
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Multiple sensors can simultaneously detect the same point in the target
area, enhancing data quality or reliability. However, this redundancy can also
result in wasted energy [11]. In this study, we approach the point coverage
problem in wireless sensor networks as a scheduling problem called the Maximum
Lifetime Coverage Problem (MLCP). We aim to extend the network’s lifetime by
minimizing energy consumption and reducing the number of redundant sensors
operating during each time interval.

2.1 Learning automata

A learning automaton is a self-operating mechanism that responds to a sequence
of instructions in a certain way to achieve a particular goal. The automaton
either responds to a predetermined set of rules or adapts to the environmental
dynamics in which it operates [8].

LA

Environment

action
αt

qt+1

βt+1

state
qt

feedback
βt

Fig. 1: A feedback loop of learning automata.

The learning process involving the Learning Automata (LA) and a random
environment is presented in Fig. 1. Whenever an automaton generates an action
αt, the environment sends a response βt either penalizing or rewarding the
automaton with a specific probability ci.

Generally, LA can be categorized as a fixed structure LA or a variable
structure LA. This paper considers variable structure LA, where the action
probability vector is not fixed, and the action probabilities are updated after each
iteration. Thus, through interactions with the environment, LAs may adjust their
action-selection probabilities by a positive reinforcement (i.e., Reward, Eq. (3)):

pi(t + 1) = pi(t) + a(1 − pi(t)) j = i (3)
pj(t + 1) = (1 − a)pj(t) ∀j, j ̸= i

or a negative reinforcement (i.e., Penalty, Eq. (4)):

pi(t + 1) = (1 − b)pi(t) j = i (4)

pj(t + 1) = b

r − 1 + (1 − b)pj(t) ∀j, j ̸= i
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Values pi(t) and pj(t) are the probabilities of actions αi and αj at time t, r is
the number of actions, while a and b are the reward and the penalty parameters,
respectively. We employ a learning algorithm called Linear Reward-Penalty
(LR−P ) with a = b in our work [8].

2.2 Related work

In recent years, there has been a growing interest in developing distributed
algorithms to address these challenges through reinforcement learning and au-
tomata models. [6] introduced an effective scheduling technique named LAML,
leveraging learning automata. In this method, each node is equipped with a
learning automaton, facilitating the selection of its appropriate state (active or
asleep) at any given time.

Subsequently, this research was expanded in [7], where attention was directed
toward addressing partial coverage challenges. This scenario involves continuous
monitoring of a limited area of interest. The authors introduced the PCLA
algorithm to deploy sleep scheduling strategies, demonstrating its effectiveness in
selecting sensors efficiently to meet imposed constraints and ensuring favorable
performance metrics, including time complexity, working-node ratio, scalability,
and WSN lifetime.

In a recent development, [5] introduced an energy-efficient scheduling algo-
rithm utilizing learning automata to address the target coverage problem. This
approach allows sensor nodes to autonomously select their operational state. To
validate the efficacy of their scheduling method, comprehensive simulations were
conducted, comparing its performance against existing algorithms.

In another study, [4] presented a novel on-demand coverage-based self-deployment
algorithm tailored for significant data perception in mobile sensing networks. The
authors first extend the cellular automata model to accommodate the charac-
teristics of mobile sensing nodes, resulting in a new mobile cellular automata
model adept at characterizing spatial-temporal node evolution. Subsequently,
leveraging learning automata theory and historical node movement data, they
proposed a new mobile cellular learning automata model. This model empowered
nodes to intelligently and adaptively determine optimal movement directions
with minimal energy consumption.

In their study, [2] utilized a Learning Automata-based model as a routing
mechanism in wireless sensor networks, aiming for enhanced energy efficiency and
reliable data delivery. The approach aims to calculate the selection probability
of the next node in a routing path based on various factors such as node score,
link quality, and previous selection probability. Furthermore, they proposed an
energy-efficient and reliable routing mechanism by combining learning automata
with the A-star search algorithm.

Another contribution by [10] introduced a scheduling technique named Pursuit-
LA. Each sensor node in the network was equipped with an LA agent to au-
tonomously determine its operational state to achieve comprehensive target
coverage at minimal energy cost.
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Lastly, [9] proposed a continuous learning automata-based approach for
optimizing sensor angles in Distributed Sensor Networks (DSNs). The method
involved continuously adapting sensing angles using LA models. Comparative
analysis against a conventional automata-based approach demonstrated the
efficacy of the proposed algorithm.

3 Automata-based approach to the WSN lifetime
optimization

In this section, we introduce our proposed methodology. Every sensor node si is
linked with an automaton LAi in the setup phase. This automaton randomly
chooses one of two available actions (0 - sleep or 1 - active) and disseminates this
decision to ni immediate neighbors (sensors sharing the same subset of Points of
Interest). By the end of this phase, all sensor nodes in the network are informed
about their neighboring nodes and the targets under surveillance.
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Fig. 2: Illustration of the LA-based WSN scheduling scheme
consisting of a learning phase and an operation phase.

Upon completion of this phase, we advance to the learning phase. Here, each
LAi updates its action probability vector based on its chosen action and the
actions of its immediate neighbors. Notably, an agent Ai can receive a reward
(Eq. (3)) even if it remains inactive (αi = 0), thereby conserving its battery. This
is feasible if neighboring sensors collectively cover shared Points of Interest (POIs),
provided the number of uncovered POIs remains below a specified threshold value
determined by the coverage parameter q. Conversely, if the coverage parameter
is not met, the automaton will incur a penalty (Eq. (4)).

On the other hand, if an agent Ai opts to expend its battery energy to cover
POIs, it may face penalties if neighboring sensors already cover the same subset
of POIs. This introduces a trade-off between achieving the required coverage and
preserving battery power. Based on this interaction, each node selects optimal
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actions based on the acquired information, determining whether to remain active
or become idle during the subsequent operation phase. Upon depletion of battery
power by a group of sensors, the network must reorganize to restore the required
level of coverage. This process is visualized in Fig. 2.

4 Experimental Study

In this section, we aim to evaluate the effectiveness of the proposed algorithm
through multiple computer simulations. To accomplish this, we will employ
a fixed sensor network, where sensor nodes are randomly positioned within a
1000 : m × 1000 : m area alongside a static deployment of 400 targets. The
sensing range of sensors was set at a value of Ri

s = 175. The required coverage
target was q = 0.8 with δ = 0.1. The number of nodes will vary in the range
S = {16, 36, 49, 100} sensors. The simulations were conducted using Matlab’s
custom Wireless Sensor Network (WSN) simulator. The results were averaged
over ten runs to ensure robustness. Through this evaluation, we seek insights
into the algorithm’s performance across diverse conditions.
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(a) N = 16 sensors
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(b) N = 36 sensors
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(c) N = 49 sensors

0.4

0.5

0.6

0.7

0.8

0.9

0 25 50 75 100
Iteration [t]

A
ve

ra
ge

 C
ov

er
ag

e

MLCP−LA SLLE−LA

(d) N = 100 sensors

Fig. 3: Averaged results of the network coverage acquired by
MLCP-LA (red) and SLLE-LA (blue) algorithms for variable
number of sensors deployed over the target area with T = 400
POIs.

We begin with a comparison of the proposed approach (denoted as MLCP-LA)
with our previous work (further denoted as SLLE-LA) presented in [1, 3]. The
old solution employed a synchronized local leader election game model to replace
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a global optimization problem with a problem of searching for Nash equilibrium
(NE) by a team of players participating in a non-cooperative game.

The average coverage ratio changes in successive iterations of the algorithm are
presented in Fig. 3. The figure visualizes four sample runs of the two algorithms
(MLCP-LA in red, SLLE-LA in blue) for WSNs comprised of N = 16 (Fig. 3(a)),
N = 36 (Fig. 3(b)), N = 49 (Fig. 3(c)) and N = 100 (Fig. 3(d)) sensors,
respectively.

In the case of the smaller networks (N = 16 and N = 36 sensors), the
performance of both algorithms is similar, with a slight advantage to the proposed,
fully decentralized LA-based solution. However, results become more varied with
the rising complexity of the scheduling problem for WSN comprised of N = 49
and N = 100 sensors. Compared to previous experiments, we can observe more
considerable differences in performance between analyzed scheduling solutions,
especially in the case of an extensive network comprised of N = 100 sensors.

This behavior is mainly consistent with our expectations and the nature
of both solutions. The solution presented in this work (MLCP-LA) is a fully
decentralized algorithm enabling sensors to manage their sleep/activity cycles
based on specific coverage goals. This algorithm has the advantages of being
localized, utilizing limited knowledge of neighboring sensors, and self-reorganizing
to preserve the required coverage ratio and prolong the WSN’s lifetime.

While our other work (SLLE-LA) also employs the LA model as its primary
learning loop, it requires further negotiation between players to achieve NE
in each local neighborhood. While it does not present a problem for smaller
networks, it is clear that SLLE-LA needs to be more scalable to compete in more
extensive networks. Therefore, it is more advantageous for sensor networks when
nodes learn what actions to take rather than follow a predefined schedule.

5 Conclusion

In this paper, we proposed an algorithm based on the concept of LA to solve
MLCP in WSN. This algorithm has the advantages of being localized, utilizing
limited knowledge of neighboring sensors, and self-reorganizing to preserve the
required coverage ratio and prolong the WSN’s lifetime.

Our early research findings demonstrate that the LA agents can achieve
an effective solution in a completely decentralized fashion, minimizing battery
expenditure and ultimately prolonging the lifetime of the WSNs. Compared to
our older works, empirical data suggests that aligning the agents’ objectives with
the system goal is critical in achieving global efficiency in decentralized learning.
Allowing each agent to pursue its objectives selfishly may result in a suboptimal
solution. In contrast, we achieved global efficiency by requiring each agent to
consider a small group of surrounding agents.

Future work will include studying additional reinforcement learning functions
to find better solutions to the studied problem. For example, Linear Reward-
Epsilon-Penalty when b << a and Linear Reward-Inaction when b = 0. An
additional study of the relation between the experimental parameters (density
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of sensors and targets, regularity of their distribution, variable sensing range of
nodes, and battery levels) and the achieved coverage and lifetime results will
follow.
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