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Abstract. The concept of the Internet of Things (IoT) has been widely
used in many applications. IoT devices can be exposed to various external
factors, such as network congestion, signal interference, and limited net-
work bandwidth. This paper proposes an open-source µChaos software
tool for the ZephyrOS real-time operating system for embedded devices.
The proposed tool intends to inject failures into device’s applications
in a controlled manner to improve their error-handling algorithms. The
proposed novel framework fills the gap in the chaos engineering tools
for edge devices in the cloud-edge continuum. In the paper, we also dis-
cuss the typical failures of IoT devices and the potential use cases of the
solution.
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1 Introduction

According to predictions, the number of IoT devices is expected to cross 29
billion in 2030. This is an increase of about 300% compared to 2019[1]. Nowadays,
IoT devices become ubiquitous in many areas of life so they can be exposed to
various external factors. The spectrum of their operation covers from smart home
applications, through transport or industrial areas, to extreme conditions, such
as sensors working at fire sites to track the safety of firefighters[8]. Therefore,
ensuring the work continuity of IoT devices is a significant challenge.

Nowadays, more and more companies are paying attention to the proper test-
ing of products before they are launched into production. It is crucial to provide
consumers with an appropriate quality and resilience of services[19]. This has
given rise to the concept of Chaos Engineering, which Netflix introduced [3] in
2010. Before that, engineers were forced to introduce constant improvements
and add new functionalities to handle noticed problems. The systems’ complex-
ity caused that there was not possible to predict all possible failures during the
design time[7]. This led to the creation of Chaos Monkey, a tool for the unpre-
dictable termination of system parts, including virtual machines and containers,
2 Netflix, https://netflix.github.io/chaosmonkey/
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to test whether the system is fault-tolerant. However, chaos engineering could
be deployed not only in IoT but also in e.g. blockchain technologies[20].

In the IoT domain, the failure resiliency problem is more complex due to its
multilayered architecture. The outages and other disturbances could appear in
many places along the sensor data processing paths. The IoT systems generally
comprise three layers - perception, edge, and the cloud.

Each layer has its weak spots that can cause failures. In this paper, we will
focus on the perception layer where IoT devices are prone to errors stemming
from various factors. Since the most commonly used type of communication is
wireless connectivity, network congestion, signal interference, and limited band-
width can disrupt communication between devices and cause delays or failures in
data transmission. Modern microcontrollers allow for more complex operations,
enabling TinyML algorithms, which are susceptible to sensor data failures. These
examples and many others conclude that chaos engineering has open challenges
in IoT devices.

Several chaos engineering tools exist for cloud services, such as Chaos Twin
[4], Chaos Monkey, CHAOSORCA[13], Chaos Recommendation Tool[18], or Chaos
Mesh for Kubernetes. However, there are few known solutions for IoT end de-
vices, but they mainly work in static software testing, e.g., Chaos Duck[5]. Other
tools were also created for faults injection, but they are focused on the network
layer using customized MQTT broker commonly used in IoT[6]. This paper pro-
poses an open-source uChaos software component for the real-time operating
system ZephyrOS for embedded devices supported by organizations like Google,
Intel, and Nordic Semiconductor. By enabling uChaos component in the OS, a
user can inject several types of faults, including the ones related to the sensors,
hardware, network, and application. The uChaos exposes a flexible API that can
be easily interacted with via serial port or console, enabling interaction during
the tests. In the paper, we will discuss types of faults in IoT devices and show
how the proposed novel tools and the software library work in the selected use
cases.

The paper is organised as follows. Section 2 presents related work, and Section
3 introduces fault taxonomy in IoT and faults in IoT end devices. The next
section describes the concept and the details of the designed tool. Section 5
presents the use case and experiments, while the last section gives conclusions.

1.1 Challenges

Performing chaos engineering techniques for IoT devices requires facing the fol-
lowing challenges: (i)identification of the common faults related to the IoT de-
vices, (ii)introduction of the failure scenarios mimicking real failures, (iii)seamless
integration of the chaos engineering tools with the operating systems for embed-
ded devices.
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1.2 Contribution

This paper proposes a novel chaos engineering tool for IoT devices encompassing
several types of failures and failure scenarios. The following are the paper’s key
contributions: (i) analysis of the common failures targeting IoT devices and the
mimicking scenarios, (ii) implementation of the uChaos tool for Zephyr OS, (iii)
evaluation of the solution in typical IoT use cases.

2 Related work

Due to the complexity resulting from the multi-layer architecture of IoT systems,
it is challenging to have a holistic tool to test them through the full architecture
stack. Therefore, different testing methods depend on which part or layer of the
system is analysed. Properly chosen testing strategy and selected tools make the
debugging and development process more efficient. Finally, the chaos engineering
tools should allow for finding the bugs early in development, saving time and
reducing project costs. This section presents a selected tool related to chaos
engineering, listed in Table 1.

Chaos Monkey3, developed by Netflix, aims to terminate in a controllable
manner production instances of one or more virtual machines. These machines
can run some microservices, e.g. video transcoding or streaming. It is possible
to configure the scheduler to trigger failures at times when they can be better
monitored. Another tool, Gremlin[2] is provided as a SaaS (Software as a Service)
platform4. It allows testing cloud-based applications and infrastructure. The tool
works with the most popular platforms like AWS or Azure. It has an agent that
should be installed on a user container or virtual machine. Gremlin provides
different possibilities for failure introduction, including computational resources,
network, and system states by killing processes.

Chaos Mesh5 is an open-source tool for cloud-based solutions, widely used
with Kubernetes. It supports many types of faults, i.e. network latency, packet
loss, HTTP communication latency, CPU race, system time changes, and plat-
form faults like AWS node restart. It supports losing packets, pressure on the
CPU, increasing physical disk load, filling disks, and killing or stopping processes.
Chaos Twin[4] is a simulation tool created to work with cloud-based systems. It
allows the creation of the digital twin of a system under test and then evaluates
its performance on a business level by finding the most optimized architecture.
Digital twin is a concept which occurs in more research[17]. The tool focuses on
three types of errors, including partial or complete data centre failures, incor-
rect operation of virtual machines, and delays in communication between data
centres. Simulations are run until the specified number of iterations is reached.

Chaos Duck6 is a tool for testing IoT devices that emulates fault injection
attacks. Injecting faults via hardware is difficult and expensive, so Chaos Duck
3 Netflix, https://github.com/Netflix/chaosmonkey
4 Gremlin, https://github.com/gremlin/chaos-engineering-tools
5 The Linux Foundation, https://chaos-mesh.org/
6 Igor Zavalyshyn, https://github.com/zavalyshyn/chaosduck
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uses a tested program binary file. It disassembles a chosen file and collects in-
formation about the code, e.g. branch instructions, static variables, and address
space. Chaos Duck produces many faulted binaries and executes each by col-
lecting statistics about the impact of each fault. The tool supports x86 and
ARM architectures. The following error types are available - bit flip (FLP), byte
zeroing, and adding conditional, and unconditional branches.

Custom MQTT Broker7 is a tool created for testing systems that use com-
munication via MQTT. The authors have chosen a broker as a crucial element
in the distributed systems, independent from factors such as complexity, and
focused on the network layer as a place to inject failures. Messages are gathered
and modified before sending to the clients. Each rule consists of the topic and
an array of filters named operators. Operators transform the messages and pass
them to the next one as an additional parameter. The tool has four operators -
map, randomDelay, message buffering, and randomDrop.

The discussed tools do not focus on the internal peripherals of the IoT devices,
which are essential from a data processing perspective. They are fairly directed to
cloud layer of the IoT systems. Therefore, the proposed in this work uChaos tool
is designed to fit into the embedded operating system, acting as the intermediate
layer between the sensors and the application.

Table 1: Chaos Engineering testing tools for IoT systems.

Tool name Layer CPU Memory Peripheral
Device

Virtual
Machines Network Sensor Application

Chaos Monkey Could ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣
Gremlin Cloud ○ ○ ○ ○␣ ○ ○␣ ○
Chaos Mesh Cloud ○ ○ ○␣ ○␣ ○ ○␣ ○
Chaos Twin Cloud ○␣ ○␣ ○␣ ○ ○ ○␣ ○␣
Chaos Duck End device ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○
Custom MQTT Broker Edge ○␣ ○␣ ○␣ ○␣ ○ ○ ○␣
uChaos IoT ○ ○ ○␣ ○␣ ○␣ ○ ○

○ - Supported
○␣ - Not supported

2.1 IoT faults taxonomy

Due to the complexity of IoT systems, errors can occur at different layers - cloud
(e.g. server failures), edge (e.g. package loss, incorrect data processing) and end
devices (e.g. sensor damage). This makes it challenging to create a very detailed
IoT failure taxonomy. However, referring to works describing faults in WSN
(Wireless Sensors Networks)[12], combined with the information regarding IoT
faults[10], it is possible to introduce a general classification, divided into different
categories. Fig. 1 shows the taxonomy of IoT faults proposed in this paper and
divided into four categories of faults affiliation, bahaviour, time, system layer,
and location.

From the system’s operational perspective, the main distinctive factor is the
type of failure, which might be either hard or soft. A soft fault is when a device
7 SIGNEXT, https://github.com/SIGNEXT/instrumentable-aedes
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can respond and communicate, but the system knows it is damaged, e.g. it sends
invalid data. On the contrary, a hard error is when the component or the device
is not detectable or completely broken. Low battery and no power are good
examples[15].

Another issue is related to the time domain during which that failure might
appear. This category covers permanent, transient, or intermittent failures. Long-
term faults are usually permanent. An example of such an error may be the
previously mentioned power supply problem or a damaged communication mod-
ule. Intermittent faults may be caused by changes in the operating environment,
such as sensors covered by, e.g. worms, dust, plants, shadows, or objects placed
by humans. Intermittent faults last longer than transient faults. The interval
between their appearance might vary and be unpredictable[11].

The next group of faults is related to the system layers. End devices are
very susceptible to errors, which may come from the outside environment they
are working in or might result from their invalid operation. Each IoT device
can be described from two perspectives - hardware and software. The hardware
is mainly CPU, communication module, power module and all kinds of sen-
sors. Any of these items may be damaged or contain manufacturing errors. The
most common software fault is a problem with memory management. This can
lead to memory leaks and device malfunction. Other common issues are sensor
calibration, data processing, and packet forming. Then, the edge layer might be
susceptible to failures such as insufficient network bandwidth, resulting in packet
loss or incorrect processing/filtering of received data. Finally, in the cloud layer,
the failure might appear with service configurations, database failures, errors in
the application or the wrong selection of algorithms for processing the results.

The last group considered in the taxonomy is location-based faults. These can
be internal system faults, such as connectivity or infrastructure problems. Defects
from the external environment are important, as they significantly impact end
devices. Changes such as temperature spikes can interfere with measurements,
and electromagnetic interference or discharges can damage the device.

IoT faults

LocationLayerTimeBahavior

Soft

Hard

Permanent

Transient

Intermittent

End Devices

Edge

Cloud

Internal

External

Fig. 1: IoT faults taxonomy.

2.2 Operating Systems for IoT

There are many operating systems for embedded systems on the market. Most
are open-source, and choosing the right system depends on the project’s require-
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ments. Some big tech companies have invested in developing Real-time Operating
Systems (RTOS), for example, Amazon or Microsoft. One of the most popular
is FreeRTOS maintained mainly by Amazon. It provides the RTOS API, with
no support for other functionality such as GPIO or serial drivers, which are left
to the developer to create.

The Zephyr OS is governed by the Linux Foundation. Its architecture is
similar to Linux, e.g. the kernel is configured similarly. It is intended for complex
and high-level embedded applications. It has ready-to-use libraries and supports
various hardware target processors and development boards. It is more portable
than other operating systems but could be more complicated for less experienced
users. It has more than 450 officially supported boards and a lot of ready-to-use
examples of system features.

Mbed OS is an RTOS for IoT solutions based on Cortex-M boards. It provides
an abstraction layer for C/C++ applications that ensures portability between
platforms supporting this operating system. There are all necessary operating
system components e.g. Semaphores, Queues, Threads, Mutexes and Scheduler
for switching between application activities.

Since 2019, Microsoft has supported the development of Azure RTOS ThreadX.
One of the most important features is an advanced multitasking solution named
preemption-threshold scheduling. It allows a sub-microsecond context switching
and was a topic of academic research[16]. Manufacturers emphasize that per-
formance is the feature that distinguishes ThreadX from other RTOSs. One of
the solutions is the Picocernel design, where services don’t have many layers, so
additional overhead in function call is removed. Moreover, interrupt handling is
also optimized because only scratch registers are processed.

3 Chaos tool concept

This section presents the concept of chaos engineering tool and its working prin-
ciples. We will analyze and model faults introduced by the tool and discuss its
integration with the resource-constrained Zephyr operating system.

3.1 IoT faults modeling

In this paper, we will mainly focus on IoT end device faults. For this group
of devices, we are dividing them based on three criteria - hardware, software,
and data. IoT devices are often specialized to work in specific environments and
are most likely optimized for low energy consumption. Based on [14], we have
collected selected faults in the Table 2, Table 3, and Table 4 along with their
descriptions.

The first group of failures is associated with data processing. Data failures
might result in the inability to access or utilize it effectively. These failures can
occur due to various reasons, including technical issues, human error, software
bugs, cybersecurity breaches, natural disasters, and hardware malfunctions. The
selected failures are presented in Table 2.
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The significant challenge is the proper handling of software failures, as it
can lead to the dysfunction of the entire device or its most important parts, e.g.
communication with the rest of the system. The selected failures are presented in
Table 4. Dealing with these failures in microcontroller-based devices with limited
memory and computing resources is demanding. Every software failure, which
forces the service staff to go and recheck the device state or program, generates
additional costs that should be avoided.

The last group of failures covers hardware ones. Depending on the conditions,
it is critical to properly secure the device to protect it from external conditions
and possible mechanical damage because it can manifest itself in many ways and
be challenging to detect. Selected failures are summarized in Table 3.

Table 2: Data faults
Fault Classification Descripiton Inject

Outlier Soft,
Intermittent Single, unexpected value that

comes a lot over normal measure-
ments. It could be caused by some
hardware problems like unstable
sensor connection or external fac-
tors e.g. electromagnetic pulse.

Pseudo-random value, chosen by
the user and added to the original
measurement, occurs with pseudo-
random frequency.

Spike Soft,
Transient Set of data with a value different

than expected, often as a result of
supply or connection failures.

The peak in read sensor data,
which rises and slopes symmetri-
cally in a number of samples set
by the user.

Offset/
Rotation

Soft,
Transient Some value constantly added to

the output. If the sensor position
was changed due to some case or
mounting system damage, it may
produce different values.

Sample is increased every time by
a constant percentage part of mea-
surement, chosen by the user.

Stuck
at value

Soft,
Permanent Sensor readings stay the same for

a period of time. The reason may
be a sensor malfunction.

Value returned by a sensor is con-
stant and taken from the first sam-
ple after command execution.

Noise Soft,
Permanent An additional, approximately con-

stant value changing the read re-
sults may be related to a change in
the environment in which the sen-
sor operates, e.g. covering by an-
other object, dirt, or change in am-
bience temperature.

Similar as in ’Outlier’ however a
sample is increased by value in ev-
ery measurement.

3.2 µChaos Tool Design

Among the open-source Real-time Operating Systems (RTOS) solutions avail-
able on the market and discussed in Section 2.2, we have chosen Zephyr OS. The
most important aspect is that it supports sensors, memory management and
protocols used in IoT and provides modularity. Noteworthy is also the fact that
it has a significant and growing community size. Another aspect was to ensure
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Fig. 2: IoT end devices faults.
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Fig. 3: ZephyrOS high-level architec-
ture with µChaos components marked
orange.

Table 3: Hardware faults
Fault Classification Descripiton Inject

Low
battery

Hard,
Permanent The amount of energy drawn from

the battery prevents proper opera-
tion.

Device battery measured voltage
value is reduced by the value and
with timestamp selected by the
user.

Sensor
connection

Soft,
Transient IoT devices usually have sensor

connected. Every mechanical con-
nection has limits to its strength.
Prolonged exposure to external
conditions may cause some dam-
ages. There are also many other
situations that are not related to
harsh environmental conditions.

Zephyr has a special value to sig-
nal, that the microcontroller is un-
able to communicate with the sen-
sor. This value is returned with a
pseudo-random range set by the
user.

that µChaos did not take up too much RAM and ROM resources due to the fact
that it is a library dedicated to embedded devices.

As shown in Fig. 3 the tool comprises two components - uChaos Sensor and
uChaos Console. The first one, uChaos Sensor, is designed to manipulate the
measurement values. The second one, uChaos Console, is implemented as a sep-
arate thread working in the background and manages the sensor intermediate
layer and introduces failures. Its functionality is exposed via UART (Univer-
sal Asynchronous Receiver-Transmitter) and thus can be controlled by external
physical components but also is exposed to Zephyr Console where failures might
be introduced via interactive command line console. The tool is provided as an
open-source library, available on GitHub 8.

8 https://github.com/wkalka/uChaos
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Table 4: Software faults
Fault Classification Descripiton Inject

CPU us-
age

Hard,
Transient When too many tasks in the op-

erating system work concurrently
and there are no more available
resources to do other operations.
There may also be a bug in the
software in tasks switching and one
or more still occupy the CPU.

Set of threads to possibly add
to the application. Their number
with all necessary parameters like
priority, stack size, and area has
to be determined by the user at
program compilation time. At the
application beginning all defined
threads are ready to start and the
user can freely start them and then
suspend and resume.

Memory
leak

Hard,
Intermittent One of the common mistakes, es-

pecially when it comes to IoT de-
vices, as developers have very little
available memory and computing
resources. It is quite easy to come
over the size of the array with e.g.
measurements.

Blocks of dynamically allocated
memory with the size chosen by
the user. Each block has a name to
handle and a pointer to allocated
memory. Blocks could be created
at any time the application is run-
ning.

3.3 Data faults injection

Data faults are the most common group of failures available in µChaos Sensor
component of the library. µChaos Sensor has been designed as a wrapper on
the sensor subsystem provided by Zephyr OS. After activating µChaos, each
time the Sensor’s methods are called, it redirects to the library function. It uses
low-level functions to obtain the data, and then before passing the values to
the user application code, failures are introduced, as discussed in the previous
section. Every type of fault has its own method to manipulate the data or driver
behaviour properly. Thanks to this, the applications’ operations on the sensors
remain unchanged.

One of the main goals of this project was to design the library coherently
with the sensor drivers provided by the Zephyr OS. Therefore, the failure types
are associated with the types of sensors and not the particular devices. To use
µChaos in a project, the user has to initialize its components at the beginning.
For the sensors part, e.g. there is a parameter that indicates the number of used
sensors in the application. All settings could be changed in the configuration file,
e.g. which types of failures will be used in the application.

3.4 Hardware faults injection

Hardware faults group is implemented by µChaos Battery component. This part
of µChaos library is based on Zephyr OS Analog-to-Digital Converter (ADC)
driver. Similarly to µChaos Sensor it uses low-level system functions to obtain
the tested voltage. After every adc_raw_to_millivolts_dt ADC driver func-
tion call, which returns the measured value expressed in millivolts, the context
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is redirected to uChaosBattery_RawToMillivoltsDt. Inside this method, the
data is manipulated to simulate malfunctions in a device’s power supply. Volt-
age drops may occur for a certain number of measurements or continuously until
the minimum permissible battery voltage is reached.

3.5 Software faults injection

In µChaos, a software faults are realised by µChaos CPU, where a CPU is loaded
by additional operations e.g. variable iteration or mathematical calculations,
which don’t have any impact on the tested application. The aim is to capture a
free CPU computational resources, to keep a CPU as long as possible in non-idle
state. This could lead to limiting some functions of threads critical for application
like communication with a network, monitoring power supply and measuring
some crucial metrics. This part of µChaos library doesn’t redirect behaviour of
custom system functions. User has to define a thread with selected priority and
name to recognize the thread via µChaos Console. After the application begins
running all µChaos threads are in prestart state and then the user can start
them or suspend them via certain commands e.g. load_add LoadThread.

4 Use Case and Evaluation

In the evaluation, we consider a typical IoT device used to monitor industrial ma-
chines. In the target machine, we monitor its temperature and vibrations using
a temperature sensor and an accelerometer. The IoT device is battery-powered.
In the evaluation, we are focusing only on the perception layer. Therefore, we
are analysing only the raw values provided by the sensors. Experiments realise
different scenarios, each representing a distinct type of data errors shown in
Fig. 2.

We have prepared experiments with two types of sensors (Fig. 4) - accelerom-
eter ADXL345 and temperature sensor DPS310. Sensors were placed on a sepa-
rate, small development board with connectors910.

The application was run on nRF52 DK, a development kit from Nordic Semi-
conductor with nRF52832 Soc (System on Chip)11. It supports wireless commu-
nication like Bluetooth LE, Bluetooth mesh ANT and NFC.

4.1 Temperature

Scenario for the temperature sensor contains producing anomaly. During the
experiment, the sensor was subjected to a heat source after the first 10 samples
9 OKYSTAR, ADXL345, https://www.okystar.com/product-item/adxl345-digital-3-

axis-gravity-acceleration-sensor-oky3247/
10 Seeed Studio, DPS310, https://wiki.seeedstudio.com/Grove-High-Precision-

Barometric-Pressure-Sensor-DPS310/
11 Nordic Semiconductor, nRF52 DK, https://www.nordicsemi.com/Products/Development-

hardware/nrf52-dk
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Fig. 4: Testbed setup.

were taken, and then a further 50 samples were captured. The heat source was
then removed, and a final 150 measurements were taken to bring the sensor back
to near its initial temperature. However, this took about 100 measurements due
to the inertia of the sensor.

In the next experiment iteration, fault injection began after the first 5 samples
(indicated by a black vertical line), before the heat source approach, and ended
before the last 10 samples of the experiment. Regarding data anomaly, outliers
appeared in the data every 6-10 measurements with a level between 50% and
70% of the original value. Separated points in Fig. 5 show data anomalies.

The temperature value chart is accompanied by a comparison of the average
value and standard deviation across the entire measurement range. These re-

0 100 200 300 400
Time[s]

30

35

40

45

50

Te
m

pe
ra

tu
re

[°
C]

Data anomaly

Without errors
Data anomaly
Error injection start

Without errors Data anomaly
0

5

10

15

20

25

30

35

Te
m

pe
ra

tu
re

[°
C]

Mean, without errors
Mean, data anomaly
Standard deviation

Fig. 5: Temperature sensor data anomaly.
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sult validate the experiment’s assumption, that the mean is slightly higher than
the clear signal, indicating that some changes have occurred in the data. This
suggests that anomalies do not significantly impact the overall average value.
However, they do contribute to an increased standard deviation due to the pres-
ence of scattered data points with anomalies.
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Fig. 6: Accelerometer Z axis noise.

4.2 Acceleration

In this case, we had a different scenario, where the noise error was injected. The
acceleration was measured every 500ms and displayed on the device console. The
sensor was mounted on top of a computer fan, while the fan speed was voltage-
controlled by the laboratory power supply. Measurements were made at four fan
speeds, including idle. Scenario consists of 450 samples. After every 100 samples,
the speed was increased, and the last 50 measurements were at idle speed again.
In case containing faults injection, it started after the first 50 samples of idle
speed and finished after 50 measurements of the highest fan speed. The fault
was applied to each accelerometer axis.

The black vertical line points to the moment of faults injection start. The
axis Z showed the direction where the vibrations had the greatest impact includ-
ing also the gravitational acceleration. The range of the added noise value was
between 40% and 70% of the original values, as shown in Fig. 6. In analyzing the
provided information, it is evident that the graph displaying the noisy data is
noticeably shifted from the original graph. This observation is further supported
by an approximate increase of 40%-45% in the average value. Additionally, the
high standard deviation value indicates a substantial absolute value of noise,
aligning with the assumptions made for the experiment, ranging from 40%-70%.

4.3 Battery measurement

As the majority of IoT devices are battery-powered, monitoring of energy source
level is essential. Below some voltage value, typically 1.7V-1.8V, most microcon-
trollers cannot work properly. Information about the low battery state could
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prevent the device from being useless by enabling power-save modes. Remaining
in the deep discharge state is also destructive for the battery itself. For this pur-
pose, we have created µChaos Battery. This component functionality allows the
simulation of an unexpected power consumption increase as a rapidly decreased
battery voltage level. A sudden, increased energy consumption was simulated by
reducing the read battery voltage value by 10mV, every 2 measurements, until
the minimum voltage value was obtained, which for the type of battery used was
approximately 1.8V.

4.4 CPU usage

To analyze the behaviour of the embedded firmware facing the high CPU util-
isation in the tool, we have implemented a separate thread which, at regular
intervals, performs a simple variable increment operation for approximately 300
milliseconds. Subsequently, the thread waits for the next operation for 1 second,
effectively increasing the CPU load. The user can initiate and resume specific
threads through the uChaos Console in uChaos CPU and has the flexibility to
define the tasks of the load functions and the threads utilized. As subsequent
threads loading the system were launched, the time between subsequent temper-
ature measurements increased from 2s to 16s. The threads were then gradually
disabled to decrease again the interval between measurements.

4.5 Memory consumption

Table 5 shows the size of each µChaos component. In accordance with the as-
sumptions outlined in Section 3.2, one of the key design considerations for out
library was its imperative to occupy minimal space in both ROM and RAM,
given the constrained resources typically available in embedded systems. As it
could be seen, due to the need to operate on strings and handle many commands,
uChaos Console takes up most of the RAM and ROM. Following the tests con-
ducted on the nRG52 DK board, it can be inferred that µChaos aligns with the
initial assumptions. The proportion of RAM it utilizes amounts to about 2% of
the total, while in terms of ROM, it accounts for below 1%.

Table 5: µChaos memory size
Component ROM [kB] RAM [kB]
µChaos Sensor 1,21 0,11
µChaos Battery 0,3 0,04
µChaos Console 1,58 1,32
µChaos CPU 0,27 0,05

5 Summary

The paper discusses the novel µChaos tool for Zephyr OS based embedded IoT
devices. It enables chaos engineering to be applied directly to low-power battery-
operated devices. In the paper we have also discussed the common types and
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sources of the failures of the devices. Finally, we have presented the scenarios
showing the usage of the developed tool in sensor-based applications for IoT
devices.

The proposed tool can be augmented by the edge and cloud chaos engineer-
ing tools composing the holistic failure injection solution for the IoT contin-
uum. Further improvements should also concern other data source modalities,
including audio data from the microphones for keyword spotting applications
and predictive maintenance and video sources for tiny object detection and im-
age recognition. Another possible direction of library improvement is exploring
faults and disturbances in communication between devices in wireless networks
like Wi-Fi, Matter, and Bluetooth. A diversity in types of networks and protocols
creates interesting opportunities.
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