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Abstract. The rapid evolution of smart manufacturing and the piv-
otal role of Automated Guided Vehicles (AGVs) in enhancing opera-
tional efficiency, underscore the necessity for robust anomaly detection
mechanisms. This paper presents a comprehensive approach to detect-
ing anomalies based on AGV telemetry data, leveraging the potential of
machine learning (ML) algorithms to analyze complex data streams and
time series signals. By focusing on the unique challenges posed by real-
world AGV environments, we propose a methodology that integrates
data collection, preprocessing, and the application of specific AI/ML
models to accurately identify deviations from normal operations. Our
approach is validated through extensive experiments on datasets featur-
ing anomalies caused by mechanical wear or excessive friction and issues
related to tire and wheel damage, employing LSTM and GRU networks,
alongside traditional classifiers like K-nearest neighbors and SVM. The
results demonstrate the efficacy of our method in forecasting momen-
tary power consumption as an indicator of mechanical anomalies, and in
classifying wheel-related issues with high accuracy. This work not only
contributes to the enhancement of predictive maintenance strategies but
also provides valuable insights for the development of more resilient and
efficient AGV systems in smart manufacturing environments.
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1 Introduction

The smart manufacturing industry frequently relies on automated component
or manufactured products delivery performed by Automated Guided Vehicles
(AGVs) [9]. These vehicles autonomously transport goods to or between assem-
bly stations on production lines, await unloading after successful docking, and
then return to begin another operational cycle. The uninterrupted production in
manufacturing that relies on a fleet of AGVs necessitates continuous monitoring
of the vehicles and their characteristics through telemetry, detecting anomalies
and, thus, predicting upcoming failures [23]. These tasks would not be possi-
ble without observing various signals captured by onboard gauges and sensors.
Small IoT devices installed on AGVs may collect data, communicate with other
devices and central servers to exchange the data, and perform more sophisti-
cated analyses supporting predictive maintenance tasks [8,25]. They can gather
signal values and sensor readings directly from the PLC controllers onboard the
AGYV, transmitting them to analytical systems for further analysis.

Deviations from the normal operation of an AGV are typical indicators of
wear of its components, adverse environmental impact, or human error or influ-
ence [24]. For example, the progressive change in the wheel diameter resulting
from its wear has a negative impact on the accuracy of the planned route in
the odometry system. The slippery ground may result in inaccurate turns and
route errors or incorrect docking. Excessive vehicle load causes increased energy
consumption, reduces the use time of AGVs, and increases the risk of wear of
their parts. Frequent stops caused by people entering the vehicle’s route not only
disrupt the entire delivery schedule but also cause parts to wear out faster. All
these deviations can be captured by prior observation of various internal signals
of the vehicle and their subsequent analysis.

Recent works in anomaly detection predominantly rely on employing Ar-
tificial Intelligence (AI) algorithms and analyzing data streams with various
Machine Learning (ML) models [11]. However, despite the general inference
capabilities of the existing AI/ML algorithms, each detection task requires a
separate reasoning model that should be deployed specifically for the problem
and particular data preparation. Detecting anomalies in real AGV environments
that produce industrial data streams and expose time series signals poses unique
challenges beyond simple training and testing various ML models [22].

The paper advances smart manufacturing by introducing ML-based methods
for detecting anomalies in AGVs, focusing on mechanical wear and tire or wheel
damage. It fills a gap in predictive maintenance, enhancing AGV operational
efficiency and reliability. By providing accurate forecasts of power consumption
and classifying wheel-related issues, this research not only improves current AGV
management but also sets a foundation for future advancements in the field.

The remainder of this paper is organized as follows: Section 2 reviews the cur-
rent literature on anomaly detection in AGVs, highlighting the key methodolo-
gies and gaps that this study aims to address. Section 3 delves into the proposed
methodology for anomaly detection, including data collection, pre-processing
and specific AI/ML models used. Section 4 describes the experimental datasets
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in detail, covering their collection, characterization and justification for their
use. Section 5 presents the results of our anomaly detection experiments, of-
fering insights into the performance and effectiveness of the models. Section 6
reflects the results, discussing their implications for smart manufacturing and
AGYV operations, and outlines future research directions.

2 Related Works

The growing adoption of AGVs across diverse sectors, particularly in logistics and
manufacturing, has sparked substantial research endeavors aimed at improving
their operational efficiency and dependability. A key focus of these endeavors
is the advancement of sophisticated techniques for anomaly detection based on
AGYV telemetry data, optimization of energy consumption, and the utilization
of ML for predictive analytics on time series data. This section delves into the
state-of-the-art methodologies and their implications for AGV technology.

The capability to detect anomalies based on AGV telemetry data is criti-
cal for predictive maintenance (PdM) and operational efficiency. The study by
Malhotra et al. stands out for its pioneering use of LSTM networks, offering
a robust framework for identifying anomalies in time-series data [14]. Comple-
menting this, Hundman et al. explored the use of LSTMs and nonparametric
dynamic thresholding for detecting spacecraft anomalies, illustrating the poten-
tial of these methods in complex operational contexts akin to AGV environ-
ments [12]. The versatility of LSTM models in capturing temporal dependencies
makes them particularly suited for AGV telemetry, where anomalies must be
detected in real-time to prevent operational disruptions.

Efficient energy management is crucial for sustainable AGV operations. The
work by Khan et al. in modeling AGV energy consumption laid the groundwork
for integrating predictive analytics into energy management strategies [17]. The
application of ML for time series anomaly detection transcends the specific use
case of AGVs, offering a wealth of methodologies that can be tailored to this
context. Lai et al. presented a comprehensive approach using Recurrent Neural
Networks (RNNs) for modeling both long- and short-term temporal patterns
while analyzing AGV telemetry data [13]. Additionally, the review by Zhang
et al. on deep learning for financial time series provides a solid foundation for
adopting similar techniques in the operational analysis of AGVs [1].

Integration of edge computing and IoT is crucial for enhancing real-time
data processing capabilities. The study by Shi et al. emphasizes the role of edge
computing in facilitating the real-time analysis of AGV data, thereby enabling
more immediate and localized decision-making processes [20]. This approach
significantly reduces latency in anomaly detection and energy consumption opti-
mization, essential for maintaining continuous and efficient AGV operations. In
addition to ML and edge computing, the application of Federated Learning (FL)
techniques in monitoring AGV is gaining interest. FL allows for the decentral-
ized processing of data, enabling AGVs to learn from distributed data sources
without the need to centralize sensitive information. Our previous studies [21]
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were focused on the effectiveness of using FL for AGV to improve the forecast of
signals in time and the effectiveness of this approach in terms of energy consump-
tion. We also used LSTM networks to forecast momentary energy consumption
(MEC), the signal identified as the one reflecting possible anomalies in the AGV
operation. However, none of these works were focused on specific anomalies of
the AGVs working within their operational environment. This paper extends
these efforts toward real anomaly detection.

3 Anomaly Detection based on AGV Telemetry Data

Anomaly detection in AGVs requires telemetry and exchanging data between
various IT systems within a factory. The topology of the system composition
is usually complex, and anomalies usually occur rarely. These factors hinder
the development of accurate anomaly detection models but can be mitigated
by extracting appropriate data, integrating them, and performing appropriate
experimental scenarios engaging AGV vehicles.

3.1 Data in Intralogistics Systems

Modern intralogistic systems are composed not only of the hardware layer, which
consists of AGVs and other types of transportation robots. IT systems which en-
able various operability functions are equally important. One of the most crucial
is the Transportation Management System class (TMS), which evolved from the
fleet management system. Among solving traffic problems, its tasks are related
to formulating transportation orders, selecting and dispatching AGVs for specific
tasks, managing the logic of transportation flow, scheduling and reporting tasks
as well as providing detailed diagnostics of the state and behavior of the fleet. In
parallel, the fleet of AGVs needs to communicate and cooperate with industrial
environments and infrastructure. Therefore, integration with existing industrial
third-party systems, such as Warehouse Management Systems (WMS), Manufac-
turing Execution Systems (MES), Business Intelligence (BI), or Computerized
Maintenance Management Systems (CMMS), is required.

Intralogistics systems operate on many communication layers, like data ex-
change with field devices, acquisition of traceability, process data, or generating
asset management information. Due to this fact, a vast amount and diversity of
data can be used for multiple cases, from general process control tasks through
optimization of transportation orders based on current utilization and energy
consumption of the fleet to support the maintenance, e.g., via the calculation of
Overall Equipment Effectiveness (OEE) or utilization in predictive maintenance
approaches based on data mining.

3.2 Overview of the Methodology

Anomaly detection in the AGV operation follows the general methodology illus-
trated in Fig. 1. The approach begins with the stage of data generation from
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Fig. 1. Overview of the general methodology applied for predicting anomalies in the
AGYV operation.

AGYV onboard devices and systems as well as from the fleet supervisory layer.
Signals are acquired either directly from measurement devices such as battery
management systems providing momentary currents, voltages, and temperatures
of the power system or from process controllers, which generate statuses, diag-
nostic information, or states of work of AGVs. An important factor is that data
generation and collection from multiple endpoints are synchronized in time. This
guarantees that, e.g., calculations of MPC are reliable and refer to correspond-
ing statuses and states of work of AGV and its devices. The methodology covers
capturing data from intralogistics systems and exposing them through the OPC
UA Server, from which they are extracted in the form of a collection of time
series signals (a wide time-dependent data stream). Then, we perform a data
preprocessing step that may include finding correlations between signals in the
data stream, feature selection, and weighting based on the calculated correla-
tion coefficients, and feature set enrichment by deriving other features based on
existing ones or based on a wider view of feature’s values (e.g., within a time
window). This phase is followed by the preparation of data sets, which covers
more or less sophisticated strategies for data/sample division. Finally, depending
on the anomaly, forecast or classification is performed, which employs dedicated
ATI/ML algorithms. Data preprocessing steps and data set preparation strategies
depend on the specific use case for anomaly detection and the requirements of
the forecasting/classification algorithms applied.

3.3 Anomalies caused by mechanical problems

The operability of AGVs leads to the degradation of their components. This can
be caused by many factors, but in most cases, they result from the mechanical
wear of onboard components. Exposure to negative phenomena like vibrations,
strokes, overloading, or working in hazardous conditions shortens the lifetime of
traction systems or onboard electronics. As a result, AGVs can require more fre-
quent maintenance, which is costly and excludes them from production. Mechan-
ical wear, particularly in bearings and components experiencing larger friction
in vehicles, involves several mechanisms, among them the following [10]:
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1. Adhesive wear, occurs when surfaces weld together and tear apart, which is
common in bearings.

2. Abrasive wear caused by particles or uneven sliding across a surface.

. Corrosive wear, chemical or electrochemical reaction with the environment.

4. Fatigue wear due to cyclic loading.

w

Modeling or examining real worn systems is either hard or ineffective due to
the time necessary to observe the actual wear [10,15,16]. One of the possibili-
ties to observe similar effects is overloading a vehicle. This can indeed be used
to emulate the situation where the wear has already occurred, simulating the
reduced performance and altered operational characteristics that worn compo-
nents would exhibit [6]. This method does not accelerate wear but instead aims
to mimic the effects of wear on the vehicle’s performance.

3.3.1 Modelling: We assume that a vehicle operating with payloads up until
a chosen threshold is in normal operation, and payloads above the threshold
are emulating more mechanical wear and friction. Therefore, we trained the
forecasting models on a subset of normal data and evaluated on other non-
overlapping sequences from normal data and data considered anomalous. The
description of the data used in this experiment is provided in section 4.1.

Models used here forecast short-term (a 10-second ahead forecast horizon
At) MPC using features from the whole acquired telemetry. This is a common
approach in such telemetry-related tasks, which allows taking measures when
the expected energy consumption differs significantly from the observed values,
which often indicate an anomalous event [5,12,19]. A concise overview of how
the forecasting operates is illustrated in Fig. 2.

Out(t) |Out(t+1)|Out(t+2)

t t+1 t+2
Y v Y acr [V am

A1 1+

v, A v
to yt+10 yt+90
‘ Input(t+2)
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Fig. 2. Forecasting of MPC in time windows of a size AT moving over an input time
series X. At elements ahead are forecasted (forecast horizon). Only the first elements
yo of forecasts are taken to form an output sequence (elements in a bold frame).

With such an approach, it is possible to evaluate if the model forecasts values
correctly during normal operations and if its performance deteriorates with more
unusual patterns, which is an expected behavior here. In the context of mechan-
ical wear and vehicles, this method allows for predictive maintenance strategies.
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By detecting anomalies early, maintenance can be scheduled proactively to ad-
dress wear and tear before it leads to failure [7].

3.4 Anomalies caused by tire and wheel damage

One of the mechanical wears that lead to the lowered performance of AGVs is the
uncontrolled and unintended change of diameter of traction wheels. In all types
of kinematic models, AGVs use odometry for maneuvering. The odometry is cal-
culated from pulses or the frequency measured by encoders installed on traction
axes. This requires prior knowledge of wheel diameter, as the odometry trans-
forms the number of pulses or the frequency into the traveled distance. Then, the
distance can be used for closed-loop control when providing drive commands to
motors. However, if the diameter changes due to its wear or uncontrolled change,
e.g., during abrasion or sticking of dust, the odometry is calculated incorrectly.
This increases the error of calculated traveled distance in time. As a result, the
navigation system generates an increased number of corrections and, through
this, increased consumption of energy as well as faster wear of mechanical com-
ponents. To keep a good quality of navigation, it is important to control the
condition of the traction wheels.

4 Datasets

The experiments were conducted using data obtained from an actual industrial
CoBotAGV known as Formica. This AGV is a product developed by ATUT Ltd.
and smarticized with AI by the Silesian University of Technology [22].

4.1 Test drives with changing payload weight

Our investigations rely on data acquired in October 2022 based on test drives
with changing payload weight (Fig. 3). These tests produced ca. 50,000 time steps
acquired with a frequency of 1 Hz. Table 1 presents how many data points are
available for different weight values. The data contains 56 features (numeric and
boolean) covering energy signals, left/right motor drive statuses, vehicle PLC
signals, LED statuses, natural navigation signals, odometry, and safety statuses.

Table 1. Payload weight (Wt) and corresponding sample counts (# Smpl.) during test
drives in October 2022

|Wt [kg] # Smpl.|Wt [kg] # Smpl.|Wt [kg] # Smpl.|Wt [kg] # Smpl.|Wt [kg] # Smpl.|

0 276 100 812 200 6336 300 1943 400 756
20 860 120 915 220 888 320 1722 420 1070
40 804 140 739 240 722 340 1727 440 2190
60 807 160 893 260 676 360 1599 480 943
80 860 180 825 280 2071 380 1644 498 17564
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Fig. 3. Payload weight (blue) changes during test drives in October 2022. The test
drives also included different levels of battery voltage (red), with two charges in be-
tween.

4.2 Distorted natural navigation data

This data comes from test runs executed in July and August 2023, which included
changes in the diameter of one of the wheels passed to the natural navigation
subsystem. The value was not changed physically but by software means, how-
ever, it resulted in natural navigation corrections anyway through mechanisms
described in section 3.4. The data consists of ca. 121,000 time steps acquired
with a frequency of 1 Hz. Table 2 presents how many data points are available
for different wheel diameters, and Fig. 4 presents a short outline of how natural
navigation is distorted with false gradually changed wheel diameter.

Table 2. Wheel diameters (@) used during test drives in July and August 2023 with
sample counts (# Smpl.) for each diameter.

‘@ [mm] # Smpl.‘@ [mm] # Smpl.‘@ [mm] # Smpl.‘@ [mm] # Smpl.‘@ [mm] # Smpl.‘

52.90 54494 54.75 2162 56.55 262 59.51 2449 61.51 2431
53.16 1299 54.97 1797 57.93 5031 59.77 2858 61.83 2385
53.42 1939 55.23 5340 58.19 3019 60.04 1795 62.09 2158
53.69 2195 55.49 1929 58.46 577 60.31 2053
53.95 2065 55.76 2308 58.72 999 60.57 2035
54.22 2516 56.03 2319 58.99 2714 60.99 2009
54.48 2161 56.29 2321 59.23 1505 61.26 2485
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Table 3. Spearman’s correlations highlight the 10 features most closely related (either
positively or negatively) to the wheel diameter value. Among these, only the signals
marked in bold are pertinent; the remaining ones are considered either artifacts (such as
inclinations) or the result of spurious correlations, which arise as the battery discharges
concurrently with a gradual change in wheel diameter.

| Signal |Spear. CC| Signal |Spear. CC]
Distance average corr.|0.6475 Momentary current consumption|0.3336
Y inclination|0.6360 Momentary power consumption|0.2481
Difference heading average corr.|0.5268 Odometry: cumulative distance right|0.2253
Battery cell voltage|0.4103 Cumulative energy consumption|0.167
State Of Charge|0.3887 X inclination|0.1593
0.30
624 *  Wheel diameter [mm] h . -
—— Difference heading average correction Y| [ 0.002
— Distance average correction !‘W W [025
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Fig. 4. Wheel diameter (blue) changes and resulting natural navigation correction
values (red and green) during test drives in July and August 2023

5 Experimental validation

This section details the methodology and experimental validation results aimed
at detecting anomalies in mechanical systems and components due to wear or ex-
cessive friction and wheel degradation. Through a series of experiments utilizing
recurrent neural network (RNN) models, this research investigates the efficacy
of forecasting models on datasets emulating mechanical anomalies by varying
payload thresholds. The experiments extend previous work by exploring the im-
pact of model training and validation under conditions of normal and overload
test drives, employing momentary power consumption (MPC) as a predictive
metric. Additionally, we include the detection of wheel-related anomalies, such
as excessive tire wear. Utilizing traditional two-class classifiers, we aim to thor-
oughly assess and enhance the system’s diagnostic capabilities concerning wheel
integrity.
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5.1 Detecting potential mechanical wear or excessive friction

The first series of experiments was focused on finding anomalies caused by me-
chanical wear or excessive friction. As mentioned in section 3.3 those were emu-
lated by changing payload over the chosen threshold. The input dataset described
in section 4.1 was used to train a 2-hidden layers (with 80 units per layer) LSTM
(Long Short-Term Memory) and 2-hidden layers (with 80 units per layer) GRU
(Gated Recurrent Unit) models forecasting MPC, which proved to be effective
in our previous works [2—4]. Similarly, the input window size was set to AT = 50
elements and the forecast horizon to At = 10.

The objective of this fragment of experimental validation was to check if it
is possible to train and validate a model that gives good forecasting quality on
normal data (without excessive load) and the quality of its results deteriorates on
data resulting from overload test drives. To achieve that, the dataset described
in section 4.1 was split into fragments based on payload weight, each fragment
ranging 40 kg of payload. The structure of the resulting division is shown in
Table 4. A fixed boundary in payload weight was set first to 200 kg and in a
second part to 320 kg. Data below the thresholds was treated as normal and
above — as anomalous.

The models were trained on part of data from normal ranges: 0-40, 80-120,
160200 for the first and 040, 80-120, 160-200, and 240-280 for the second part.
The rest of data from normal was treated as normal test set and all data above
the threshold was used as anomalous test set. The training was executed for
200 epochs with early stopping after 20 epochs without improvement of the loss
function.

The forecasting quality was evaluated using the Mean Square Error (MSE)
metric computed over the resulting output sequence as shown in Fig. 2. Addi-
tionally, input data was preprocessed to 1) contain or not the MPC feature [4]
and 2) use or not feature weighting [3]. That, together with two models (LSTM /-
GRU), gave eight experiments for the two previously mentioned dataset splits.
Additionally, to assess whether the resulting forecasting errors were statistically
significantly different from forecasts on normal test fragments, the Student’s
t-test was conducted.

The results are presented in Table 5. It can be observed that errors between
expected (forecasted) and actual values of MPC are significantly larger than
in normal test set in most of the ranges in anomalous test sets, especially for
the experiment with a threshold set to 320 kg. That would allow to employ an
error-thresholded anomaly detection [12]. Also, for most of normal test payload
ranges, error values do not differ significantly from the expected values. However,
for cases where this does not stand (e.g., range 280-320 in Table 6), the errors still
can be thresholded not to report false positive anomalies. Also, it was confirmed
that the weighting of features contributes to better forecasting [4]. Additional
processing (e.g., error thresholding [12]) is required after forecasting to achieve
the final anomaly detection result. Also, this method allows for near real-time
processing, since similarly as in [4], the processing time for the whole test set is
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ca. 0.1-0.2 s (the machine used is equipped with an AMD Ryzen 5 processor,
NVIDIA GeForce GTX 1080 Ti GPU, and 16 GB of installed RAM).

Table 4. Payload weight (Wt) distribution in the dataset in terms of sample counts
(# Smpl.).

|Wt [kg] # Smpl.|Wt [kg] # Smpl.|Wt [kg] # Smpl.|Wt [kg] # Smpl.|

0-40 1940|160-200 7161|320-360 3326(480-500 17564
40-80 1667200240 1610|360-400 2400
80-120 1727]240-280 2747|400-440 3260
120-160 1632|280-320 3665|440-480 943

Table 5. Results of forecasting for models trained on data assuming payloads < 200 kg
to be normal. Numbers stand for MSE computed on values inferred on test sequences.
Greater > /less than < marks denote values statistically significantly different from the
normal test set and the direction of inequality. Ranges 40-80 and 120-160 constitute
a normal test set, thus, they are presented separately.

MSE - normal test MSE - anomalous test
-
8l
alo| = ° =) o = =) = =) =] =) =)
0l ) — =) ] N @ N ] S < @ S
ARSI o @ — N N ) ™ <+ < < n
Sel 8 N =) ) ) =) ) ) ) % =) )
ol = = I a S 3 ® a @ =S 3 ®
& g - N N N ) o < ~ <
)
—|-1] GRU [0.095|0.091 |0.099 |0.117 ]0.113 |0.173 >|0.186 >|0.243 >|0.371 >|0.424 >|0.542 >
—|—|LSTM|0.124 |0.152 {0.096 < |0.156 >|0.171 >|0.218 >|0.212 >|0.302 >|0.498 >|0.418 >|0.511 >
—|+| GRU |0.104 {0.100 {0.108  |0.091 |0.093 ]0.138 >[0.169 >|0.223 >|0.343 >|0.381 >|0.506 >
—|+|LSTM|0.121|0.106 |0.136  |0.114 ]0.121 |0.153 >{0.195 >|0.245 >|0.373 >|0.372 >|0.522 >
+|—| GRU | 0.088 |0.089 {0.087 |0.120 >|0.103  ]0.140 >{0.203 >|0.229 >|0.379 >|0.509 >|0.518 >
+|—|LSTM|0.139]0.163 |0.113  |0.167 |0.142 ]0.148 [0.211 >|0.250 >|0.458 >|0.509 >|0.536 >
+|+| GRU |0.093 ]0.083 {0.104  |0.088 |0.175 >|0.156 >[0.202 >|0.175 >{0.335 >|0.317 >|0.439 >
+|+|LSTM|0.082(0.079 [0.086 |0.091 |0.089 |0.137 >[0.189 >|0.213 >|0.342 >|0.427 >|0.551 >

5.2 Detecting problems with wheels

This experimental section fragment focuses on finding anomalies that are caused
by excessive tire wear or objects that are accidentally attached to the wheel
surface. The test data is described in section 4.2 and relies on distortions in the
natural navigation subsystem (NN). As it was described previously, the problems
are visible through larger amounts of corrections reported by the NN.

We employed traditional two-class classifiers such as K-nearest neighbors,
Naive Bayes, Decision Tree, Random Forest, and Support Vector Machines (SVM).
Hyperparameters of the models were not tuned — defaults from SciKit-Learn [18]
were used. The key component of classification is to properly select features that
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Table 6. Results of forecasting for models trained on data assuming payloads < 320 kg
to be normal. Numbers stand for MSE computed on values inferred on test sequences.
Greater > / less than < marks denote values statistically significantly different from
the normal test set and the direction of inequality. Ranges 40-80, 120-160, 200—240,
and 280-320 constitute the normal test set, thus, they are presented separately.

MSE - normal test MSE - anomalous test

-~
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28 = ° =) =) =) o =) =) =) o
0|e ) 2 =) ) <+ I © S < ) S
=lal o 5] @ — N ) o <+ < < ¥

S 9 = =) > > o) > ) ) =) =)
ole| = 2 e Q S ® & @ S 3 ©

g B - Q a ) ) < < <

P>

—|=] GRU |0.119]0.096 <|0.112 |0.112 ]0.135 >|0.199 >[0.299 >|0.531 >|0.413 >|0.537 >
—|-|LSTM|0.122|0.117 [0.102 |0.123 |0.134 |0.213 >|0.264 >|0.463 >|0.413 >|0.497 >
—|+| GRU | 0.112]0.110 |0.089 <|0.101 |0.127 >|0.168 >[0.238 >|0.384 >|0.410 >|0.541 >
—|+|LSTM|0.145 [0.161 [0.139 |0.126 |0.149 |0.200 >|0.245 >{0.533 >|0.723 >|0.516 >
+|—1 GRU | 0.114|0.094 <|0.098 [0.095 <|0.139 >|0.167 >{0.213 >|0.312 >|0.348 >|0.468 >
+|—|LSTM|0.104 |0.084 <|0.109 |0.092 [0.117 |0.192 >(0.220 >|0.329 >|0.332 >|0.459 >
+|+| GRU | 0.095|0.076 <|0.096 |0.080 <|0.110 >|0.154 >(0.183 >|0.309 >|0.330 >|0.484 >
+|+|LSTM|0.094|0.062 <|0.082 |0.088 [0.115 >|0.158 >[0.200 >|0.337 >|0.357 >|0.468 >

are fed to the classifier [26,27]. Since we have the prior knowledge that anomalies
in the dataset are arising with more modified wheel diameter, it was expedient
to use the features that are most correlated with the diameter. As shown in Ta-
ble 3, the most correlated features are corrections from NN together with some
other falsely correlated signals. Thus, we decided to use NN correction signals
as input for the classifiers, namely distance average correction and difference
heading average correction.

During experiments, it was also planned to check whether feature engineering
improves the classification. Thus, two additional moving mean [27] of size 300
were added for both features, and different feature set configurations were passed
to the classifiers. The data was labeled as a "normal" class where the diameter
of the wheel was not changed and "abnormal" in other cases (ca. 45% / 55%
of data points respectively). 20% of all data was taken as a training set, and
the remaining 80% was used as a test set. Such a setting was enough to train a
well-working model and evaluate it on a broader test set. Different combinations
of features mentioned above were examined. Results for classifiers are reported
in Table 7.

It can be noted that classification works very well using basic classifiers, such
as K-nearest neighbors. More sophisticated methods like SVM were not perform-
ing well here. Even using single correction features results in 91-94% accuracy,
combining them gives almost 99%, and adding the moving average increases the
classification result to nearly 1.0. The limitation of such an approach is related
to the possibility of real-time operation. Although the classification requires no
history (sequence) of samples, implicitly using the moving average of length L
involves a delay of L/2 time steps to process the classification. However, if it
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Table 7. Results of classification to normal/abnormal wheel diameter based on natural
navigation data. The first four columns denote whether a feature is present in the
input data. DHAC — difference heading average correction, DAC — distance average
correction, MA stands for moving average. The best results in each column are in bold.

‘ K-nn Gauss. NB‘ Dec. tree |Rand. forest SVM
Q Q

DHAC(MA)
DAC
DAC(MA)
accuracy
AUC-ROC
accuracy
accuracy
accuracy
AUC-ROC

AUC-ROC
AUC-RO
AUC-RO

accuracy

0.915 0.964 |0.592 0.685|0.936 0.935|0.936 0.968 |0.672 0.732
0.732 0.821|0.590 0.684|0.698 0.694|0.698 0.805 |0.669 0.732
0.926 0.970 0.712 0.770|0.943 0.946|0.943 0.973 |0.713 0.818
0.807 0.885|0.711 0.770|0.767 0.764|0.767 0.872 |0.712 0.818
0.927 0.978 |0.632 0.686|0.956 0.956|0.963 0.992 |0.661 0.739
0.986 0.996 |0.723 0.770|0.987 0.987(0.989 0.999 |0.770 0.863
0.980 0.996 | 0.722 0.771]0.987 0.9870.990 0.999 |0.768 0.864
0.976 0.996 |0.718 0.770]0.986 0.985]0.990 0.999 |0.762 0.866
0.981 0.997(0.720 0.771]0.976 0.976|0.982 0.998 |0.772 0.867
0.944 0.984|0.711 0.771]0.964 0.964|0.972 0.994 |0.717 0.819
0.997 0.999|0.717 0.756|0.994 0.994|0.998 1.000 |0.773 0.862
0.998 0.999(0.719 0.756|0.994 0.994|0.998 1.000 |0.766 0.866
0.998 0.999(0.713 0.784|0.994 0.994|0.998 1.000 |0.774 0.867
0.997 0.999|0.714 0.784]0.994 0.994 0.998 1.000 |0.772 0.874
0.999 0.999|0.716 0.772]0.996 0.996(0.999 1.000 |0.775 0.880

1+ + | DHAC
o
o

[ e e

R R

EENTE R
R
A+

is possible to stay with ca. 1 percentage point lower accuracy, then real-time
processing is feasible (i.e., for the combination + — +— in Table 7).

6 Discussion and Conclusions

This study demonstrated the application of machine learning techniques for the
detection of anomalies based on Automated Guided Vehicle (AGV) telemetry
data, a critical aspect of maintaining operational efficiency in smart manufac-
turing environments. Through the application of LSTM and GRU models, along
with traditional machine learning classifiers, we have addressed two significant
types of anomalies that can affect AGVs: mechanical wear or excessive friction
and tire or wheel damage.

The experiments conducted here showed that the proposed approach can
forecast momentary power consumption and thus be used to find potential me-
chanical issues. Similarly, the classification of wheel-related anomalies achieved
very good accuracy, highlighting the effectiveness of our feature selection and
engineering approach. These results underscore the potential of machine learn-
ing in enhancing predictive maintenance strategies, thereby reducing downtime
and improving the reliability of AGVs in industrial settings.

However, the implementation of such systems does not come without chal-
lenges. The collection and preprocessing of telemetry data require careful consid-
eration to ensure the quality and relevance of the information being analyzed.
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Additionally, the dynamic nature of manufacturing environments means that
models must be continually updated and refined to adapt to new conditions and
anomalies. The limitation of our research is that changes in power consumption
can be due to other reasons than mechanical issues. Addressing that topic would
need additional thorough research.

In conclusion, this research contributes valuable insights into detecting anoma-
lies in AGV operations, offering an approach to improving the resilience and ef-
ficiency of smart manufacturing systems. Future work could focus on expanding
the types of anomalies detectable by our models, improving the automation of
data preprocessing, and exploring the integration of these models into real-time
AGV management systems for immediate anomaly detection and response.
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