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Abstract. In the domain of battery energy storage systems for Elec-
tric Vehicles (EVs) applications and beyond, the adoption of machine
learning techniques has surfaced as a notable strategy for battery mod-
eling. Machine learning models are primarily utilized for forecasting the
forthcoming state of batteries, with a specific focus on analyzing the
State-of-Charge (SOC). Additionally, these models are employed to as-
sess the State-of-Health (SOH) and predict the Remaining Useful Life
(RUL) of batteries. Moreover, offering clear explanations for abnormal
battery usage behavior is crucial, empowering users with insights needed
for informed decision-making, build trust in the system, and ultimately
enhance overall satisfaction. This paper presents SOCXAI, a novel algo-
rithm designed for precise estimation of batteries’s SOC. Our proposed
model utilizes a Convolutional Neural Network (CNN) architecture to
efficiently estimate the twenty five future values of SOC, rather than
a single value. We also incorporate a SHApley Additive exPlanations
(SHAP)-based post-hoc explanation method into our method focusing
on the current feature values for deeper prediction insights. Furthermore,
to detect abnormal battery usage behavior, we employ a 2-dimensional
matrix profile-based approach on the time series of current values and
their corresponding SHAP values. This methodology facilitates the de-
tection of discords, which indicate irregular patterns in the battery usage.
Our extensive empirical evaluation, using diverse real-world benchmarks,
demonstrates our approach effectiveness, showcasing its superiority over
state-of-the-art algorithms.

Keywords: Machine Learning. Battery. Explainability. SOC estima-
tion. Data Mining.

1 Introduction

The integration of technological advancements across industries has significantly
enhanced the accessibility and the generation of industrial time series data, a
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trend expected to persist with the emergence of Industry 4.0 [10]. This devel-
opment has led to the inevitable generation of vast datasets, underscores the
need for versatile methods to effectively mine this information. This transition
involves the utilization of data mining techniques to extract valuable insights
from large datasets, particularly within the industrial sector. A key challenge in
data mining revolves around identifying significant sub-sequences within time
series data, where "interesting" patterns may include both repetitive and singu-
lar occurrences or deviations from the norm. Meanwhile, battery management
has become a focal point within this context. As batteries play a critical role in
various applications, understanding their behavior through time series analysis
is essential.

The viability of Electric vehicles (EVs) is predominantly contingent upon the
performance, range, lifetime cost-effectiveness, and safety of their batteries. At
present, rechargeable lithium-ion (Li-ion) batteries are the preferred choice for
EVs due to their favorable energy density and lifespan. The high energy density
of Li-ion batteries allows for more energy storage in a relatively compact size,
which is crucial for maximizing the driving range of EVs [11].

Therefore, ensuring the efficiency and safety of these advanced batteries is
becoming increasingly crucial. Effectively managing batteries within a system
demands detailed modeling to accurately predict their condition, with particu-
lar focus on metrics such as State of Charge (SOC) and State of Health (SOH).
These metrics offer crucial insights into remaining energy, power delivery ca-
pacity, and overall cell life. Nevertheless, assessing residual lithium in batteries
is a challenging task, necessitating precise algorithms embedded within Battery
Management Systems (BMS). These algorithms, often leveraging mathematical
models or Machine Learning (ML) techniques, play a pivotal role in estimating
the battery’s states, including SOC and SOH levels, using data such as terminal
voltage, terminal current, and surface temperature. These measures are useful
comprehending the remaining driving range of an EV or in designing a battery
that will exhibit optimal performance in real-world conditions. Often, in this
work we are interested in the SOC of the battery within a single charge/discharge
cycle. The SOC of a battery refers to the current level of energy stored in the
battery, expressed as a percentage of its total capacity. It indicates how much
charge is remaining in the battery relative to its fully charged state and it can
be computed using the following formula (1) [7]:

SOC (%) =
(

Ongoing capacity
Total capacity

)
× 100 (1)

Recently, there has been a noticeable shift towards employing data mining
tools to facilitate eXplainable Artificial Intelligence (XAI). This involves utiliz-
ing data mining techniques to elucidate and interpret black-box models, thereby
improving transparency and comprehensibility in the decision-making processes
of these models, particularly in safety-critical applications, especially within in-
dustries or vehicles. As a result, the development of XAI techniques has become
a priority, aiming to provide insights into AI decision-making processes and make
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their outputs interpretable to end-users. In this context, SHAP, a model-agnostic
approach [14] based on Shapely index, has gained significant popularity in recent
years for explaining a wide range of ML models.

In the realm of industrial time series data analysis, examining subsequences
for similarities or disimilarities provides valuable insights and explanations re-
garding the state of a product or process. Commonly utilized terms in literature
to describe patterns within sequential data are time series motif and time series
discord. Time series motifs predominantly emphasize similarities, while discords
concentrate on dissimilarities. Mining time series data, particularly through dis-
cord identification, is a topic of extensive research. As a result, the field of time
series anomaly detection has witnessed a remarkable surge in interest, with hun-
dreds of algorithms proposed over the last two decades [1, 12].

Our contribution is twofold, aiming to address both the prediction task and
the requirement for explainability concurrently. More specifically, this paper
presents a novel approach leveraging Convolutional Neural Networks (CNN)
to estimate the SOC of batteries. Unlike existing methods, the proposed model
predicts 25 SOC values rather than a single value, thereby offering more detailed
insights into battery behavior for the next minutes. To provide explanations for
the SOC predictions, we employ the SHAP model, that analyzes the contri-
butions of current values towards SOC predictions. This is complemented by
the application of a two-dimensional anomaly detection model, enabling us to
identify the factors influencing SOC predictions.

2 Related Work

Abundant literature has been dedicated to the task of SOC estimation. Indeed,
tremendous progress has been made in developing efficient algorithms that can
estimate its future state, i.e., SOC. Two branches of works can characterize exist-
ing battery models: model-based approaches and data-driven methods. The for-
mer consists of the equivalent circuit models (ECMs) which is based on empirical
knowledge and experimental data. Batteries are represented by groups of electri-
cal components, such as resistors and capacitors, forming resistor-capacitor net-
works that are used to monitor the battery’s behavior at different time constants
associated with the diffusion and charge-transfer processes [8, 9, 17]. Although,
this model is used as main battery models that are widely used in the BMS of
EVs for online SOC estimations due to their low computational demands, the
accuracy is usually limited to the parameterized range of the model. A further
improvement on model-based methods is about development of Physics-Based
Models (PBMs) [3, 5], with the pseudo two-dimensional (P2D) model being the
most notable. The P2D model provides insights into battery internal dynamics.
However, managing its equations is complex and demands significant compu-
tational resources, making it impractical for real-time applications. Moreover,
PBMs often overlook details about material information. The second line of
research pertains to Data-Driven Models (DDMs), which have garnered consid-
erable attention for their adaptability, model-free advantages, and the capacity
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to handle high degrees of nonlinearity. Possessing self-learning capabilities and
robust generalization ability, DDMs are particularly effective for estimating SOC
within nonlinear systems. Typically, these systems are constructed using various
machine learning techniques, including neural networks [2,6,21], support vector
machines [22], to predict SOC without the necessity for a prior knowledge.

3 A Glimpse at Times Series

In this section, we introduce the definitions and concepts that we will use
throughout this paper.

Definition 1 (Time Series). A time series T ∈ Rn denoted as T = [t1, . . . , tn]
is a time-ordered sequence of values.

Definition 2 (Subsequence). A subsequence Ti,m ∈ Rm of T is a continuous
subset of values from T of length m, starting from position i. Formally,
Ti,m = [ti, ti+1, . . . , ti+m−1].

By selecting any subsequence Ti,m as a query and computing its distance from
all subsequences within the time series T , then sequentially saving the distances
in an array, we generate a distance profile.

Definition 3 (Distance Profile). A distance profile Di of a time series T is
an ordered array of Euclidean distances between the query subsequence Ti,m and
all subsequences in time series T . Formally, Di = [di,1, di,2, . . . , di,n−m+1] where
di,j for i ≥ 1, j ≤ n−m+ 1 is the Euclidean distance between Ti,m and Tj,m.

In the distance profile Di of query Ti,m, the ith position represents the dis-
tance between the query and itself, resulting in a value of 0. Values preceding and
following position i are nearly zero, indicating overlapping subsequences with the
query. We focus solely on non-self-matches, disregarding these self-matches.

Definition 4 (Non-Self Match). In a time series T , with a subsequence Tp,m

of length m beginning at position p and a matching subsequence Tq,m starting at
q, Tp,m is a non-self match to Tq,m with distance dp,q if |p− q| ≥ m.

Definition 5 (Time Series Discord). In time series T , with a subsequence
Td,m of length m starting at position d is considered a discord of T if the distance
between Td,m and its nearest non-self match is the largest among all subsequences.
Formally, for every Tc,m ∈ T , with the non-self matching sets MD of Td,m, and
non-self matching set MC of Tc,m,min(dd,MD) > min(dc,MC).

The Matrix Profile (MP) [23] is the most used solution to compute discords
within time series data.

Definition 6 (Matrix Profile). The Matrix Profile P of a time series T is a
vector that records the z-normalized Euclidean distance between each subsequence
and its nearest non-self match. Formally, P = [min(D1),min(D2), . . . ,min(Dn−m+1)
where D1≤i≤n−m+1 represents the distance profile of the query subsequence Ti,m

in time series T .
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Definition 7 (Multidimensional Time Series). A multidimensional time
series T ∈ Rn×d is a n-sized set of d co-evolving time series. Formally,
T = [T 1, T 2, . . . , T d].

When extending the matrix profile to multidimensional time series, we intro-
duce a new structure called the multidimensional matrix profile. This adaptation
facilitates the analysis of pattern similarity and dissimilarity across multiple di-
mensions within the time series data.

Definition 8 (Multidimensional Matrix Profile ). Given a multidimen-
sional time series T = [T 1, T 2, . . . , T d] with d time series, each of length n, the
multidimensional matrix profile is constructed by aggregating the matrix profiles
MPi of all d time series. It stores the z-normalized Euclidean distance between
each subsequence and its nearest neighbor across all dimensions.

In this paper, we are interested in multi-dimensional time series that exhibit
discords that may be present on a subset of dimensions, we call such anomalies
a K-dimensional anomaly.

Definition 9 (K-Dimensional Anomaly). A K-dimensional anomaly ap-
pears on at least K of the time series T = [T 1, T 2, . . . , T d]. When k equals
the total number of time series, such a k-dimensional anomaly is referred to as
a natural anomaly [20].

Definition 10 (Natural Anomaly). Given a multidimensional time series
T = [T 1, T 2, . . . , T d] consists of d times series and X a K-dimensional-anomaly
in T , X is a natural anomaly if k is equal to the total number of dimensions on
which the the anomaly is observed.

Natural anomaly detection is particularly intriguing because simply declaring
the presence of an anomaly is not enough. It is more valuable to identify which
specific dimensions, such as sensors, are involved, especially when their number
is significant. In this work, our focus is on identifying natural anomalies and
pinpointing the specific time series associated with them.

The MP technique [23] has emerged as a valuable tool for uncovering various
properties of time series data across a wide range of applications, including seis-
mology, medicine, and vocalization analysis. This technique has demonstrated its
utility in identifying numerous structural elements within time series datasets,
such as repeated behaviors, known as motifs [13], as well as anomalies, referred
to as discords [4,16,23], shapelets among others. Indeed, the field of time series
discord detection has been gaining increasing interest within the domain of data
mining [23].

4 Convolutional Neural Network-based Model for
Battery SOC Estimation

In this section, we present the methodology for constructing a deep learning
model to estimate the SOC values of Li-ion cells, starting from the dataset used
to train and test the model until the model architecture.
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4.1 Dataset

In order to develop a model able to estimate the SOC of real-world driving
cycles, the dataset includes 142 cycles from the Massachusetts Institute of Tech-
nology (MIT) battery dataset [18] and a further 425 cycles from the National
Institute of Applied Sciences (INSA) [7]. From the MIT dataset, we selected
exactly two cycles from of the 72 identified charges policies, ensuring a broad
representation of charging conditions. In addition, we incorporated the Basytec
XCTS system for assessing lithium ferrophosphate (LFP) battery cells, iden-
tical to those featured in the MIT dataset. This advanced system enables us
to conduct tests employing diverse protocols, including the Worldwide Harmo-
nized Light Vehicle Test Procedure (WLTP) and the Assessment and Reliability
of Transport Emission Models and Inventory Systems (ARTEMIS) cycle. The
testing regimen comprises two primary phases: charge and discharge as shown
in Figure 1. During the charge phase, we employ the classic CC-CV (constant
current-constant voltage) method. This involves applying a constant current to
the battery cells, followed by a constant voltage, a process that is crucial for ac-
curately simulating the charging behavior of batteries in practical applications.
For the discharge phase, we emulate real-world driving conditions by integrating
multiple driving cycles. This phase encompasses regenerative braking, a criti-
cal feature that recuperates energy dissipated during vehicle deceleration and
braking, effectively recharging the battery cells.

charge+wltc(20) charge+artemis(20) charge+dischargecharge+discharge
2

100

current

time

Fig. 1. Structure of the test protocols.

4.2 Data Preprocessing

In the obtained dataset from each cycle, comprising measurements of current,
voltage, and temperature recorded during tests, the direct measurement of SOC
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is not feasible and requires estimation. To initiate a supervisory learning process,
for our model, accurately computing the SOC is indispensable. For this purpose,
we employ the Coulomb counting technique [19], which involves the cumulative
integration of current over time to estimate the SOC. This technique is computed
using the following Equation 2:

SOC(t) =

{
SOC(t− 1) + 1

cap
∑nc

i=1 Ic(ti)∆ti, if charging
1 + 1

cap
∑nd

i=1 Id(ti)∆ti, if discharging
(2)

where:

– SOC(t) represents the SOC at time t,
– SOC(t− 1) is the previous SOC value,
– Ic(ti) and Id(ti) denote the charging and discharging currents respectively,

recorded at time ti, with negative current values during the discharge.
– ∆ti signifies the time intervals between consecutive measurements,
– nc and nd are the number of measurements taken during the charging and

discharging phases respectively.
– cap represents the capacity of the battery.

During the charging phase, the SOC is updated by summing the integrated
current over the duration of the charge. Conversely, during the discharging, the
initial SOC is subtracted from 1 (assuming a full charge), and the integrated
current over the discharge duration is added.

Following the calculation of SOC values, we perform the min-max normal-
ization technique to scale our features within a 0 to 1 range, as presented in
Equation 3. More precisely, this technique was applied first to the training set,
which contains 70% of the total cycles including an equal proportion from both
the MIT and INSA datasets. Subsequently, we adopted the same minimum and
maximum values obtained from the training set to normalize the test set.

normalize value =
data − min(data)

max(data) − min(data)
(3)

As depicted in Figure 2, in our approach, we set the input window size to 100
and the output window size to 25. The choice of these window sizes is strategic;
the input window of 100 allows the model to consider a substantial sequence of
data points, providing a comprehensive view of the battery’s behavior leading
up to the current state. This size ensures that the model has enough context to
understand the temporal dynamics of SOC changes. The output window of 25,
on the other hand, enables the model to predict the SOC for the next 25 time
intervals based on the input sequence, offering a detailed forecast that can be
invaluable for real-time battery management and planning. More interestingly,
in the MIT dataset, the size of 25 corresponds to the SOC values for the next two
minutes, whereas in the INSA dataset, it represents the SOC for the following
minute.
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t1 t2 t100 t101 t102

Briefly elaborate on what you want
to discuss. 

...

Input window Output window 

...

Window sliding

t100 Iteration 0

t1 t2 t100 t101 t102... ...

t1 t2 t100 t101 t102... ...

Current

Voltage

Temperature

t101 t124 t1250 t126SOC

t1 t2 t100 t101 t102... ...
t100 Iteration 1

t1 t2 t100 t101 t102... ...

t1 t2 t100 t101 t102... ...

Current

Voltage

Temperature

t101 t124 t125 t126SOC

Fig. 2. The sliding window technique.

4.3 Model architecture

In this work, we propose a data-driven model that leverages the power of CNNs
to estimate the SOC for lithium-ion battery cells. CNNs are renowned for their
efficacy in processing and analyzing structured grid data, making them ideally
suited for interpreting time series data, such as the SOC estimation from battery
cycles. Here, we explain the fundamental building blocks of our CNN architecture
and their roles within the model:

– Input layer : the first layer that receives the raw input data.
– Convolutional layer : this layer applies convolutional operations to the input

data allowing to capture spatial hierarchies and features d
– Activation layer : following convolution, an activation function, commonly

the Rectified Linear Unit (ReLU), is applied to introduce non-linearity and
enhance the model’s ability to make predictions on previously unseen data.

– Pooling layer : down-sample the spatial dimensions of the input data, re-
ducing its computational complexity. Max pooling and average pooling are
common techniques used in this layer.

– Fully connected layer : neurons in this layer are connected to all neurons
in the previous layer, resembling a traditional neural network. It helps in
learning global patterns and their relationships.

– Flattening layer : before entering the fully connected layer, the multi-dimensional
data is flattened into a one-dimensional vector. This step prepares the data
for the fully connected layers.

– Output layer : the final layer outputs the SOC estimation.

In our CNN model, we employ the ReLU activation function 1 in all layers
except the final layer, where a Sigmoid activation function 2 is utilized. The
architecture of this model, as depicted in Figure 3, reflects this design choice
with the parameters employed for each layer.
1 https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu
2 https://www.tensorflow.org/api_docs/python/tf/keras/activations/sigmoid
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Input Conv1D MaxPooling1D Flatten Dense

Dense

Dense

Dense

(100,3) kernel
(3,3,16)

bias(512)

bias(128)

bias(64)

bias(25)Output
SOC 

(25 values)

Fig. 3. Architecture of the proposed CNN model.

4.4 Explaining predictions

Efforts to enhance the interpretability and transparency of deep learning models,
particularly complex CNNs for SOC estimation, have led to the integration of
XAI techniques. These methods aim to elucidate the decision-making process
of models, bridging the gap between advanced computational algorithms and
human understanding. Among the various XAI methodologies, SHAP [14] stands
out for its comprehensive approach to quantifying the influence of each feature on
the model’s output. Our idea to explaining predictions involves employing a post-
hoc SHAP model applied to the output of our model. This allows us to obtain
the contributions of the three features: current (I), voltage (V), and temperature
(T) toward the SOC estimation. This analysis is visually represented in Figure 4,
where each feature’s impact on the CNN model’s predictions is clearly illustrated.

Fig. 4. Feature importance analysis with SHAP.

Upon analysis, we observed that among all the time series provided in the in-
put, only the current exhibits the highest contribution to the predictions. There-
fore, we aim to construct a time series using the SHAP values of the current.

Detecting discords Detecting discords within time series data is a crucial as-
pect of interpreting complex patterns, especially when assessing the impact of
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different factors on battery SOC estimation. To achieve this, our approach uses
a 2-dimensional matrix profile on the time series of SHAP values and current
values. This allows us to detect discords, i.e., natural discords which must ap-
pear simultaneously in both times series and are identified as the largest values
in the MP. We employ an algorithm called Stumpy 3 [24] built on top of the
MP and able to detect these discords. Discords represent data points that are
most different among all the time series. By setting a window size of m = 100,
we tailor the algorithm to our specific dataset, allowing for a comprehensive ex-
amination of the data over time frame. This window size is chosen to balance
the granularity of analysis with computational efficiency, ensuring that the algo-
rithm can effectively detect discords without being hindered by excessive detail
or data volume.

5 Experimental Evaluation

This section outlines the experimental setup, the comparative analysis with ex-
isting state-of-the-art models, and the metrics employed to assess performance.

5.1 Experimental protocol

Implementation All experiments were conducted on a machine with an Intel
Core i5 12th generation CPU, a NVIDIA GeForce RTX 3070 GPU with 6GB of
VRAM, 32GB of RAM, and a 512GB SSD. This machine provided the necessary
computing power to train and test the models efficiently and effectively.

Competitors To evaluate the SOCXAI algorithm, we compared it with the
state-of-the-art algorithms: a simple Feed-forward Neural Network (FNN) [6],
and a model based on Long Short-Term Memory (LSTM) networks [2].

Error metrics To assess the effectiveness of our model, we utilized three stan-
dard machine learning metrics. These metrics take into account the complete
set of window values under consideration, which in our case is 25, rather than
focusing on individual values. The metrics we employed are defined as follows:

– Mean Squared Error (MSE): As defined in Equation 4, it quantifies the the
average of the squares of the errors or deviations, in other words the differ-
ence between the estimator and what is estimated. The MSE is calculated
as follows (where n represents the total number of samples):

MSE =
1

n

n∑
i=1

(predicted valuei − observed valuei)
2 (4)

3 https://stumpy.readthedocs.io/en/latest/#
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– Mean Absolute Error (MAE): As defined in Equation 5, the MAE measures
the average absolute difference between the predicted and actual values. This
metric offers insight into the magnitude of errors in the model’s predictions:

MAE =

∑n
i=1 |predicted valuei − observed valuei|

n
(5)

– Root Mean Squared Error (RMSE): As defined in Equation 6, it is the square
root of the MSE and is commonly used to measure the average error between
the predicted and actual values in the same units as the original data:

RMSE =

√∑n
i=1(predicted valuei − observed valuei)2

n
(6)

5.2 Results

SOC estimation In Table 1, we conducted a comparative analysis between
SOCXAI model and other baseline models, namely FNN and LSTM, using the
dataset presented in Section 4.1.

Metric SOCXAI FNN LSTM
MAE 0.0143 0.0510 0.0201

MSE 0.0016 0.0065 0.0021

RMSE 0.040 0.0809 0.0464
Table 1. SOC estimation model performance results in dataset.

We evaluated the models based on error metrics including MSE, MAE, and
RMSE. The experimental results demonstrate that our model outperforms the
baseline models across all error metrics, marking a threefold improvement in
accuracy over the FNN model. This performance is attributed to the utilization
of CNN layers, which excel in capturing data dependencies and reducing model
complexity through by using fewer parameters compared to LSTM layers.

Figure 5 and Figure 6 depict the SOC estimation values generated by the
models alongside the true SOC values for two randomly selected cycles from
the MIT and INSA test sets, respectively. The x-axis represents the time, while
the y-axis represents the SOC values which range from 0 to 1, representing
0% to 100% charge. These figures clearly demonstrate that the SOCXAI and
LSTM models provide estimations closely aligned with the true SOC values,
significantly outperforming the FNN model. We note here that the proposed
model can be generalized to other types of lithium batteries; one simply needs
to retrain it.
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Fig. 5. Comparison of model prediction with LSTM and FNN on INSA driving cycle.
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Fig. 6. Comparison of model prediction with LSTM and FNN on MIT driving cycle.

Explaining predictions. As noted in [15], the SHAP model may sometimes
provide imprecise or misleading assessments of relative feature importance, par-
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ticularly failing to capture inter-feature relationships. Our investigation focuses
on this aspect, especially in the context of regression problems related to SOC
estimation. Consequently, if the SHAP method highlights significant contribu-
tions of current values within identified anomalies, we intend to evaluate the
consistency between SHAP assessments and the regions within the current val-
ues indicative of anomalies. This approach enhances our understanding of bat-
tery behavior and facilitates effective anomaly detection. Our findings confirm
that the SHAP model effectively explains the presence of anomalies as shown in
Figure 7 (top), indicating deviations from expected patterns. Moreover, the ab-
sence of conserved behavior in the time series underscores the efficacy of SHAP
in elucidating abnormal occurrences. Notably, the contributions of SHAP values
slightly increase within the subsequences where anomalies are detected, further
affirming the model’s ability to capture and explain these irregularities. Prac-
tically, one explanation for the abnormal behavior, as illustrated after zooming
into the discord in Figure 7 (bottom), of the battery could be attributed to a
voltage measurement issue. This issue affects the current values as the driving
cycle progresses until it reaches a voltage threshold. However, the rate at which
the voltage reaches this threshold can vary, indicating the inconsistent behavior
of the current time series values.

Fig. 7. Illustration of 2-dimensional anomaly detection of current and SHAP values
for subsequence m = 100.
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6 Conclusion and Perspectives

In this paper, we introduced a novel algorithm named SOCXAI, aimed at esti-
mating the SOC of batteries. This algorithm distinguishes itself by its capability
to predict not just a single future SOC value but 25 future values. Its applica-
tion extends beyond simple constant discharge scenarios to encompass real-world
driving cycles and various charging policies. Furthermore, it provides explana-
tions for these predictions using the SHAP model. Additionally, we proposed an
anomaly detection method using the concept of natural anomalies, highlighting
abnormal battery usage patterns that deviate from expected behavior.

In future work, we aim to enhance the performance of the proposed method
by exploring more advanced techniques such as utilizing a sliding window with a
dynamically varying size. Furthermore, we intend to expand this model to deal
with a new type of battery known as sodium-ion batteries.
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