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Abstract. Travel mode choice models make it possible to learn under
what conditions people decide to use different means of transport. Typi-
cally, such models are based on real trip records provided by respondents,
e.g. city inhabitants. However, the question arises of how to scale the in-
sights from an inevitably limited number of trips described in their travel
diaries to entire cities.
To address the limited availability of real trip records, we propose the Ur-
ban Journey System integrating big data platforms, analytic engines, and
synthetic data generators for urban transport analysis. First of all, the
system makes it possible to generate random synthetic journeys linking
origin and destination pairs by producing location pairs using an input
probability distribution. For each synthetic journey, the system calculates
candidate routes for different travel modes (car, public transport (PT),
cycling, and walking). Next, the system calculates Level of Service (LOS)
attributes such as travel duration, waiting time and distances involved,
assuming both planned and real behaviour of the transport system. This
allows us to compare travel parameters for planned and real transits.
We validate the system with spatial, schedule and GPS data from the
City of Warsaw. We analyse LOS attributes and underlying vehicle tra-
jectories over time to estimate spatio-temporal distributions of features
such as travel duration, and number of transfers. We extend this analysis
by referring to the travel mode choice model developed for the city.

Keywords: Travel mode choice · synthetic journeys · public transport

1 Introduction

Modern cities have typically been designed and built with the primary focus on
the needs of car drivers [10]. Planning concepts, such as the 15-minute city, aim
to minimise car usage by ensuring access to critical urban facilities within walking
distance. Another approach is to promote less energy consumption and pollution-
emitting means of transport [2]. However, the proposed solutions can be difficult
to implement in the existing urban infrastructure [8]. Therefore, it is necessary
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to develop tools that enable data-driven decisions for urban development. These
include vehicle trajectory and LOS analysis tools that can give insights into
traffic and street congestion which are useful for routing and transportation
planning [14].

Travel mode choice (TMC) modelling [4,5,6] is vital to understanding under
what conditions people decide to use different means of transport. In particular,
it helps us to understand what makes people use (or not use) public transport.
However, while TMC models predict whether for a trip of interest a car or an-
other means of transport is likely to be used, identifying the spatial distribution
of mode choices in urban areas is difficult. This is because the number of trips
collected in surveys is inevitably limited, and increasing this number is expen-
sive. Moreover, as not everyone is equally likely to share their data, increasing
the size of the representative sample of real journeys in the areas of interest is
additionally difficult.

Motivated by these needs, we propose the Urban Journey System (UJS) in-
tegrating Apache big data platforms with spatial data analytic engines based
on OpenTripPlanner (OTP). The system combines open-source platforms with
the newly proposed JourneyGenerator, JourneyDescriber, and JourneyAnalyser
modules. JourneyGenerator generates synthetic journeys which are used to cre-
ate public and individual transport trajectories. In this way, an arbitrarily large
number of journeys can be obtained. To obtain representative journey origin
and destination pairs, locations are generated using an input probability dis-
tribution, such as the probability distribution of journey endpoints based on
time-dependent transport model demand matrices.

Next, JourneyDescriber calculates candidate routes for each synthetic jour-
ney. These include routes for car, walking, cycling, and PT using OTP instances
provided with planned and real timetables in the form of General Transit Feed
Specification (GTFS) files. While planned GTFS files are obtained from trans-
port authorities, real GTFS files are developed by our system using a real-time
location stream of public transport vehicles processed inter alia by a module
based on Apache Flink. JourneyDescriber also calculates LOS attributes for var-
ious travel modes. Finally, the JourneyAnalyser produces an interactive HTML
report on the generated journeys and compares LOS attributes.

We validate the system with the results obtained for the City of Warsaw,
Poland. The GTFS feed and real-time PT location stream were processed to cal-
culate scheduled and real PT networks. Hence, we use a selection of 399 planned
and real daily public transport schedules already collected by the system. Jour-
neys are generated based on the origin-destination hourly demand matrices of
the transport model. In our analysis, we pay particular attention to journey
attributes having a key impact on travel mode choices.

The remainder of this work is organised as follows. In Sect. 2 we analyse
related works. This is followed by a summary of the system in Sect. 3, including
an overview of its implementation. Next, results obtained for the City of Warsaw
are analysed in Sect. 4. Finally, conclusions are made in Sect. 5.
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2 Related works

Several other works have focused on the spatial distribution of the choice of
means of transport and its LOS. The applied approach to estimating their spatial
distribution depended on the available data. Chia et al. explored the relationship
between the spatial distribution of transfer location and the transit service’s
attractiveness in Brisbane [3]. The study was limited to services operated with a
passenger card because the analysis was partially based on data the card operator
system collected. The rest of the data came from a travel survey.

Yousefzadeh Barri et al. explored data from an extensive household travel
survey in the Toronto region, including a one-day household travel diary [15].
They used statistical and machine learning (ML) models to predict newly gener-
ated transit trips by a low-income carless group after improving job accessibility.
The study was limited to the use of public transport. Rocha et al. combined ge-
netic algorithms and geostatistical methods to forecast travel demand variables
and, as a result, the distribution of car trip rates in the São Paulo Metropolitan
Area [11]. The data used in the study came from the Origin-Destination (OD)
survey. Regarding means of transport, the study was limited to cars.

Tenkanen et al. analyzed different travel modes in the Helsinki region [13].
The analysis included door-to-door walking, cycling, driving and transit jour-
neys. Centroids of statistical grid cells were used as origin and destination points
for the calculation of the journeys. Their work is focused on distance and du-
ration. Other LOS attributes were not analyzed. However, some of them were
estimated to obtain the total travel time, e.g. PT walking times to and from the
nearest stops were estimated based on Euclidean distances.

In [1], public transport time inaccuracy and variability were addressed. The
duration of door-to-door PT journey and its components e.g. waiting and in-
vehicle time were estimated using both scheduled timetables and actual timeta-
bles determined based on past GPS traces of PT vehicles. Both the origin and
destination of each generated journey were based on centroids of the hexagonal
spatial index developed by Uber with the area of each hexagon of 0.1km2. Ge-
olocated jobs were used to enable spatial analysis of employment accessibility.
LOS attributes of other than PT transport modes were not considered. Demand
matrices were not used to vary demand for transportation between zones. Travel
time reliability was recently addressed also in [16], where a proposal for for-
mulas quantifying PT competitiveness compared to cars based on maximising
entropy value to obtain more dispersed competitiveness was made. Maps of ar-
eas of Hangzhou, China with low and high competitiveness according to these
formulas were obtained.

As observed in [6], travel mode choice models most frequently rely on survey
data only. This is even though the LOS attributes documenting the choices faced
by a traveller are also considered to be important [5]. Among the attempts to
calculate features quantifying trip characteristics under different travel modes,
considering exact point coordinates, the study developed for London can be
mentioned [6]. The LOS attributes in the work included durations of walking,
cycling, interchanges and the whole PT route, and were calculated for real trips
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only. No attempts to generate trip endpoints of representative trips were made.
Furthermore, the spatial variability of the values of LOS features was not con-
sidered [6]. The inevitably limited number of real trips, compared to the London
city area, illustrates the challenges caused by the use of real trip data.

In this work, we aim to go beyond these studies by generating and analysing
an arbitrary number of detailed trips in urban areas, linking points generated
based on probability distributions calculated with data from a transport model.
Our system enables spatial analysis of multiple trip features under four different
travel modes rather than the use of PT and car only. We consider inter alia
features found relevant for TMC models built with ML methods.

3 System Overview

The objective of the UJS system is to enable large-scale analysis of journeys in
urban areas. The high-level architecture of the system including its core com-
ponents is presented in Fig. 1. Let us note that both JourneyGenerator and
JourneyDescriber were designed to be a part of the Use4IoT architecture [7].

The PT schedule data in GTFS format for each day is developed based on
data downloaded from transport operators. This provides planned daily timeta-
bles. However, disruptions such as delays and cancellations sometimes occur in
public transport. Hence, real GTFS is created using a real-time location stream
of public transport vehicles obtained from the API of public transport entities
and processed inter alia by Apache Flink. In this way, real daily timetables in
GTFS format are obtained. This makes it possible to construct a real transit
network. Hence, for example, delays causing possibly missed transfers can be
considered when calculating LOS attributes for a day of interest, based on the
real behaviour of the PT system. This enables analysis of the actual experience
of using PT.

3.1 JourneyGenerator

Planning an urban transport system is a complex task that relies on travel de-
mand patterns. To model such demand, the urban area is frequently divided into
disjoint transport zones. A travel demand (TD) matrix is a square matrix which
shows the expected number of passengers moving between each combination of
zones. The columns represent the origin zones, while the rows represent the des-
tination zones of the city. In our approach, we use a potentially different matrix
for each hour of the day. Hence, we consider up to 24 demand matrices for a
demand scenario. One scenario can denote, e.g. real demand observed currently
or hypothetical demand expected in 5 years during working days. Each matrix
can come from the transport model of the city or be generated to reflect, e.g.
the number and location of children travelling to schools.

TD matrices are used in JourneyGenerator to generate synthetic journeys, as
shown in Alg. 1. We use a demand matrix to generate a random zone pair in line 4
of the algorithm. Although any zone combination is possible, the likelihood of
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Fig. 1: High-level architecture of UJS system

selecting each zone varies. A zone pair and an hour with higher passenger traffic
between the zones are more likely to be selected. After randomly selecting an
origin zone and a destination zone, in lines 5 and 6 we select random addresses
from the lists of address points in each zone area. The probability of selecting
an address is proportional to its weight. This makes it possible, e.g. to make
journeys from buildings populated by a large number of residents more likely to
be generated. Finally, an exact time during the one hour is randomly generated.

3.2 JourneyDescriber

For each synthetic journey produced by JourneyGenerator, JourneyDescriber
calculates trajectories likely to be used with different travel modes and LOS
attributes for each travel mode. Estimating a travel path and calculation of
its LOS attributes such as duration and distance is carried out using OTP3, a
multimodal trip planning module relying on OpenStreetMap4 (OSM) [9]. OSM
provides information on transport infrastructure such as the street network and
the location of public transport stops.

OTP calculates private car routes and estimates trip duration using OSM
data about the street network, taking into consideration traffic regulations and
obstacles such as traffic lights, road types, and crossroads limiting the estimated
3 https://www.opentripplanner.org
4 Map data copyrighted by OpenStreetMap contributors and available from https:
//www.openstreetmap.org
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Algorithm 1 The generation of journeys
Input:
int N - the number of journeys to generate
int[][][] matrices - a table of H two-dimensional matrices representing the number of
passengers moving between zones (i, j), i, j ∈ {1, . . . , Z}, one matrix per one hour
time slot h ∈ {h1, . . . , hH}.
A[] addresses - list of address points to consider in each zone i ∈ {1, . . . , Z}

1: procedure GenerateRandomJourneys(N, matrix, addresses)
2: journeys← emptyList()
3: for k ← 1 to N do
4: (Ckstart , Ckend , h)← GetRandomZonePair(matrices)
5: Akstart ← GetRandomAddress(Ckstart , addresses)
6: Akend ← GetRandomAddress(Ckend , addresses)
7: journeys.add(Akstart , Akend , randomTime(h))
8: end for
9: return(journeys)

10: end procedure

car speed. Based on travel time matrices from a transport model, JourneyDe-
scriber also calculates the travel time by car under the expected street congestion
for a given zone pair and time of the day.

In the case of public transport, the routes are calculated between public
transport stops, and the waiting and walking times are added to the total trip
duration. The calculated distance includes walking from the trip origin to the
first stop, from the last stop to the destination, and the potential distance covered
during transfers in multimodal travel.

For a private car, a single route is calculated. For PT, a set of routes is created
that consists of all connections that start up to 5 minutes before and 10 minutes
after the given journey starting time. Sample car and PT routes calculated for
the same input synthetic journey are presented in Fig. 2.

For every synthetic journey, JourneyDescriber makes requests to the OTP in-
stance(s). Each instance is configured with planned or real daily timetables. OTP
provides JourneyDescriber with data about possible routes for car, PT, walking
and cycling, and LOS attributes such as travel duration for each of these modes.
Importantly, LOS features can be calculated using both planned timetables and
real timetables developed by the UJS system based on GPS traces of public
transport vehicles. Thus, LOS features documenting planned connections can be
compared with LOS features quantifying connections which were feasible in the
past. In particular, the impact of delays on missed connections is reflected in the
LOS features developed based on real timetables.

In the OTP responses, for requests to OTP instances based on both planned
and real timetables, we also receive information inter alia on potential PT con-
nections within a 15-minute timeframe, the duration of each connection, and
the number of transfers required by each of them. Data on possibly many PT
connections per journey is aggregated by JourneyDescriber to determine LOS
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Fig. 2: Example car route and its PT alternatives

attribute values such as minimum and average travel time and the number of
possible connections within a 15-minute window from the start of the journey.
Finally, every journey with its LOS attributes and trajectories is included in the
output list of synthetic journeys.

3.3 JourneyAnalyser

Fig. 3: The workflow of JourneyAnalyser

Fig. 3 shows the workflow of JourneyAnalyser – a module implemented in
Python that generates the final analysis. Input journey records in CSV format
with embedded trajectories are filtered to develop maps and plots, e.g. for specific
hours and means of transport. Data is also transformed to extract individual car
and PT trajectories for each journey. The Folium library generates interactive
maps from preprocessed data and OSM. The maps are exported in PNG format
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for coarse analysis and in HTML format for more geospatial insight. Fig. 4
presents sample maps for car (Fig. 4a) and PT (Fig. 4b) connections. A time-
lapse video from the PNG maps can be generated for the period of interest
to better understand the geospatial-temporal data. The preprocessed data is
also the source for predefined reports implemented as a Jupyter Notebook. The
reports compare global LOS for means of transport, timetables or hours, e.g.
by generating empirical cumulative distribution function (ECDF) plots for LOS
attributes such as the ones shown in Fig. 5 and Fig. 6.

(a) Routes of cars. 6 am to 12 pm (b) Connections by PT. 6 am to 12 pm

Fig. 4: Sample interactive maps produced by JourneyAnalyser. SYNTH_WAW_EQW
data. Background: [9].

Fig. 5: ECDFs of car trip duration not considering street congestion and consid-
ering congestion. Selected hours. SYNTH_WAW_EQW data.
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Fig. 6: ECDFs of PT trip duration, including minimum and average travel time
under planned and real timetables. All considered hours. SYNTH_WAW_EQW data.

3.4 Implementation

The system was implemented at a central unit with 2xLenovo P/N BF78 2.65GHz
and 48 cores, 1536 GB RAM and 64TB mass storage, which provided the ba-
sis for Apache NiFi, Apache Hadoop, Apache Flink, six OTP instances, and R
and Python environments. It serves UJS needs by inter alia collecting planned
timetables and GPS traces of PT vehicles, and calculating real timetables.

4 Results

4.1 Aggregation of journey features into frequent routes and
distribution functions

The system was validated using real data from the City of Warsaw. First, public
transport APIs were used to download raw data and prepare planned and real
daily timetables for buses and trams. For the metro, GTFS files were calculated
using metro frequency information. The Warsaw transport model was used to
provide travel time transport matrices for cars and OTP was fed with the Warsaw
infrastructure spatial data from OSM.

Two synthetic data sets were developed with UJS. In both cases, real demand
matrices for working days from the transport model were used as input for Jour-
neyGenerator. In the first case, the addresses considered included all available
addresses in the City of Warsaw, sampled with equal weights. 4,000 journeys in
the period of 6 AM to 12 PM based on these weights were generated with Alg. 1.
LOS attributes were calculated using both planned schedules and real schedules.
This was done by submitting requests to two different OTP instances in which
planned and real Warsaw transport networks were configured. In this way, the
SYNTH_WAW_EQW data set was developed.

Data sets such as the SYNTH_WAW_EQW data set can be used for both cal-
culating distributions of individual features and visualising routes of synthetic
trips on maps. Examples of interactive maps generated by JourneyAnalyser are
given in Fig. 4. Fig. 4a identifies segments of traffic infrastructure heavily used
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by individual means of transport in morning hours (between 6 am and 12 pm).
Traffic congestion is visible on the east bank of the Vistula River in the south
part of the city. Studies on air pollution [12] can be complemented by this kind
of analysis.

Similarly, Fig. 4b shows the quickest PT connections which could be used
for journeys present in the SYNTH_WAW_EQW data set. Public transport in Warsaw
mainly consists of low-emission vehicles (buses and electric trams). Therefore,
this visualisation can be used to identify areas without good direct connections
with the city centre. Such areas are observed in the north-west outskirts of the
city along the Vistula river, splitting the city into two parts. In this area, there
are more direct car routes than PT connections.

These results can also be analysed statistically, e.g. aggregated using an em-
pirical cumulative distribution function (ECDF). Fig. 5 and Fig. 6 show the dis-
tribution of travel duration. Fig. 5 illustrates the differences in the distribution of
car travel duration during and after morning rush hours. The plots compare the
duration calculated with and without considering traffic congestion. Let us note
that not only congestion but also travel origin-destination patterns are different
depending on the time of the day.

Similarly, Fig. 6 compares PT travel duration calculated using planned and
real daily timetables. While the planned travel duration is calculated using
planned timetables, the real travel duration is calculated using data from GPS
sensors in the vehicles. Because the duration for PT is calculated as a statistic
from available connections for each trip, minimal and average travel times are
compared. The plots show that the duration difference between planned and real
connections is higher for longer journeys, which frequently include transfers be-
tween lines and are more susceptible to delays of individual vehicles. Both Fig. 5
and 6 illustrate how data produced by UJS can be used for in-depth analysis of
LOS attributes under different conditions.

4.2 Analysing spatial distribution of the level of service features

The SYNTH_WAW_EQW data set shows that aggregates of trips and ECDFs can be
developed with moderately sized data sets. However, a few thousand trips are
not sufficient to generate high-density plots showing spatial distribution of LOS.

Hence, the second data set used as an illustration in this study was populated
with 100,000 journey records. This time the addresses considered included all
available addresses in the City of Warsaw, sampled with weights proportional to
the number of inhabitants of an address. As before, the journeys were randomly
generated with Alg. 1. LOS attributes were calculated using planned schedules.
In this way, the SYNTH_WAW_INHW data set was developed. Trips were generated
for random times for hours between 6 AM and 8 PM. As discussed in Sect. 3.1,
the probability of selecting an hour depended on the overall number of journeys
for this hour according to the demand matrices. In this way, journeys during
rush hours were more likely to be produced.

Maps showing the distribution of selected LOS features are provided in Fig. 7.
Each point represents the location of the origin of the synthetic trips present in
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the data. It can be observed that the density of points varies greatly, which
corresponds to the fact that trips from some locations, such as forest areas, are
far less likely during the working days for which the data set was generated.

(a) Number of available PT connec-
tions

(b) Minimum number of required
transfers

(c) Minimum walking distances required
to use PT connections

(d) Difference of travel duration be-
tween bicycle and PT

Fig. 7: Distributions of sample LOS values. SYNTH_WAW_INHW data.

Fig. 7a shows the number of available PT connections to a destination within
15min i.e. in the period [t(j)− 5min, t(j) + 10min], where t(j) denotes the ran-
domly assigned start time of journey j. In the city centre, 10 or more connections
are frequently available during such periods, as travellers may rely on multiple
trams and buses travelling through major transportation hubs. However, it can
be observed that for some areas from which many trips are likely to be initi-
ated such as the eastern part of the city, the number of available connections is
significantly lower. Similarly, in such areas, as shown in Fig. 7b, even the best
connection may require one or more transfers.

Fig. 7c shows that the overall walking distance needed by travellers in some
areas of the city to use a suitable PT connection varies greatly. Importantly, when
generating LOS features, UJS considers feasible routes, i.e. in this case walking
paths resulting from street and pavement networks rather than Euclidean dis-
tances. In less densely populated areas the density of feasible walking paths is
likely to be much lower, resulting in a major difference between the Euclidean
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distance and the actual length of the walking route. Finally, Fig. 7d shows the
values calculated by subtracting from travel duration by bicycle the duration of
the quickest connection with public transport.

4.3 Adding spatial aspects to travel mode choice modelling

Let us note one more use for the data generated by the system. Municipalities
struggle to reduce air pollution and foster sustainable mobility. Hence, the ques-
tion arises of how to analyse the potential for environmentally-friendly travel
mode choices. In Fig. 8, we provide a TMC model developed for the City of
Warsaw, taking the form of a decision tree and pruned to include key top-level
splits only 5. Importantly, the model was developed using both real survey data
including trip diaries and an extensive set of LOS features, as suggested in [6].

Distance_WALK >= 1390

drivingLicence_SURVEY = true

minDurationRatioCarToTransit_DIFF < 0.47

householdBelow15_SURVEY >= 1

PUBLIC_TRANSPORT
.32  .02  .04  .42  .20

100%

PUBLIC_TRANSPORT
.36  .03  .04  .51  .06

77%

CAR
.44  .02  .04  .44  .06

62%

CAR
.54  .02  .05  .30  .08

20%

PUBLIC_TRANSPORT
.39  .02  .04  .50  .05

42%

CAR
.52  .02  .05  .37  .04

12%

PUBLIC_TRANSPORT
.33  .02  .04  .55  .05

30%

PUBLIC_TRANSPORT
.08  .04  .02  .78  .08

16%

WALKING_ONLY
.17  .00  .04  .11  .68

23%

yes no

1

2

4

8

9

18 19 5 3

CAR
OTHER (unused)
PRIVATE_BIKE (unused)
PUBLIC_TRANSPORT
WALKING_ONLY

Fig. 8: Simplified TMC model for the City of Warsaw. Decision tree.

The model illustrated in Fig. 8 reveals that people tend to walk if the walk-
ing distance is no longer than 1390m. Otherwise, and assuming they have a
driving license, people tend to travel by car when dCAR(j)

min(dPT(j)) < 0.47 i.e. when
the travel duration required when relying on the quickest connection by PT
5 While it is not the objective of this work to describe the process of model devel-

opment, let us note that some further details on TMC modelling for the City of
Warsaw that we rely on in this work can be found in [4].
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Fig. 9: Travel duration by car vs. public transport. SYNTH_WAW_INHW data.

is at least twice as large as the duration of travel by car under free vehicle
flow conditions denoted by dCAR(j). Let us analyse for which journeys this
is likely to happen. Fig. 9 shows the spatial distribution of the values of the
minDurationRatioCarToTransit_DIFF feature. It follows from the figure that
while in some (mostly western) parts of the city, areas exist for which travel by
PT is even faster than by car, in some parts of the city dCAR(j)

min(dPT(j)) < 0.4 and
it may be even three times faster to travel by car (without traffic jams) than
by PT. Interestingly, even in such parts as the north part of the City, depend-
ing on the exact origin location and trip destination, travellers from these areas
are provided with competitive or in rare cases inevitably less satisfactory PT
services. This highlights the role of fine-grained spatial analysis of trip features.

4.4 Data needs of the system

Let us note that the main challenge for both the proposed and similar solutions
is the need to obtain data needed to estimate the probabilities of exact travel pa-
rameters necessary for the generation of the journeys. Without TD matrices and
address point data, it is hard to generate realistic coordinates of trip endpoints.
We used TD data and address points including the number of house inhabitants
for journey generation for our experiments. The number of house inhabitants
can be used to estimate the probability of the trips from/to residential build-
ings. However, this is not the case for commercial buildings. For buildings such
as shopping centers estimating at a city scale the number of arriving/departing
persons and the origin and destination of their travel can be difficult. Still, jour-
neys for zone combinations can be generated and if zones have moderate area
the impact of the problems discussed above is limited.
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5 Conclusions

Travellers in urban areas have to select travel modes for individual trips they
make. While for short-distance trips, walking and cycling are most frequently
used, sustainable mobility aims at the reduction of private car use. This means
inter alia increasing the use of public transport. However, multiple factors influ-
ence the decisions of travellers. Furthermore, the overall travel duration depends
on walking distances and waiting times such as waiting for transfers.

In this study, we propose a system combining Apache platforms, OpenTrip-
Planner and transport model data to generate and analyse representative trips in
urban areas. The system enables an in-depth understanding of the distribution of
trips, their routes and LOS features. Once used for spatial analysis, these data
enable the understanding of which areas benefit from short walking distances
needed to use PT connections, direct connections and overall PT travel duration
comparable to travel duration by car. This provides interesting opportunities
for analysing travel mode choices across different city areas. In the future, we
plan to further exploit the visualisation of synthetic trip data. An interesting
challenge is the use of clustering techniques for these data, though the existence
of spatially close points with substantially different feature values confirms the
complexity of PT service level patterns.
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