
Deep learning residential building segmentation
for evaluation of suburban areas development

Agnieszka Łysak2[0000−0002−1439−6355] and Marcin Luckner1[0000−0001−7015−2956]

1 Jan Kochanowski University, Institute of Physics, ul. Uniwersytecka 7, 25-406
Kielce, Poland agnieszka.lysak@ujk.edu.pl

2 Warsaw University of Technology, Faculty of Mathematics and Information Science,
ul. Koszykowa 75, 00-662 Warsaw, Poland marcin.luckner@pw.edu.pl

Abstract. Deep neural network models are commonly used in com-
puter vision problems, e.g., image segmentation. Convolutional neural
networks have been state-of-the-art methods in image processing, but
new architectures, such as Transformer-based approaches, have started
outperforming previous techniques in many applications. However, those
techniques are still not commonly used in urban analyses, mostly per-
formed manually. This paper presents a framework for the residential
building semantic segmentation architecture as a tool for automatic ur-
ban phenomena monitoring. The method could improve urban decision-
making processes with automatic city analysis, which is predisposed to
be faster and even more accurate than those made by human researchers.
The study compares the application of new deep network architectures
with state-of-the-art solutions. The analysed problem is urban functional
zone segmentation for the urban sprawl evaluation using targeted land
cover map construction. The proposed method monitors the expansion
of the city, which, uncontrolled, can cause adverse effects. The method
was tested on photos from three residential districts. The first district
has been manually segmented by functional zones and used for model
training and evaluation. The other two districts have been used for au-
tomated segmentation by models’ inference to test the robustness of the
methodology. The test resulted in 98.2% accuracy.

Keywords: Transformers, SegFormer, Deep learning, Semantic segmen-
tation, Computer vision

1 Introduction

Suburbanisation, the process through which urban areas expand and evolve, is of-
ten seen as a positive outcome of population growth, rising incomes, advances in
transportation technology, and the decentralisation of jobs. However, a byprod-
uct of this process, known as urban sprawl, poses several challenges [6,22]. Urban
sprawl, a term encompassing various phenomena such as the expansion of ur-
ban boundaries, land use practices, and their consequences, leads to issues like
spatial mismatch between housing and employment zones, over-reliance on auto-
mobiles, fragmented local governance, and inefficient spatial planning [13]. These
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(a) Wietrznia, Kielce (b) Pod Telegrafem, Kielce (c) Marymont, Warsaw

Fig. 1: Analysed residential zones in Kielce and Warsaw

issues impact various dimensions, including economic (higher infrastructure and
public service cost, increasing unemployment), policy (unplanned growth, un-
coordinated development), environmental (loss of vegetation, increased pollu-
tion) and social (car dependency, poverty, reduction in social interaction) [4].

Traditional methods of urban analysis, often manual and time-consuming,
are increasingly supplemented by advanced technologies. There are some at-
tempts, including urban sprawl monitoring using artificial neural networks [25]
and convolutional neural networks [16,30]. There are also approaches based on
SegFormer architecture, described in Section 3.1, for the problem of semantic seg-
mentation of roads for sustainable mobility development [23], or buildings [12,21].

Our work examines the possibility of the application of deep-learning ap-
proaches to the problem of urban sprawl monitoring. We compared four deep
learning architectures (with a particular interest in SegFormer architecture [28])
and analysed their generalisation ability. In this context, we examined the City of
Kielce, experiencing significant urban sprawl [20]. The occurrence is growing [13]
and is particularly evident in suburban residential districts like Wietrznia area
(Fig. 1a) and Pod Telegrafem area (Fig. 1b). In contrast, the City of Warsaw,
particularly the densely developed Marymont district (Fig. 1c), presents a dif-
ferent scenario, with lower levels of urban sprawl [20].

Our research and obtained results show that the Segformed architecture,
trained initially for scene segmentation [34], can be applied – using manually
labelled aerial photos and AdamW optimising algorithm [15] – for urban area
segmentation. The proposed model achieved over 91 per cent accuracy on the
testing data, which was not obtained by several other architectures.

After segmentation, a vector representation of the functional area was cre-
ated, which can be converted to a segmentation map, substantively the same as
the land use map, within the selected functional zones. This map can be used for
further analysis, which is necessary in many fields, such as urban, economic, and
spatial planning. If this methodology were standard, there would be no problem
calculating such a map on the fly when new data is derived and monitoring the
growth of the residential area with streamed new data.
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The rest of this paper is structured as follows. Section 2 summarises re-
lated works in the segmentation area and deep-learning techniques. Section 3
presents the workflow of the proposed solution and the deep-learning model –
the SegFormer – used in the tests. Section 4 presents the obtained results on
three different data sets and compares our framework with other state-of-the-art
methods. Section 5 concludes the paper and presents possible further research.

2 Related works

A typical urban zone segmentation approach is image data for vector conversion,
often with the addition of socioeconomic data and then pixel-wise classification
with the use of algorithms like SVM [7], K-means [32], and XGBoost [2]. Also,
convolutional neural networks (CNN) are introduced as models, which oper-
ate on pure image data only and extract features from them as a part of the
learning process, like AlexNet and ResNet [9], custom CNN [35], DFCNN [1],
SegNet [24], DeepLab family [27], and attention-based systems [17]. Though
semantic segmentation of functional zones is complex and requires understand-
ing crucial image features and capturing context dependencies, the transformer-
based methodology seems the best intuition for the problem.

Vision Transformers (ViT) started from a concept of context dependencies
extended on the whole image [8]. A disadvantage of the ViT architecture is the
impossibility of solving more complex computer vision tasks, like detection or
segmentation. The first attempt to overcome this drawback was Pyramid Vision
Transformer (PVT) [26], a Transformer backbone for convolution block replace-
ment, not a complete architecture. Thanks to the pyramid feature generation, it
can work on image classification, detection and segmentation.

Transformer-based architectures have been invented for computer vision tasks
with different purposes like Swin Transformer [14] to improve ViT, networks
for image detection [5], or networks for image segmentation [5,33], especially
SegFormer [28], the model chosen for this work.

Several works discussed urban segmentation – using deep learning – before.
Pan et al. proposed using the U-net deep learning architecture to detect un-
planned urban settlements [18]. The proposed method led to an overall accuracy
of over 86% for the building segmentation, which can probably be improved
using newer network architecture.

Zhang et al. proposed a deep learning-based framework called RFCNet [31].
The solution did not work on aerial photos but fused multiple views and gen-
erated plausible and complete structures. The solution could be used in urban
sprawl observation because the authors presented that their solution can con-
struct roof structures from photos

Finally, Yi et al. created UAVformer, a composite transformer network for
urban scene segmentation of unmanned aerial vehicle (UAV) images [29]. The
system works on various kinds of photos and performs more complex scenery
segmentation than in our work. The obtained building recognition varies from
88.5% to 95.2% according to a data set. However, because the types of photos
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and the set issues are slightly different in our case, it is hard to compare the
results directly.

3 Methods

Fig. 2: Schematic workflow chart

In our work, we used maps from Kielce Geoportal (aerial photos and land
cover maps) from 2019 and Warsaw Geoportal (aerial photos) from 2022. Photos
from Kielce were used in the learning stage. Due to shifts and inconsistencies in
combination with the photos, the land cover map has been rejected as a ground
truth-functional zones segmentation map. Hence, data was labelled manually
through geographic information system (GIS) software based on information
about residential zone locations from the land cover maps. Then, the dataset
was tiled and split into train and test parts.

Workflow (Fig. 2) takes a tiled image and produces a segmented image to
classify a residential area. Although the dataset is limited to only three districts

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_9

https://dx.doi.org/10.1007/978-3-031-63783-4_9
https://dx.doi.org/10.1007/978-3-031-63783-4_9


Deep learning residential building segmentation 5

from two Polish cities, it was selected based on availability and relevance to the
specific urban areas. The intent was to focus on these regions to develop and
validate our deep-learning framework under controlled and consistent conditions.
This decision was also influenced by the constraints in data accessibility and the
computational resources required for processing more extensive datasets.

Construction of the dataset Data for SegFormer training and evaluation was
taken from Kielce’s open-access maps. The photo was from April 2019, and it
was constructed from a 5 × 5 centimetres from a plane flying 700 meters over
ground height. It was downloaded from GIS Kielce open-access Geoportal via
Web Map Service (WMS). The orthophoto was downloaded as a 1:500 scale map,
converted to 1200 dpi Portable Graphics Format (PNG). The map was labelled
in QGIS open-source software based on residential zone localisation information
from the land cover map obtained from Kielce Geoportal for the same scope as
the photo. Substantively, there were two classes: buildings and ground (building
surroundings). Later, the image from the photo was converted to an RGB JPG
image, and the annotated image with labels was converted to an 8-bit GRAY
JPG image. Next, both images were tiled to 512 × 512 pixels tiles. The class
information was coded according to the approach applied in the ADE20K se-
mantic segmentation dataset, which contains over 20K images annotated with
pixel-level objects [34]. Because we were implementing SegFormer architecture
from the Huggingface Transformers library, where class info is inherited from the
ADE20K dataset by default, we followed this behaviour and used the ADE20K
building class for houses and grass class for building surroundings.

Dataset preprocessing Training 29, 113 × 15, 938 pixels image from Kielce
Wietrznia residential district was tiled via OpenCV in Python programming
language. The final training dataset contained three-channel (RGB) 512 × 512
tiles. The supporting segmentation masks were delivered as one channel (GRAY)
512× 512 tiles. We removed empty tiles and tiles with 80% background and no
building class existence. So, the training dataset finally counted 812 images with
corresponding annotations.

Testing stages SegFormer was evaluated three times, presented in Fig 3. Dur-
ing the training, we checked the models’ performance on one house image from
Wietrznia district, which was from the same location as the training set but
was not a part of the training data. The model has not seen this exact house.
However, it was extracted from Wietrznia district, where the rest of the area
was used for the models’ training (Fig. 3a). The image was 1024 × 1024 RGB
JPG, which was tiled into four 512× 512 tiles.

After the experiment was done, the model was tested on the second Pod
Telegrafem dataset (Fig. 3b), which was a district 4 kilometres away from the
localisation of the training dataset and, of course, it also has not been seen by the
model during the learning phase. Photo was also RBG JPG image, with 3072×
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(a) Wietrznia (b) Pod Telegrafem (c) Marymont

Fig. 3: Testing datasets from residential districts. The area contoured in blue
was the training data for SegFormer. The yellow area (at the lower-left corner)
was the local part of the testing data. The areas contoured in magenta were the
remote parts of the testing data.

2560 resolution, divided into 30 512× 512 tiles. The last test was performed on
the residential district Marymont from Warsaw (Fig. 3c). Data for the SegFormer
test was the Warsaw open-access map. The photo was from April and May 2022,
and it was constructed from a 5×5 centimetres vertical photo from a plane flying
at 1600 meters over ground height, taken with a camera for vertical photographs.
It was downloaded from GIS Warszawa open-access Geoportal via WMS. The
photo was 2048× 2048 RGB JPG, divided into 16 512× 512 tiles.

To sum up, the testing stage included the same area but a different house,
from training data, data from the same city with similar building density and
architecture (mostly detached houses), and data from a different city, from
more densely built regions and a little more condensed architecture (more semi-
detached and terrace houses).

3.1 Deep learning model

In the proposed framework, we used SegFormer b5 [28], pre-trained on the
ADE20K dataset. We experimented with different versions of SegFormer, dif-
ferent epochs, and learning rates. The best combination was on the b5 version,
after 28 training epochs and a 0.0006 learning rate.

SegFormer architecture The applied model combines Transformer and Multi-
Layer Perceptron (MLP) architectures [26]. It consists of the encoder part for
feature extraction and the decoder part for upsampling and segmentation mask
prediction (Fig. 4).

The encoder’s input image is divided into patches of 4× 4 pixels. In contrast
to ViT, smaller patches work better in detailed classification, like semantic or
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Fig. 4: SegFormer architecture [26]

instance segmentation. The transformer block – an equivalent to the convolu-
tion block in CNN – performs feature extraction. This Transformer block works
without a positional encoding module. In semantic segmentation, the input im-
age should be arbitrarily shaped. Therefore, classical rigid positional encoding
is not possible to deploy. Interpolation for positional encoding in SegFormer is
replaced by Mix-Feed Forward Network (Mix-FFN) with local positional infor-
mation share.

The encoder consists of Efficient Self-Attention, Mix-FFN and Overlap Patch
Merging. Self-Attention is being computed as standard, but with efficiency im-
provement, thanks to reducing the density of one of the attention mechanism
formula components. Mix-FFN consists of a convolutional layer and Multi Layer
Perceptron (MLP) for data-driven, flexible positional encoding, which is not
fixed, like in a typical Transformer. Overlap Patch Merging enables feature size
reduction. In the decoder, which is very lightweight, there is MLP, which takes
features from the encoder and fuzzes them together to unify channel dimen-
sions. Then, features are upsampled and concatenated together. Second, MLP
fuses concatenated features and predicts a segmentation map.

Training The SegFormer model, by default, employs the cross-entropy loss
function for optimisation. Our implementation utilised the PyTorch and Hug-
gingface libraries, enabling us to choose from Huggingface-supported PyTorch
optimisers. We opted for the AdamW optimising algorithm [15]. Our choice to
utilise the AdamW optimiser was driven by its distinct advantages in enhancing
model generalisation. A key feature of AdamW, an extension of the Adam opti-
mizer [11], is its implementation of weight decay regularisation. This approach
is particularly effective in minimising the loss function by selectively adjusting
smaller weight values. AdamW minimises loss function by finding small weight
values, which helps to overfit less and generalise better due to eliminating irrel-
evant components and suppressing static noise on the target.
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Fig. 5: Cross-entropy loss function during the learning phase plot

Our choice of a learning rate of 0.0006 was based on empirical testing, yield-
ing the most favourable results regarding model performance. During training,
images were batch-processed, each batch containing two images of dimensions
512 × 512 pixels in RGB colour mode. The optimisation process minimises the
loss function by comparing the cross-entropy between the target and predicted
pixel classes in logit mode.

Fig. 5 presents the loss function. The function decreases quickly and stabilises
at a low level, which is a proper and expected behaviour. Sporadic peaks in its
value could testify to outlying image tiles, in which models’ predictions were
inaccurate.

The model’s parameters, which facilitated this minimisation, were adjusted
following the selected learning rate. The training was concluded once the model
performance metrics reached satisfactory levels, after which the model’s param-
eters were saved for future inference purposes. Notably, an automatic hyperpa-
rameter tuning stage was not incorporated into this research.

Evaluation A two-step evaluation process assessed pixel-wise accuracy and the
mean intersection over union metrics. Pixel-wise accuracy represents the percent-
age of pixels correctly classified concerning the target mask. A second metric –
mean Intersection over Union (mIoU) – was introduced because accuracy could
be misleading in cases where many pixels belong to the ground and fewer to
residential buildings (imbalanced classes). mIoU calculates the overlap between
the predicted and target masks, divided by the combined area of both masks.
Fig. 6 presents metrics in the training stage using Wietrznia dataset. The trained
model achieved an average pixel-wise accuracy of 0.93 (Fig. 6a) and 0.86 mIoU
(Fig. 6b).
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(a) Accuracy

(b) IoU

Fig. 6: Metric plots for the learning phase

4 Results

4.1 SegFormer tests on various data sets

The model was evaluated on data marked with yellow and magenta in Fig. 3.
Fig. 7 presents the qualitative results for these data sets.

In the testing phase, the model’s inferencing capability was initially tested on
a single house from the Wietrznia dataset. The model’s proficiency in processing
images of varying dimensions was evaluated using a 2048× 2048 pixels map tile.
In this test, the model successfully segmented the building area, achieving a
96.2 % mIoU and 99.6 % accuracy. The qualitative results (Fig. 7a) were highly
encouraging regarding qualitative performance.

Subsequently, we extended our evaluation to include two additional datasets:
Pod Telegrafem and Marymont. For these tests, the input tiles maintained the
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(a) Wietrznia

(b) Pod Telegrafem

(c) Marymont

Fig. 7: SegFormer results
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exact dimensions as those used in the training phase (512 × 512 pixels). The
SegFormer model demonstrated robust segmentation capabilities in urban areas,
achieving an 86.7% mIoU and 98.2% accuracy for Pod Telegrafem district (the
results are shown in Fig. 7b) and 50.3% mIoU and 91.4% accuracy for Marymont
district (the results are shown in Fig. 7c). These results validate the model’s
effectiveness in diverse urban environments.

4.2 SegFormer vs. other methods

The SegFormer results were compared against several pre-trained state-of-the-art
algorithms to evaluate their effectiveness. That includes the vision transformers-
based solution DPT [19] published in 2021, the mask transformer-based method
Mask2Former [3] published in 2022, and the latest version of the acclaimed real-
time object detection and image segmentation model YOLOV8 [10] published
in 2023.

All algorithms were subjected to the same testing procedure to ensure a fair
and consistent comparison. The Wietrznia dataset served as the basis for this
evaluation. Each algorithm was applied to segment a single building within this
district and then extended the testing to include the Pod Telegrafem and Mary-
mont districts. The outcomes of these comparative tests have been presented in
Tab. 1.

Table 1: Comparison of the results of our framework and state-of-the-art methods
for image semantic segmentation
Algorithm Dataset IoU [%] Accuracy [%]
DPT Wietrznia 84.0 97.9
Mask2Former Wietrznia 76.2 96.5
SegFormer Wietrznia 96.1 99.5
YOLOV8 Wietrznia 96.5 99.6
DPT Pod Telegrafem 20.1 87.0
Mask2Former Pod Telegrafem 38.7 82.2
SegFormer Pod Telegrafem 86.7 98.2
YOLOV8 Pod Telegrafem 34.9 87.4
DPT Marymont 37.3 71.6
Mask2Former Marymont 56.6 87.4
SegFormer Marymont 50.3 91.4
YOLOV8 Marymont 62.2 91.6

The proposed SegFormer-based approach outperformed most of the other
methods in the tests. However, it is notable that the YOLOV8 algorithm achieved
a higher mIoU on Wietrznia and Marymont test sets. Additionally, YOLOV8
demonstrated slightly better accuracy in these datasets.

It is worth noticing that any reference method could not obtain the IoU
close to the proposed framework on a separate Pod Telegrafem data set. This
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finding underscores the impressive generalisation capabilities of the SegFormer
framework, particularly in diverse urban settings.

5 Conclusions

Our study demonstrates the effective application of the SegFormer model, which
was fine-tuned rather than pre-trained, for semantic segmentation in residential
zones. This approach yielded promising results, both qualitatively and quanti-
tatively.

Comparison with the state-of-the-art methods, in their pre-trained versions,
showed that in many cases, SegFormer and the workflow proposed in this re-
search achieved the best results on the test sets from Wietrznia. In the second
and third testing districts, SegFormer architecture performed very well, being
outperformed by YOLOV8 in two testing sets.

Notably, the SegFormer model exhibited strong generalisation capabilities,
particularly in the additional tests using data from another city. Despite a de-
crease in performance compared to the original city (Kielce), which was antici-
pated due to the model not being trained on data from other cities, the results
were still robust and satisfactory. The model had not been trained on data from
any other city; therefore, urban aesthetics from another region can cause the
outcome to deteriorate. A solution for problems like that is additional training
of the actual model on data from other metropolises of interest.

The main contribution is the novel application of the known SegFormer ar-
chitecture to urban sprawl monitoring, a relatively underexplored area. Also,
analysis of the custom dataset from Kielce and Warsaw provides new insights
specific to these urban areas.

We acknowledge certain limitations in our research, primarily related to the
dataset’s size and diversity. These limitations could affect the model’s generaliz-
ability across different urban settings. To address this, we suggest expanding the
dataset to include various photos from diverse areas. Such an approach would
likely enhance the model’s ability to account for variations in urban characteris-
tics, including different residential area locations and roofing materials, thereby
bolstering the overall robustness and generality of the method.

Likewise, more functional zone types and data from a more comprehensive
time range could be included to broaden the methodology. Also, exploring the
integration of historical data to track and predict urban sprawl over time presents
a promising direction. Additionally, fine-tuning the SegFormer configuration’s
hyperparameters could yield improved results for specific applications, such as
photo segmentation. Finally, augmenting our dataset is another strategy that
could further refine our outcomes.

In summary, while our study demonstrates the potential of using advanced
deep learning models like SegFormer in urban sprawl monitoring, it also opens
up several avenues for further exploration and improvement. The insights gained
from this research contribute to deep learning, computer vision, urban plan-
ning, and sustainable development. The practical implications of this research

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_9

https://dx.doi.org/10.1007/978-3-031-63783-4_9
https://dx.doi.org/10.1007/978-3-031-63783-4_9


Deep learning residential building segmentation 13

for urban planners and policymakers are significant. The ability to accurately
and efficiently monitor urban sprawl can inform more sustainable urban develop-
ment practices, help resource allocation and support environmental conservation
efforts.

References

1. Bao, H., Ming, D., Guo, Y., Zhang, K., Zhou, K., Du, S.: DFCNN-
based semantic recognition of urban functional zones by integrating remote
sensing data and POI data. Remote Sensing 12(7), 1088 (mar 2020).
https://doi.org/10.3390/rs12071088, https://doi.org/10.3390%2Frs12071088

2. Chen, S., Zhang, H., Yang, H.: Urban functional zone recognition in-
tegrating multisource geographic data. Remote Sensing 13(23) (2021).
https://doi.org/10.3390/rs13234732

3. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention
Mask Transformer for Universal Image Segmentation. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition 2022-
June, 1280–1289 (2022). https://doi.org/10.1109/CVPR52688.2022.00135

4. Chiguvi, D., Kgathi-Thite, D.: Analysis of The Positive and Negative Effects of
Urban Sprawl and Dwelling Transformation in Urban Cities: Case Study of Tati
Siding Village in Botswana. Journal of Legal, Ethical and Regulatory Issues 25(S2),
1–13 (2022)

5. Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., Shen, C.: Twins:
Revisiting the Design of Spatial Attention in Vision Transformers. Advances in
Neural Information Processing Systems 12(NeurIPS), 9355–9366 (2021)

6. Cocheci, R.M., Petrisor, A.I.: Assessing the Negative Effects of Suburbanization:
The Urban Sprawl Restrictiveness Index in Romania’s Metropolitan Areas. Land
12(5) (2023). https://doi.org/10.3390/land12050966

7. Deng, Y., He, R.: Refined Urban Functional Zone Mapping by Integrating Open-
Source Data. ISPRS International Journal of Geo-Information 11(8) (2022).
https://doi.org/10.3390/ijgi11080421

8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In: In-
ternational Conference on Learning Representations (2021), https://openreview.
net/forum?id=YicbFdNTTy

9. Izzo, S., Prezioso, E., Giampaolo, F., Mele, V., Di Somma, V., Mei, G.: Classi-
fication of urban functional zones through deep learning. Neural Computing and
Applications 34(9), 6973–6990 (2022). https://doi.org/10.1007/s00521-021-06822-
w, https://doi.org/10.1007/s00521-021-06822-w

10. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (Jan 2023), https://
github.com/ultralytics/ultralytics

11. Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. 3rd Inter-
national Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings pp. 1–15 (2015)

12. Li, M., Rui, J., Yang, S., Liu, Z., Ren, L., Ma, L., Li, Q., Su, X., Zuo, X.: Method
of Building Detection in Optical Remote Sensing Images Based on SegFormer.
Sensors 23(3) (2023). https://doi.org/10.3390/s23031258

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_9

https://doi.org/10.3390/rs12071088
https://doi.org/10.3390%2Frs12071088
https://doi.org/10.3390/rs13234732
https://doi.org/10.1109/CVPR52688.2022.00135
https://doi.org/10.3390/land12050966
https://doi.org/10.3390/ijgi11080421
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1007/s00521-021-06822-w
https://doi.org/10.1007/s00521-021-06822-w
https://doi.org/10.1007/s00521-021-06822-w
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.3390/s23031258
https://dx.doi.org/10.1007/978-3-031-63783-4_9
https://dx.doi.org/10.1007/978-3-031-63783-4_9


14 Łysak et al.

13. Lityński, P.: The intensity of urban sprawl in Poland. ISPRS International Journal
of Geo-Information 10(2) (2021). https://doi.org/10.3390/ijgi10020095

14. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
Transformer: Hierarchical Vision Transformer using Shifted Windows. Proceedings
of the IEEE International Conference on Computer Vision pp. 9992–10002 (2021).
https://doi.org/10.1109/ICCV48922.2021.00986

15. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. 7th International
Conference on Learning Representations, ICLR 2019 (2019)

16. Mansour, D., Souiah, S.A., El Amin Larabi, M.: Built-up area ex-
traction through deep learning. In: 2021 IEEE International Geo-
science and Remote Sensing Symposium IGARSS. pp. 6805–6808 (2021).
https://doi.org/10.1109/IGARSS47720.2021.9554694

17. Niu, R., Sun, X., Tian, Y., Diao, W., Chen, K., Fu, K.: Hybrid Mul-
tiple Attention Network for Semantic Segmentation in Aerial Images.
IEEE Transactions on Geoscience and Remote Sensing 60, 1–18 (2022).
https://doi.org/10.1109/TGRS.2021.3065112

18. Pan, Z., Xu, J., Guo, Y., Hu, Y., Wang, G.: Deep learning segmentation and
classification for urban village using a worldview satellite image based on U-net.
Remote Sensing 12(10), 1–17 (2020). https://doi.org/10.3390/rs12101574

19. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision Transformers for Dense Prediction.
Proceedings of the IEEE International Conference on Computer Vision pp. 12159–
12168 (2021). https://doi.org/10.1109/ICCV48922.2021.01196

20. Renata, R.C., Barbara, C., Andrzej, S.: Which polish cities sprawl the most. Land
10(12) (2021). https://doi.org/10.3390/land10121291

21. Song, J., Zhu, A.X., Zhu, Y.: Transformer-Based Semantic Segmentation for Ex-
traction of Building Footprints from Very-High-Resolution Images. Sensors 23(11)
(2023). https://doi.org/10.3390/s23115166

22. Spirkova, D., Adamuscin, A., Golej, J., Panik, M.: Negative effects of urban sprawl.
In: Charytonowicz, J. (ed.) Advances in Human Factors in Architecture, Sustain-
able Urban Planning and Infrastructure. pp. 222–228. Springer International Pub-
lishing, Cham (2020)

23. Tao, J., Chen, Z., Sun, Z., Guo, H., Leng, B., Yu, Z., Wang, Y., He, Z., Lei,
X., Yang, J.: Seg-Road: A Segmentation Network for Road Extraction Based on
Transformer and CNN with Connectivity Structures. Remote Sensing 15(6) (2023).
https://doi.org/10.3390/rs15061602

24. Tian, T., Chu, Z., Hu, Q., Ma, L.: Class-wise fully convolutional network for se-
mantic segmentation of remote sensing images. Remote Sensing 13(16), 200–215
(2021). https://doi.org/10.3390/rs13163211

25. Tsagkis, P., Bakogiannis, E., Nikitas, A.: Analysing urban growth using ma-
chine learning and open data: An artificial neural network modelled case
study of five Greek cities. Sustainable Cities and Society 89, 104337 (2023).
https://doi.org/10.1016/j.scs.2022.104337

26. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.:
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without
Convolutions. Proceedings of the IEEE International Conference on Computer
Vision pp. 548–558 (2021). https://doi.org/10.1109/ICCV48922.2021.00061

27. Wang, Y., Gao, L., Hong, D., Sha, J., Liu, L., Zhang, B., Rong, X., Zhang, Y.: Mask
DeepLab: End-to-end image segmentation for change detection in high-resolution
remote sensing images. International Journal of Applied Earth Observation and
Geoinformation 104, 102582 (2021). https://doi.org/10.1016/j.jag.2021.102582,
https://doi.org/10.1016/j.jag.2021.102582

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_9

https://doi.org/10.3390/ijgi10020095
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/IGARSS47720.2021.9554694
https://doi.org/10.1109/TGRS.2021.3065112
https://doi.org/10.3390/rs12101574
https://doi.org/10.1109/ICCV48922.2021.01196
https://doi.org/10.3390/land10121291
https://doi.org/10.3390/s23115166
https://doi.org/10.3390/rs15061602
https://doi.org/10.3390/rs13163211
https://doi.org/10.1016/j.scs.2022.104337
https://doi.org/10.1109/ICCV48922.2021.00061
https://doi.org/10.1016/j.jag.2021.102582
https://doi.org/10.1016/j.jag.2021.102582
https://dx.doi.org/10.1007/978-3-031-63783-4_9
https://dx.doi.org/10.1007/978-3-031-63783-4_9


Deep learning residential building segmentation 15

28. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer:
Simple and Efficient Design for Semantic Segmentation with Transformers. Ad-
vances in Neural Information Processing Systems 15(NeurIPS), 12077–12090
(2021)

29. Yi, S., Liu, X., Li, J., Chen, L.: UAVformer: A Composite Transformer Network
for Urban Scene Segmentation of UAV Images. Pattern Recognition 133 (2023).
https://doi.org/10.1016/j.patcog.2022.109019

30. Yin, B., Guan, D., Zhang, Y., Xiao, H., Cheng, L., Cao, J., Su, X.: How to
accurately extract large-scale urban land? Establishment of an improved fully
convolutional neural network model. Frontiers of Earth Science 16(4) (2022).
https://doi.org/10.1007/s11707-022-0985-2

31. Zhang, X., Aliaga, D.: RFCNet: Enhancing urban segmentation using regu-
larization, fusion, and completion. Computer Vision and Image Understanding
220(April), 103435 (2022). https://doi.org/10.1016/j.cviu.2022.103435, https://
doi.org/10.1016/j.cviu.2022.103435

32. Zhang, X., Li, W., Zhang, F., Liu, R., Du, Z.: Identifying urban functional zones
using public bicycle rental records and point-of-interest data. ISPRS International
Journal of Geo-Information 7(12) (2018). https://doi.org/10.3390/ijgi7120459

33. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang,
T., Torr, P.H., Zhang, L.: Rethinking Semantic Segmentation from a Sequence-
to-Sequence Perspective with Transformers. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition pp. 6877–6886
(2021). https://doi.org/10.1109/CVPR46437.2021.00681

34. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Seman-
tic Understanding of Scenes Through the ADE20K Dataset. International Journal
of Computer Vision 127(3), 302–321 (2019). https://doi.org/10.1007/s11263-018-
1140-0

35. Zhou, W., Ming, D., Lv, X., Zhou, K., Bao, H., Hong, Z.: SO–
CNN based urban functional zone fine division with VHR remote sens-
ing image. Remote Sensing of Environment 236(November 2019), 111458
(2020). https://doi.org/10.1016/j.rse.2019.111458, https://doi.org/10.1016/j.
rse.2019.111458

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63783-4_9

https://doi.org/10.1016/j.patcog.2022.109019
https://doi.org/10.1007/s11707-022-0985-2
https://doi.org/10.1016/j.cviu.2022.103435
https://doi.org/10.1016/j.cviu.2022.103435
https://doi.org/10.1016/j.cviu.2022.103435
https://doi.org/10.3390/ijgi7120459
https://doi.org/10.1109/CVPR46437.2021.00681
https://doi.org/10.1007/s11263-018-1140-0
https://doi.org/10.1007/s11263-018-1140-0
https://doi.org/10.1016/j.rse.2019.111458
https://doi.org/10.1016/j.rse.2019.111458
https://doi.org/10.1016/j.rse.2019.111458
https://dx.doi.org/10.1007/978-3-031-63783-4_9
https://dx.doi.org/10.1007/978-3-031-63783-4_9

