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Abstract. The Generalized Hydrodynamic Equations are being inves-
tigated for simulating turbulent flows. They were derived from the Gen-
eralized Boltzmann Equation by Alexeev (1994), which itself was ob-
tained from first principles via a chain of Bogolubov kinetic equations
and considers particles of finite dimensions. Compared to the Navier-
Stokes equations, the Generalized Hydrodynamic Equations include new
terms representing temporal and spatial fluctuations. These terms intro-
duce a timescale multiplier denoted by τ , and the Generalized Hydrody-
namic Equations reduce to the Navier-Stokes equations when τ equals
zero. The nondimensional τ is calculated as the product of the Reynolds
number and the squared ratio of length scales, τ = Re × (l/L)2, where
l represents the apparent Kolmogorov length scale and L denotes a hy-
drodynamic length scale.
In this study, 2D turbulent flow over a Backward-Facing Step (BFS) with
a step height of H=L/3 (where L is the channel height) at Reynolds
number Re=132000 was investigated using finite-element solutions of
the GHE. The results were compared to Direct Numerical Simulations
(DNS) utilizing the Navier-Stokes equations, and to a k − ε turbulence
model, as well as experimental data. The comparison encompassed ve-
locity profiles, recirculation zone length, and the velocity flow field. The
obtained data confirm that the GHE results are in good agreement with
the experimental findings, while other approaches diverge significantly
from the experimental data.

Keywords: Turbulent flow · Generalized Hydrodynamic Equations ·
DNS · Navier-Stokes equations · k − ε turbulence model · Numerical
solution · Comparison with experimental data.

1 Introduction

The Generalized Hydrodynamic Equations (GHE) were derived by Alexeev in
1994 from the Generalized Boltzmann Equation. The Generalized Boltzmann
Equation itself was obtained from first principles through the Bogolubov kinetic
equations chain, taking into account particles with finite dimensions [1].
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1.1 Generalized Boltzmann Transport Equation (GBE)

The kinetic theory of gases is founded upon the solution to the Boltzmann trans-
port equation, governing the space-time evolution of the particle velocity distri-
bution function, F , expressed as

Df

Dt
= J, (1)

where
D

Dt
=

∂

∂t
+ v · ∂

∂r
+ F · ∂

∂v
(2)

represents material derivative in space, velocity space and time. J denotes the
collision integral ([2], p.11), where v and r are the velocity and the radius-vector
of the particle, respectively, and F is the force acting on the particle.

The standard Boltzmann transport equation takes into account the changes
in distribution function f on hydrodynamic and mean time between collision
scales of infinitesimal particles. Accounting for a third time scale, associated
with finite dimensions of interacting particles, gives rise to an additional term
in the Boltzmann transport equation resulting in a generalized form given by

Df

Dt
− D

Dt
(τ
Df

Dt
) = J, (3)

where τ is the timescale, a material property, that Alexeev (1994) related to
the mean time between particle collisions. The new term is thermodynamically
consistent; more details on the GBE are provided in Alexeev’s book [2].

2 Generalized Hydrodynamic Equations as Governing
Equations

Hydrodynamic equations can be obtained from Eq. (3) by multiplying the latter
by the standard collision invariants (mass, momentum, energy) and integrating
the result in the velocity space. These equations are valid for incompressible
viscous flow. They have the following form and were originally presented in [5]:

∂V

∂t
+(V∇)V−Re−1∇2V+∇p−F = τ

{
2
∂

∂t
(∇p) +∇2(pV) +∇(∇ · (pV))

}
(4)

while continuity equation is

∇ ·V = τ

{
2
∂

∂t
(∇ ·V) +∇ · (V∇)V +∇2p−∇ · F

}
(5)

where V and p are nondimensional velocity and pressure, Re = V0L0/ν - the
Reynolds number, V0 - velocity scale, L0 - hydrodynamic length scale, ν -
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kinematic viscosity, F is a body force and a nondimensional τ = τ∗L−1
0 V0 =

τ∗ν/L2Re. The terms containing τ are called the fluctuations (temporal and
spatial) [1].

We made the following assumptions deriving Eq. (4, 5): (i) τ is assumed to
be constant, (ii) the nonlinear terms of the third order in the fluctuations, and
the terms of the order τ/Re, are neglected, so the focus is on large Re numbers,
(iii) slow flow variation is assumed, neglecting second derivatives in time.

Additional boundary conditions on walls require fluctuations to be zero. The
following boundary condition for pressure on walls is expressed as:

(∇p− F) · n = 0, (6)

where n is a wall normal.
The equations (4) together with equation (6), and boundary and initial con-

ditions for the velocities, constitute the governing equations that we are going to
solve for turbulent flows. The Generalized Hydrodynamic Equations become the
Navier-Stokes equations when the timescale τ is zero. No additional turbulent
model is involved or used to obtain the solution for turbulent flow.

Recently, an analytical solution of GHE for turbulent flow in channel has
been obtained, which compares well with a number of turbulent channel flow
experiments for Reynolds number from Re = 2970 to Re = 970000 [6].

3 Backward-Facing Step Flow Problem

The Backward-Facing Step (BFS) flow is illustrated in Figure 1. The flow pro-
gresses from left to right over a backward-facing step of height H. The entrance
channel width is W = 2 ·H, as depicted in Figure 1. The Reynolds number for
the channel exit width is Re=132000, as in the experiment [11], or the Reynolds
number calculated for the step height H is Re=44000. The inlet velocity is U=1.

3.1 Numerical simulations results

GHE model. The averaged flow field, the horizontal velocity contours, obtained
with the GHE model are shown in Figure 1(a). We used a finite element mesh re-
fined near the walls for GHE consisting of 27700 nodes (triangular elements with
linear approximation for all variables). The non-stationary problem described by
Eq. (4) and (5) was been solved until it reached a nearly quasi steady state, and
then the averaging of the velocity field was performed over the time interval
t = [100, 200].

The parameter τ∗ in the expression τ = τ∗ν/L2Re is a material property and
is not currently known for the air, which was used in the experiment. We varied
the parameter τ to fit the velocity profile as shown in Figure 2. By fitting the
velocity profile, we also obtained an excellent recirculation zone length, which
compared well with the experiment. A similar procedure was performed in our
work [4] for water, where fitting of one velocity profile by varying τ∗ resulted
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(a)

(b)

(c)

Fig. 1. Backward-facing step problem: flow progresses from left to right,with the en-
trance channel width denoted as W and the step height as H=W/3. (a)Contours of the
averaged horizontal velocity obtained with the solution GHE by finite-element method
at Re=132000, with a mesh of 27700 nodes, (b)Contours of the averaged horizontal
velocity obtained with the DNS (Navier-Stokes) solution at Re=132000 with a mesh
of 1.1 million, (c) Zoomed-in of streamlines for the DNS (Navier-Stokes) solution.

in excellent agreement for all the velocity profiles across different experiments
conducted at various Reynolds numbers. The determined value of τ∗ for distilled
water remained consistent across different experiments where distilled water was
also used.
DNS (Navier-Stokes model). We can estimate how fine the mesh must be
to perform a resolved DNS. The smallest scale of the flow is [10]

λ =

√
ν

|∇V|
. (7)

If we assume that the non-dimensional vorticity is on the order of Re1/2 = 363
and use |∇V| = 100, then we arrive at the estimate λ = 3 · 10−4. Thus, the grid
spacing in the boundary layer (where the vorticity is largest) should be roughly
∆s = 3 · 10−4, and the total mesh size becomes approximately 1.1M grid points.
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Figure 1(b) shows the time-averaged solution when averaged over the time
interval t = [50, 200], illustrating the averaged flow field, the horizontal velocity
contours. The streamlines of the time-averaged solution, depicted in Figure 1(c),
reveal a small recirculation bubble that re-attaches at approximately x = 2.1H.

The Overture Cgins module was used for the DNS (Navier-Stokes model) [8],
[9].

K−εmodel. The solution with the k−ε turbulence model was obtained using
the commersial CFD2000 software with a mesh of about 45000 nodes refined at
a boundary.

Fig. 2. Flow over a backward facing step, Re = 132, 000, comparison of the averaged
horizontal velocity for the GHE solution, DNS (Navier-Stokes), k − ε model [13], and
experimental data (squares) [11] at x = 5.33H.

Comparison of velocity profiles. The flow patterns in Figure 1 are quite
distinct. Figure 2 presents the computed velocity profiles at x = 5.33H at the
end of the recirculation zone (x = 0 at the edge of the step) for different models,
along with experimental mean velocity measurements [11].

The solution with a standard k − ε model shows the velocity profile at x =
5.33H that has no backward flow. A standard k − ε model underpredicts the
recirculation zone length Xr = 5.5H by a substantial amount, 20-25% according
to [12], where more sophisticated turbulence models have been proposed for this
problem.

The GHE model output satisfactorily agrees with the experimental data for
both the velocity profile and the recirculation zone length Xr. The GHE model
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resulted inXr/H = 7.50, whileXexp
r /H = 7.0±1.0 was obtained experimentally.

All the data for the recirculation zone length are provided in Table 1.

Model Recirculation zone length / H
Navier-Stokes 2.1

k − ε 5.5
GHE 7.5

Experiment [11] 7.0± 1.0

Table 1. Comparison of the recirculation zone length for different models and experi-
ment.

The results obtained with the DNS (Navier-Stokes equations) show the ve-
locity profile at x = 5.33H without any backward flow, and Xr/H = 2.1. Similar
conclusion made by Jiang (1993), the Navier-Stokes cannot match the experi-
mental data for Re ≥ 450, as noted in his NASA report [7]. Experiments by
Amaly (1996) show that deviation of the Navier-Stokes results from the experi-
ment begins at Re = 350 [3]. Additional equations from a turbulence model need
to be added to the Navier-Stokes equations, and these models typically have two
to five parameters that need to be tuned for specific problems. In contrast, the
GHE does not require a turbulence model.

4 Conclusions

The GHE model was used to simulate 2D flow over backward-facing step at
Reynolds number Re=132000 and demonstrated excellent agreement with the
experimental data. Unlike other methods, the GHE model does not require any
turbulence models, yet it yielded turbulent velocity profiles that matched well
with the experimental data (Kim, 1980). This outcome marks a significant im-
provement over our previous results presented at the ICCS 2010 conference for
this type of flow [4], achieved by utilizing a larger number of nodes in the finite
element mesh. In contrast, both DNS (Navier-Stokes equations) and the k − ε
turbulence model results for this turbulent flow deviated considerably from the
experimental data.
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