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Abstract. Convection-diffusion problems in highly convective flows can
exhibit complicated features such as sharp shocks and shear layers which
involve steep gradients in their solutions. As a consequence, developing
an efficient computational solver to capture these flow features requires
the adjustment of the local scale difference between convection and dif-
fusion terms in the governing equations. In this study, we propose a
monotonicity preserving backward characteristics scheme combined with
a second-order BDF2-Petrov-Galerkin finite volume method to deal with
the multiphysics nature of the problem. Unlike the conventional Eulerian
techniques, the two-step backward differentiation procedure is applied
along the characteristic curves to obtain a second-order accuracy. Nu-
merical results are presented for several benchmark problems including
sediment transport in coastal areas. The obtained results demonstrate
the ability of the new algorithm to accurately maintain the shape of the
computed solutions in the presence of sharp gradients and shocks.

Keywords: Flow transport · Backward characteristics method · Petrov-
Galerkin finite volume method · Backward differentiation formula (BDF2).

1 Introduction

Convection-diffusion problems appear in various fields of science and technology
such as heat and mass transfer, environmental protection, fluid dynamics and hy-
drology. These problems in highly convective flows are essentially characterized
by some complicated features such as sharp shocks and shear layers which involve
steep gradients in their numerical solutions. As a consequence, construction of
efficient computational solvers to highly capture these flow features requires the
adjustment of the local scale difference between convection and diffusion terms
in the governing equations. Eulerian-based approaches have been widely used
for the numerical solution of these problems. However, for convection-dominated
cases, those methods exhibit spurious oscillations and numerical instabilities and
stringent stability conditions are consequently unavoidable.
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Backward characteristics methods are among excellent integration schemes by
the virtue of their stability properties and good accuracy. Indeed, By discretiz-
ing the Lagrangian derivative of the solution in time instead of the Eulerian
derivative, we can exceed the maximum allowable time step while maintain-
ing the efficiency of symmetric solvers. However, these methods can experience
some difficulties preserving the shape and mass conservation of advected quanti-
ties. Several remedies have been proposed including addition of filters to impose
monotonicity or positivity in the field of plasma physics [2]. However, this tech-
nique is challenging especially in higher order reconstruction due to the necessity
of some conditions on the polynomials to be monotone or positive [3]. Weighted
essentially non-oscillatory (WENO) reconstructions have been very popular [12,
14] even though these techniques are not convenient for long term simulation
since they are known to be too dissipative. In this work, we propose combining
low and high order interpolation schemes such that the interpolated value re-
mains within the largest and the smallest values of the solution in a set of points
surrounding the feet of the characteristics.
To deal with the diffusive terms, we propose a finite volume scheme. It is known
that finite volume methods are very popular for their ability in capturing shocks,
producing simple stencils and effectively treating Neumann boundary conditions
and nonuniform grids, which make them an attractive choice for fluid flow sim-
ulation. However, finite volume schemes confront some challenges, in geneal,
related to the accuracy of fluxes approximation which has an immediate impact
on truncation errors if the fluxes are not approximated carefully. In contrast, the
fluxes in finite volume element (FVE) methods are approximated by replacing
the unknowns with a finite element solution. Thus, the best choice of finite ele-
ment space makes the discretization design process bringing the focus to the local
character of the solution rather than the equation. Furthermore, very effective
discretization processes are provided for multilevel adaptive methods. Moreover,
finite volume element methods are known as one of the preferred approaches as
the test space essentially maintains the local conservation of the method with-
out serious restrictions in terms of implementation. The method consists on a
volume integral formulation of the problem using a finite partitioning set of vol-
umes for the equation discretization and restriction of admissible functions to a
finite element space for the solution discretization.
Several efforts have been investigated in this area. The authors in [5] ana-
lyzed some error estimates for finite volume finite element method for nonlin-
ear convection-diffusion problems where nonlinear convective terms are approxi-
mated using a monotone vertex-centered finite volume scheme. In [4], the authors
analyzed the stability of finite volume element scheme for parabolic problems
where the diffusion terms are discretized using Crouzeix-Raviart piecewise lin-
ear finite elements on a triangular grid and an upwind barycentric finite volumes
for the convective terms. The time integration is carried out using an implicit
Euler approach. In the area of solute transport problems, a proper orthogonal
decomposition (POD) is combined with classical finite volume element method
where an error estimate between the reduced-order POD and conventional FVE
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solutions is discussed [10]. In [8] the authors presented a discontinuous finite
volume element discretization for a coupled Navier–Stokes Cahn–Hilliard phase
field model. An analogous approach with mesh adaptivity is presented in [7] to
solve the nonlinear Allen-Cahn equation in two-space dimensions, where back-
ward Euler scheme is used for time integration and the nonlinearity is solved
using Newton iterative method.
The aim of this work is to construct a new backward-characteristics finite vol-
ume element (BC-FVE) method able to accurately approximate stiff transport
problems on unstructured grid. This is achieved by merging the advantages of a
monotone backward characteristics method and a Petrov-Galerkin finite volume
method. The novel method also avoids linearisation process of the convective
terms. The accuracy of the new method is tested for stiff transport problems
with analytical solution, including pollutant transport in the Loukkos river in
northern Morocco. The results presented in this paper show high resolution of the
proposed BC-FVE method in simulating transport and dispersion of pollutants
on large sea-surface regions.

2 Monotone backward-characteristics scheme for the
convective term

In this section, we construct an essentially non-oscillatory backward-characteristics
scheme to solve highly convective problems. To this end, given a two-dimensional
bounded domain Ω ⊂ R2 with Lipschitz boundary Γ and a time interval [0, T ],
we are interested in solving the following problem:

∂c

∂t
+ u(t,x, c) · ∇c = ∇ · (K∇c), (t,x) ∈ (0, T )×Ω,

(1)
c(0,x) = c0(x), x ∈ Ω.

Here, c(t,x) denotes the concentration of a species, u (t,x, c) is the velocity field
which may depend on the solution c, and c0(x) is a fixed initial condition. We
assume that equation (1) is equipped with appropriate boundary conditions.
The quantity K is the diffusivity tensor which is uniformly positive definite on
Ω with components in L∞(Ω).
Consider the time interval [tn, tn+1] and let ∆t = tn+1 − tn denote the time
step size. The spatial discretization of Ω consists of a quasi-uniform regular
triangulation Th consisting of triangular elements Kk such that Ω =

⋃N
k=1 Kk

where N denotes the total number of triangles. We introduce a dual mesh T ∗
h

associated to Th such that a given triangle K with vertices e1, e2 and e3 is divided
into six pieces by satisfying the following relations

|e1es1,2|
|e1e2|

=
|es2,1e2|
|e1e2|

= s,
|e1er1,2|
|e1E2|

= r,
|e2es2,3|
|e2e3|

=
|es3,2e3|
|e2e3|

= s,
|e2er2,3|
|e2E3|

= r,

|e3es3,1|
|e3e1|

=
|es1,3e1|
|e3e1|

= s,
|e3er3,1|
|e3E1|

= r,
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where s ∈ (0, 12 ) and r ∈ (0, 23 ) and Ej denotes the midpoint of the segment eiej .
By doing so, we obtain a partition of the triangle K, which consists of three
pentagons and three quadrilaterals as illustrated in Fig. 1. Our control volumes
Dm are then polygons surrounding a vertex ej or a midpoint Ej . Therefore we
obtain a family of control volumes covering the domain Ω with a total number
nv of control polygons Dm. Solving the advected part of (1) using the method

Fig. 1. A schematic diagram showing the partition of a triangle into three quadrilaterals
and three pentagons.

of characteristics requires the solution of the following problem

dXm(t)

dt
= um (t,Xm(t), cm) , t ∈ [tn, tn+1],

(2)
Xm(tn+1) = xm,

where Xm(t) = (Xm(t), Ym(t))
T denotes the departure point at time t of a

particle that will arrive at the centroid xm = (xm, ym)
T of the control volume

Dm at time tn+1. To solve problem (2) we use the well-known third-order Runge-
Kutta scheme [6, Table II.1.1]. Next, integrating the transport equation ∂c

∂t +u ·
∇c = 0 along the characteristic curves yields

c(tn+1,xm) = c (tn,Xm(tn)) . (3)

In general, the departure points Xm(tn) do not lie on a mesh point. Therefore,
an interpolation is required. This yields

c (tn,Xm(tn)) =
∑
k∈N

Cn
k Ψk(Xm(tn)), (4)
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where N refers to the number of contributed points during local interpola-
tion, Cn

m denotes the known solution at the vertex xm at time tn and Ψm,
m = 1, . . . , nv is the basis function evaluated at the departure point Xm(tn). It
should be stressed that high-order interpolation schemes might exhibit nonphys-
ical oscillations, where the solution undergoes strong variations in general [1].
To deal with those undesirable behaviors, we propose a combination of low and
high order interpolation schemes such that the interpolated value remain within
the largest and the smallest values of the solution in a set of points surrounding
the feet of the characteristics. Therefore, the low- and high-order solutions are
computed, respectively using the well-known inverse distance weighted (IDW) [9]
and the inverse multiquadric (IMQ) interpolations [13] where the corresponding
basis functions ψk and Θl are given by the formulas

ψk(Xm(tn)) =
(1/dmk)

2∑nvL

k=1(1/dmk)2
, Θl(Xm(tn)) =

1√
1 + (ϵdml)2

,

where ϵ denotes the shape parameter [11] and dmk is the Euclidean dis-
tance between the departure point Xm(tn) to the point xk calculated as

dmk = ∥Xm(tn)− xk∥ =

√(
Xm(tn)− xk

)2
+

(
Ym(tn)− yk

)2
.

See Fig. 2 for a graphical depiction. Thus, given the initial solution, the main
steps used in the proposed BC-FVE to solve the advected part of problem (1)
along a time step [tn, tn+1] are summarized in Algorithm 1.

Algorithm 1 One time step of the BC-FVE approach for solving the advected
part of problem (1).
1: Calculate the departure point Xm(tn).
2: Compute the high- and low-order solutions

cn+1
mH =

nvH∑
l=1

Cn
l Θl(Xn

m) and cn+1
mL =

nvL∑
k=1

Cn
kψk(Xn

m).

3: Given the host control volume D∗
m, compute

cmax = max(cn1 , c
n
2 , . . . , c

n
nvH

) and cmin = min(cn1 , c
n
2 , . . . , c

n
nvH

).
4: Set

αm =


min

(
1,

cmax−cn+1
mL

cn+1
mH

−cn+1
mL

)
, if cn+1

mH − cn+1
mL > 0,

min
(
1,

cmin−cn+1
mL

cn+1
mH

−cn+1
mL

)
, if cn+1

mH − cn+1
mL < 0,

0, if cn+1
mH − cn+1

mL = 0.

5: Update the solution as

cn+1
m = cn+1

mL + αm

(
cn+1
mH − cn+1

mL

)
.
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Fig. 2. A schematic diagram showing the main quantities used to interpolate the so-
lution from the computed departure points. For low-order IDW interpolation nvL = 3
whereas for high-order IMQ interpolation nvH = 6.

3 Petrov-Galerkin finite volume scheme for the diffusive
term

After dealing with the convective term, we are left with the following parabolic
equation expressed in terms of the material derivative

Dc

Dt
= ∇ · (K∇c). (5)

The aim of this section is to descritize the diffusive term using the well-known
Petrov-Galerkin finite volume method [15, 5]. Assuming the computational do-
main is discretized as described in section 2. In order to derive the weak form of
problem (5), we consider the following finite element space for the primal mesh

V(Th) :=
{
wh ∈ H1

0 (Ω)
∣∣∣ wh|Kk

∈ P2, ∀Kk ∈ Th
}
,

where P2 denotes the piecewise quadratic polynomial space. We are given also
a piecewise constant function space for the dual mesh

W(T ∗
h ) :=

{
vh ∈ L2(Ω)

∣∣∣ vh|Dm
∈ P0, ∀Dm ∈ T ∗

h

}
,
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where P0 denotes the constant polynomial space. Note that the spaces V(Th)
and W(T ∗

h ) are given by

V(Th) = span
{
ϕl(x), l = 1, . . . , nv

}
, W(T ∗

h ) = span
{
1Dm

(x), m = 1, . . . , nv

}
,

where ϕl denotes the standard quadratic Lagrange basis function and the char-
acteristic function 1Dm

is defined over each control volume Dm as

1Dm
(x) =

{
1, if x ∈ Dm,

0, elsewhere.

The discrete balance equation associated to problem (5) is given by integrat-
ing the whole equation over each control volume Dm and using the divergence
theorem to obtain ∫

Dm

Dch
Dt

dV = −
∫
∂Dm

(K∇ch) · nedσ, (6)

where ne denotes the outward normal vector to the edge e of Dm. Applying the
BDF2 scheme yields∫

Dm

(
3

2∆t
cn+1
h (x)− 2

∆t
cnh(X

n(x))− 1

2∆t
cn−1
h (Xn−1(x))

)
dV = (7)

−
∫
∂Dm

(K∇cn+1
h (x)) · nedσ,

where Xn(x) and Xn−1(x) denote the departure points at times tn and
tn−1 respectively, of the particle that will reach the point x at time
tn+1. Therefore, cnh is the solution evaluated using the backward-characteristics
method at tn, and cn−1

h is the solution evaluated two time steps back along the
characteristics. To construct a finite volume element scheme, we are seeking for
a solution ch ∈ V(Th) as in the framework of finite element analysis. Taking into
consideration that the semi-discrete solution ch can be rewritten in terms of the
chosen basis functions as

cnh(x) =

nv∑
l=1

Cn
l ϕl(x), m = 1, . . . , nv.

Inserting the above expression into (7) and rearranging all terms yields the fol-
lowing compact form

3

2∆t
MCn+1 + SCn+1 =

2

∆t
H̃n − 1

2∆t
Ĥn−1, (8)

where M and S are the mass and stiffness matrices which entries are given by

Mml =

∫
Ω

ϕl(x)1Dm
(x)dV, Sml = −

∫
∂Dm

(K∇ϕl(x)) · ne(x)dσ.
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The right-hand sides H̃n and Ĥn−1 are given by the following formulas, where the
corresponding integral are approximated using the Gauss-Legendre quadrature
rule

H̃n :=

(∫
Ω

cnh(Xn(x))ϕl(x)1DmdV

)
, Ĥn−1 :=

(∫
Ω

cn−1
h (Xn−1(x))ϕl(x)1DmdV

)
.

4 Numerical results

In this section, we examine the accuracy of the novel BC-FVE on several bench-
mark of transport problems including a system of nonlinear Burgers equations
and transport of a pollutant in coastal areas.

4.1 Slotted cylinder

Our first test is the slotted cylinder. The rotation is driven by u(x, y) = (−4y, 4x)T

and the diffusive term is taken as zero. For a given (x0, y0), let ρ(x, y) =√
(x− x0)2 + (y − y0)2. The slotted cylinder is defined as

c(0, x, y) =

{
4, if ρ(x, y) ≤ 1 and ( |x− x0| ≥ 0.03 or y ≥ 0.22) ,

0, elsewhere.

This problem has served as a prototype to examine the performance of several

Fig. 3. 3D representation of the initial solution of slotted cylinder. The minimum of c
is 0 and its maximum is 4.

algorithms for flow transport. The snap-shot of analytical solution in Fig. 3 is
used to quantify the accuracy of the novel method. The computational domain
is partitioned into 6274 control volumes. In Fig. 4, we display the obtained
numerical solutions, for low-order interpolation, high-order interpolation and
limiting approach, for CFL = 10.5. The numerical solutions after one revolution
(first column) are then repeated but after four revolutions, as illustrated in
the second column. The clear indication from Fig. 4 that the IDW solution
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is dissipative and substantially greater distortion appears after four revolutions.
On the other side, the IMQ solution exhibits steep gradients which become more
steep after four revolutions. However, all the non desirable effects are suppressed
when merging the two interpolations and the BC-FVE solution results in a more
accurate solution where the slotted cylinder shape is well reproduced during
time evolution. To further quantify the accuracy of the proposed approach and
analyze the effect of CFl on the stability of the method, we list in Fig. 5 the cross-
sections along y = 0 after one and four revolutions for different values of CFL
number. The corresponding cross-sections of the analytical solution are added
for comparison reasons. It is known that backward characteristics methods work
with high precision for large CFL numbers. Indeed, for CFL = 0.87 both IDW
and IMQ solutions exhibit nonphysical oscillations. Unfortunately, the BC-FVE
solution is also less accurate for same value of CFL. However, the more the CFL
number is high the more accurate results we obtain. Indeed, an intriguing finding
is that the inaccuracy of backward characteristics schemes decreases as the time
step increases in a certain range of parameters.

4.2 Viscous Burgers equations

In the second test we are concerned with a system of nonlinear Burgers’ equations
given as

∂u

∂t
+ u · ∇u− 1

Re
∆u = 0, (9)

where u = (u, v)⊤ is the velocity field, u the velocity in x-direction, v the velocity
in y-direction, and Re is the Reynolds number. The computational domain is
the square domain Ω = [−2, 2] × [−2, 2]. Initial and boundary conditions are
chosen to satisfy the following analytical solution

u(t, x, y) = v(t, x, y) =
1

2

(
1− tanh

(
Re

4
(x+ y − t)

))
,

In table 1 we summarize the minimum (Min), the maximum (Max) of the velocity
component u, the L2-error, the rate of convergence and the computational cost
(CPU) obtained for the IDW scheme, the IMQ scheme and the novel BC-FVE
for two values of Reynold number Re. It should be noted that the Min and the
Max results are taken in the range of large gradients. Roughly speaking, better
accuracy is achieved for Re = 104. In addition, the IMQ solution produces more
accurate convergence rates even though the solution is not monotone. on the
other side, the IDW solution is very dissipative. The results sound more accurate
when merging both interpolation and the BC-FVE solution is monotone where
the convergence rates are clearly improved. In term of computational costs, the
CPU time required for the IDW solution is about 3/4 times the CPU time
required for the IMQ solution. The BC-FVE solution in tern, is about 5/3 times
the IMQ solution.
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IDW solution IDW solution

IMQ solution IMQ solution

BC-FVE solution BC-FVE solution

Fig. 4. Snapshots for Example 4.1 obtained using different methods after one revolution
(first colomn) and four revolutions (second colomn).

4.3 Transport in the Loukkos river in northern Morocco

In the last example we turn our attention to a real application over the physical
domain given in Fig. 6, where we consider the transport of some sediments con-
centration c in the Loukkos river in the northern Morocco. The Loukkos river
is one of the largest streams in Morocco with an average flow of 50 m3/s. The
river flows in the Atlantic Ocean and plays an important role in preserving the
biodiversity, containing one of the most fertile and productive agricultural lands
in the country.
The main objective in this study is to analyze the performance of the new BC-
FVE method to handle complex geometries in coastal zones for long-term simula-
tions. Therefore, we address the solution to the transport equation (1) within the
computational domain defined by the Loukkos river and Larache coastal zone as
illustrated in Fig. 7. An incompressible Navier-Stokes code implemented in FEn-
iCS software is used to generate the velocity field and the results are depicted in
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Fig. 5. Cross sections along y = 0. From left to right: CFL = 10.5, CFL = 4.63, CFL
= 0.87. First row: 1 revolution. Second row: 4 revolutions.

Table 1. Computational results for Example 4.2 at time t = 1 obtained as a compara-
tive study between the three discussed methods. The CPU times are given in seconds.

Re = 104 Re = 20

nv Min(u) Max(u) L2-error Rate CPU Min(u) Max(u) L2-error Rate CPU

ID
W

257 1.452E-10 0.851 3.023E-01 — 1.18 2.929E-02 0.817 3.518E-01 — 1.38
622 3.294E-14 0.884 1.898E-01 0.67 3.14 5.403E-18 0.870 1.986E-01 0.82 3.73
1422 6.233E-16 0.894 9.421E-02 1.01 11.1 1.120E-57 0.891 8.986E-02 1.14 12.1
2945 9.638E-18 0.938 4.331E-02 1.12 47.5 1.213E-17 0.914 3.986E-02 1.17 64.3

IM
Q

257 1.452E-10 1.042 2.953E-02 — 1.58 -1.052E-03 1.432 1.946E-01 — 1.85
622 1.144E-14 1.034 5.862E-03 2.33 4.17 -1.345E-03 1.303 4.953E-02 1.97 4.96
1422 4.400E-15 1.026 1.101E-03 2.41 15.0 -1.293E-03 1.217 1.196E-02 2.05 16.3
2945 1.213E-17 1.019 2.213E-04 2.31 63.2 1.213E-17 1.135 2.696E-03 2.14 85.6

B
C

-F
V

E

257 2.442E-27 0.998 2.942E-02 — 2.63 2.752E-16 0.999 1.836E-01 — 3.06
622 3.534E-30 1.000 5.712E-03 2.36 6.95 1.425E-19 1.000 4.986E-02 1.88 8.27
1422 4.218E-32 1.000 1.173E-03 2.28 25.2 1.293E-23 1.000 1.011E-02 2.30 27.3
2945 1.423E-33 1.000 2.305E-04 2.34 105 1.003E-23 1.000 2.381E-03 2.08 144

Fig. 7. The problem model is subject to given inflow conditions u∞ = 0.65 m/s
on the river entrance, nonslip condition on land boundaries, while the ocean
boundaries remains free. The problem assumes a kinematic viscosity of 10 m2/s
and is subject to a release defined by a source term specified as follows:

f(x, y, t) = exp

(
− (x− xr)

2 + (y − yr)
2

σ2

)
, (10)

where σ = 0.2 km and (xr, yr) = (4.69 km, 0.15 km) is the selected location for
concentration release, see the release point R in Fig. 6. In our simulations, an
unstructured triangular mesh with 5036 nodes for low order method and 19282
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Fig. 6. Location of Loukkos river in the map

Fig. 7. Velocity field (left), computational domain and location of gauges (right).

nodes for high order method, are used. In Fig. 8 we present the simulation of
the concentration c at six distinct times: t = 25 min, 2 hours, 4 hours, 6 hours,
8 hours, and 10 hours. In the early stages of the simulation, the concentration
fronts released in the river begins to evolve until it flows into the Atlantic Ocean.
Henceforth, the advection of the sediment c into the ocean eventually conden-
sates in the bay before it stagnates within it, forming large spot in the exit of
the river. It should be stressed that despite the challenges posed by the complex
geometry and the flow features, the novel BC-FVE method demonstrates high
performance in capturing high gradients within the advancing plume. It is cru-
cial to note that unlike prior cases, in which convection-diffusion problems were
treated in basic geometries with known velocity fields, the current problem is ad-
dressed within a wide area with irregular geometry and complex flow patterns.
To further quantify the accuracy of the method with a reference solution, we
monitor the concentration at three gauges, G1, G2, and G3, situated in the river
at (5.36 km, 1.16 km), (4.64 km, 2.05 km), and 2.94 km, 1.07 km), respectively,
as illustrated in Fig. 6. Keeping the same mesh resolution as before, we list in
Fig. 9 the time evolution of the concentration at the given gauges at time t =
12 hours. Note that the reference solution is computed on a reference mesh with
49429 elements and 100349 nodes. The clear indication from Fig. 9 is that the
IMQ solution exhibits again oscillations and clearly steep layers appear in the
regions of large gradients (compare Fig. 9 G 3). This is potentially attributed
to complex feature of the bended geometry nearby G 1. From the same plot,
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t = 25 min t = 2 hours

t = 4 hours t = 6 hours

t = 8 hours t = 10 hours

Fig. 8. Concentration snapshots for the transport problem in the Loukkos river using
the proposed backward Petrov-Galerkin finite volume method (BC-FVE).

the IDW solution exhibits numerical diffusion. By its turn, the BC-FVE solu-
tion results in a stable and monotone behavior in the selected gauges during
time evolution. Moreover, a quantitative study confirms that the novel BC-FVE
method results are in good agreement with the reference solution.

5 Conclusions

In this work we have presented a novel backward-characteristics finite volume
element method for solving a class of convection-dominated diffusion problems.
The outcoming features of this method is to preserve the monotonicity and ac-
curacy of the solution with the minimum possible of computational cost. This is
achieved by the virtue of backward-characteristics scheme where low and high
order interpolation techniques are both used to balance the characteristics of the
solution during time evolution. Indeed, the interpolated value remains within the
largest and the smallest values of the solution in a set of points surrounding the
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Fig. 9. Time evolution of c in the selected three gauges for the transport of a pollutant
in the Loukkos river.

feet of the characteristics. The diffusive term is approximated with a Petrov-
Galerkin finite volume scheme where a finite partitioning set of control volumes
is used to discretize the equation and a restriction of admissible functions of
finite element space are used to discretize the solution. The obtained results
demonstrate the ability of the new algorithm to accurately maintain the shape
of the computed solutions in the presence of sharp gradients and shocks. Future
work will focus on the one hand, on extending the current approach to
coupled flow-transport, where the flow is modeled by the incompress-
ible Navier-Stokes equations. On the other hand, we aim to explore
the time adaptation and construct an efficient adaptive BDF2 along
the characteristics in order to minimize the computational cost.
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