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Abstract. Application of post-quantum algorithms in newly deployed
cryptosystems is necessary nowadays. In the NIST Post-Quantum Com-
petition several algorithms that seem to be resistant against attacks
mounted using quantum computers have been chosen as finalists. How-
ever, it is worth noting that one of finalists — SIKE — was catastroph-
ically broken by a classical attack of Castryck and Decru only a month
after qualifying for the final round. This shows that absolute trust cannot
yet be placed in the algorithms being standardized. And so a proposi-
tion was made to use the novel, post-quantum schemes alongside the
well-studied classical ones with parameters chosen appropriately to re-
main secure against quantum attacks at least temporarily, i.e., until a
large enough quantum computer is built.
This paper analyzes which classical public-key algorithms should be used
in tandem with the post-quantum instances, and studies how to ensure
appropriate levels of both classical and quantum security. Projections
about the development of quantum computers are reviewed in the con-
text of selecting the parameters of the classical schemes such as to provide
quantum resistance for a specified amount of time.

Keywords: post-quantum algorithms · classical algorithms · quantum
computing · security level

1 Introduction

Post-quantum cryptography is a relatively new branch of modern cryptology. In
2017 NIST announced their post-quantum cryptography (NIST PQC) competi-
tion to which researchers from all around the world could submit their proposals
of public-key schemes: key establishment and signature algorithms.

NIST in [7] defined five security levels for assessing the security of post-
quantum cryptosystems. Instead of relying on precise estimates of the number
of bits of security, these levels take into account both classical and quantum
cryptanalysis. Each level is characterized by a reference primitive (AES or SHA),
with its security forming the basis for subsequent analyses.

Table 1 presents the NIST security levels, providing their definitions and the
estimated resources (quantum and classical gates) required to compromise the
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2 A. Cinal et al.

reference primitive at each level. As indicated in [7], plausible values for MAXDEPTH
range from 240 logical gates (per year) to 264 logical gates (per decade), up to a
maximum of 296 logical gates (per millennium).

Table 1: NIST security levels as defined in [7] with estimated complexity of
breaking the scheme’s security.

Security
Level

Security Definition
Must require computational

resources comparable
to or greater than

Quantum Gates
(estimated)

Classical Gates
(estimated)

1
exhaustive key search on a
128-bit key block cipher

(e.g. AES-128)
2170/MAXDEPTH 2143

2
collision search on a
256-bit hash function

(e.g. SHA3-256)
- 2146

3
exhaustive key search on a
192-bit key block cipher

(e.g.AES-192)
2233/MAXDEPTH 2207

4
collision search on a
384-bit hash function

(e.g. SHA3-384)
- 2210

5
exhaustive key search on a
256-bit key block cipher

(e.g. AES-256)
2298/MAXDEPTH 2272

Once submitted, each algorithm has been analyzed both by NIST specialists
and the cryptographic community. These analyses resulted in many weak algo-
rithms being eliminated at an early stage of the competition. Identification and
subsequent withdrawal of broken schemes continued, however, all the way to the
end. During the third and fourth rounds, respectively, the Rainbow digital sig-
nature algorithm and the SIKE key establishment algorithm were compromised
in the classical setting. Rainbow was broken completely on security level 1 and
significantly weakened on other security levels, whereas SIKE is now known to be
breakable in mere 2 hours on a classical CPU even at the highest (fifth) security
level.

Since post-quantum algorithms have not yet been analyzed thoroughly enough,
it is vital from the point of view of security to combine them with classi-
cal schemes. Thus each public-key scheme should be a hybrid consisting of at
least two parts: a classical instance (secure in the classical setting) and a post-
quantum instance (conjectured secure in both classical and post-quantum set-
tings). Should the post-quantum instance prove to be breakable classically, this
approach keeps the overall scheme secure against classical attacks and against
quantum attacks for some time also (provided the parameters of the classical
instance are chosen adequately) — until a powerful enough quantum computer
is built. In the long run, if the post-quantum part of the hybrid scheme stands
the test of time, the scheme shall remain secure against quantum adversaries
despite the classical part having been long obsolesced.
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Hybrid approach to public-key algorithms in the near-quantum era 3

The necessity of using hybrid public-key algorithms has been postulated years
ago, even before NIST PQC competition started, but the spectacular failures of
the round-three and round-four candidates (finalists) show that the need to
combine (largely experimental) post-quantum cryptosystems with conservative,
well-studied classical ones is very much real. Such hybrid solutions exist today
and are used, for example, in TLS 1.3 [32], where classical algorithms based on
elliptic curves over 256-bit prime fields, X25519 and Secp256r1, are used along-
side Kyber768, so far believed to be resistant against quantum attacks. TLS 1.3
uses a simple “concatenation approach,” where public keys of the two algorithms
are concatenated back to back and transmitted as a single value in order to avoid
changing the existing data structure and message fields. Similarly, when deriving
the session key, two shared secrets are obtained by the two schemes, classical and
post-quantum, and are then concatenated to obtain the master shared secret,
from which the session key is derived.

This combination, however, is largely ad hoc. What we endeavour to achieve
in this paper is a careful analysis of the classical instances (signature and key es-
tablishment) and their respective parameters that would match the most closely
the security levels of their post-quantum counterparts and accompany them best.
We shall also provide estimates about how long these classical companions shall
remain secure, based on the current forecasts about the development of quantum
computers.

2 Known attacks against post-quantum instances

2.1 Attack on Rainbow

Beullens in 2022 presented new key recovery attacks against Rainbow [4], one of
the three finalist signature schemes in the NIST PQC competition. Previously, it
was believed that breaking Rainbow at its lowest security level would take 2128

operations. Beullens’ attack, however, utilizes differentials to efficiently recover
the secret key, thus surpassing all previously known attacks for every parameter
set submitted to NIST. Specifically, with a Rainbow public key for the NIST se-
curity level 1 parameters from the second-round submission, Beullens’ approach
can retrieve the corresponding secret key in an average of 53 hours (roughly a
weekend) using a standard laptop.

2.2 Attack on SIKE

In June of 2022, SIKE advanced to the fourth round of NIST PQC competition
as an alternate candidate algorithm for key establishment. Not a whole month
afterwards, the algorithm was totally broken by Castryck and Decru [6] on a
classical computer. A limitation to their attack is that the endomorphism ring
of the base curve must be known (which, however, is already the case in SIKE).
Still, not long after this attack, other attacks were devised, with Maino and
Martindale [20] presenting a subexponential attack on SIKE, which does not
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require the knowledge of the endomorphism ring of the base curve. Robert [26]
then introduced an algorithm for breaking SIKE, which is, first, polynomial-time,
and, second, works no matter the choice of the starting curve.

The attack of Castryck and Decru takes only a few hours on a regular laptop
to break SIKE instances at NIST security level 5. It is worth noting that by
the time of the attack isogeny-based cryptography had already been studied for
about 10 years and no similar attacks had been found. Also, Kani’s theorem,
lying at the heart of the attack, had been known for over 20 years and was never
regarded to be any serious threat. This goes to show that even schemes built on
top of well-studied constructions may surprisingly fail, and so extra precautions
must be taken as we are entering the near-quantum era.

2.3 Recent breakthrough against LWE

In a recent article [8], Chen proposes an efficient quantum algorithm for solving
the learning with errors (LWE) problem. Hardness of LWE is the assumption
underlying the security of lattice-based schemes such as CRYSTALS-Kyber and
CRYSTALS-Dilithium standardized already by NIST. As of this writing, Chen’s
paper is undergoing peer review and the validity of his claims or their practical
impact are yet unclear.

3 Quantum computing

The purpose of this Section is to provide a brief overview of the principles of
quantum computation and, above all, introduce the terminology used throughout
the paper.

Exploiting quantum mechanics to obtain computational advantage was first
proposed by Feynman in 1981 [14], followed by Deutsch definining a quantum
Turing machine in 1985 [10]. Thus, the field of quantum computing was born
and with publication in 1994 of Shor’s seminal paper [31], it gained unprece-
dented momentum and attracted the attention of cryptographers, as in [31]
Shor showed how to leverage quantum computation to break the mathemati-
cal problems underpinning contemporary asymmetric cryptography. Two years
later, Grover presented an algorithm for searching an unstructured N -element
set in time O(

√
N) [17], thus posing further threat to symmetric cryptography.

Similarly to bits in classical computing, a fundamental unit of information
in quantum computing is a qubit which we associate with a unit vector in C2:

|q⟩ = α0 |0⟩ + α1 |1⟩ (1)

with |α0|2+|α1|2= 1 and |0⟩ = (1, 0)T , |1⟩ = (0, 1)T column (standard basis)
vectors in C2. We say that a qubit is in a superposition of the states |0⟩ and |1⟩.
A qubit can be measured thus yielding a classical binary value 0 or 1, where 0
is measured with probability |α0|2 and 1 is measured with probability |α1|2 ac-
cording to Born’s rule (we refer to the numbers α0, α1 ∈ C as amplitudes of their
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associated basis states |0⟩ and |1⟩, respectively). After a measurement, a qubit
is said to have collapsed to a classical state and the superposition once present
is now destroyed. Before measurement, however, qubits can be manipulated in
such a way that once measured they collapse with overwhelming probability to
the desired result of computation. This is the basis of quantum computing.

While there are other realizations of quantum computation (cf., for example,
quantum annealing) the most prevalent model is that of quantum gates. A gate
represents a unitary (reversible and preserving the unit length of the vector
|q⟩) transformation to a qubit or a register of n qubits. Conceptually, we design
quantum algorithms in this setting as circuits with wires going in and out of
gates, whereas a physical realization may be completely decoupled from this
image (and quantum “circuits” are more temporal than spacial in practice with
gates being applied in place one after another).

We say a set of quantum gates is universal if any operation possible on
a quantum computer (any unitary), or at least a satisfactory approximation
thereof, can be expressed as finite sequence of gates from this set. The most
common such universal set currently studied is the Clifford+T set and so it
shall also be the focus of this paper.

Note that quantum systems are susceptible to noise which has to be ac-
counted for in the quantum computer by implementing extensive error correc-
tion. By far the most costly of the Clifford+T gates to implement in a fault-
tolerant manner is the T gate [15, 27] corresponding to the following unitary
matrix:

T =

(
0 0
0 eiπ/4

)
. (2)

For this reason complexity of quantum circuits is often expressed in terms
of the number of T gates (or T -count) or the number of T gates modulo gates
which can be “run” in parallel (T -depth) [18]. Another useful metric which we
shall refer to in this paper is the number of logical qubits1 needed to run the
circuit. This is also sometimes referred to as the width of the circuit.

Another commonly found measure of complexity is the number of Toffoli
gates or the associated Toffoli-depth [19, 27]. Toffoli gates can be implemented
using 7 T gates and a T -depth varying between 4 and 1 [1, 28], thus we shall
translate the Toffoli-count (Toffoli-depth) estimates found in the literature to
the T -counts (T -depths) and use these as a common denominator.

4 Analyses

4.1 Methodology

It must be noted that due to noise in the quantum computations, there are suc-
cess probabilities typically associated with the attacks presented in the literature.

1 As a fault-tolerance and error-correction measure a single logical qubit is typically
implemented using a number of physical qubits.
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For the purposes of this paper, however, we shall work on the assumption that
if the quantum resources available are sufficient to mount an attack with non-
negligible probability, even if it requires rerunning the computations a number
of times, then the relevant cryptosystem is vulnerable.

We shall restrict our attention to RSA as the sole scheme based on inte-
ger factorization intractability,2 and to elliptic-curve schemes (ECDSA, EdDSA,
ECDH) based on the discrete logarithm problem. As for the latter, we shall
further focus only on elliptic curves over prime fields Fp. The decisions here are
motivated by the relevant NIST publications, which deprecate use of DSA [21] as
well as ECDSA based on binary curves [21,22]. Also, we are explicitly interested
in signature and key establishment algorithms, for which standard implemen-
tations always fall into one of the two categories just delineated. While elliptic
curves over extension fields (including binary fields) are used in some settings
(e.g., in pairing-based cryptography), we intentionally leave them out and focus
on schemes of the most fundamental utility and enjoying most standardization
and prevalence. Quantum cryptanalysis of binary curves receives thorough treat-
ment in [2].

Our methodology focuses on analyzing progress in the development of quan-
tum computers and the scale of computations able to be run on them. In partic-
ular, it is important to determine when we expect to build a quantum computer
on which one could run Shor’s algorithm for a given problem (integer factoriza-
tion, discrete logarithm in a finite field, discrete logarithm on an elliptic curve)
with given parameters. A crucial factor for this approach is the choice of the
time frame and deciding for how long the information (protected by the hybrid
scheme) should remain secure (authentic, secret).

Three time periods have to be taken into consideration:

– implementation time — time required for the scheme to be globally deployed,
– usage time — time when the scheme is actively used,
– expiration time — period in which the scheme is being phased out (depre-

cated), but the information protected by it should still remain secure.

For example, suppose we want to protect a piece of information (encrypted using
a key derived from a hybrid key establishment protocol) for 5 years. If we design
the system now, implement it by 2025, and intend to use it until 2040, we need
to ensure the security of the information until the end of the year 2045 (the last
time any plaintext is encrypted using the hybrid scheme may be in late 2040).

Assuming a declassification period of 25 years3 and intended usage time until
year 2040, we arrive at the conclusion that hybrid schemes should be resistant
against quantum attacks until 2065 (on all NIST security levels). As the analyses
presented in Section 5.1 show, this can be achieved with practical values for
security parameters.

2 The Paillier cryptosystem, found in multi-party computation, uses “de facto” RSA
keys so interested parties may use our analyses to evaluate viability of Paillier’s
encryption for their purposes. Caution is advised here, however, as this scheme is
outside the scope of our work.

3 See, e.g., U.S. Executive Order 13526.
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Remark 1. When analyzing the complexity of the attack algorithms (Shor’s [31],
Grover’s [17]), it is customary to consider quantum resources usage, not merely
time, as is the case for classical algorithms. This is due to the nature of the
current state of quantum computing: since the problem of engineering large-
scale multi-qubit systems has not yet been solved, these finer points about the
algorithms/circuits give better insight into exactly how feasible the attacks are.

4.2 Classical schemes based on factoring

Integers of the form N = pq, for p, q — different primes of similar length in bits,
are commonly used in the RSA cryptosystem, and thus called RSA integers going
forward. The security of RSA is based on the assumption that factoring such
integers is computationally infeasible.4 Shor’s algorithm [31] efficiently, albeit
quantumly, factors RSA integers, thereby solving the underlying computational
problem of the RSA cryptosystem. The best known algorithm for factoring RSA
integers on classical computers is the General Number Field Sieve [5] which
heuristically runs in subexponential time, while the time (or more practically -
circuit depth) of Shor’s algorithm is polynomial in the size of the input. This is
achieved by a reduction to finding the order of an element in ZN [31].

Since the introduction of Shor’s algorithm, there have been numerous at-
tempts to optimize it in terms of both the number of required logical qubits and
the number of quantum gates.

In each run, Shor’s factoring algorithm requires 2n group operations for an
n bit integer. Eker̊a and H̊astad [13] have shown that, by replacing order finding
with short discrete logarithm computation, the number of group operations can
be reduced to 3

2n without making any trade-offs.
Gidney et al. in [16] have presented a quantum algorithm for factoring RSA

integers which, by introducing a number of optimization techniques, has signif-
icantly reduced quantum resource costs when compared to the original Shor’s
algorithm and follow-up works. Additionally, they provide a detailed analysis
of the quantum resource requirements of the algorithm in terms of logical and
physical qubits as well as Toffoli and T gates. Gidney et al. report over 100x
improvement over other top works, which use the same basic cost model as they
do. Reported results are presented in Tables 2 and 3.5

In 2023, Regev presented an algorithm with lattice reduction post-processing
that lowered the number of gates from Õ(n2) (original Shor’s algorithm) to

Õ(n
3
2 ) [25] at the expense of increasing the number of logical qubits from O(n)

(optimized Shor’s algorithm) to O(n
3
2 ).6 Soon after that, Ragavan and Vaikun-

4 Technically, it is based on solving for roots modulo N , but this distinction is not
relevant here.

5 The metrics outlined in [16] differ from conventional standards, particularly in their
nomenclature. To establish a unified basis for comparing various algorithms in both
RSA and EC cryptography, we adopt a consistent set of metric names. For a detailed
explanation of these metrics, we invite readers to refer to Appendix A in [16].

6 Although, as we explain in subsection 5.1, from a practical point of view, it remains
unclear whether such trade-offs lead to faster realization of the attack in practice.
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tanathan [24] showed how to lower the number of necessary qubits to only Õ(n),

while keeping the circuit size (depth and total number of gates) Õ(n
3
2 ).

Table 2: Expected costs of factoring n-bit RSA integers according to [16].

Factoring n-bit RSA integer

n = 3072 n = 7680 n = 15360

Logical Qubits 9287 23238 46507

T -Count 1.25 · 227 1.36 · 231 1.47 · 234

Circuit Depth 1.12 · 232 1.76 · 234 1.76 · 236

Table 3: Asymptotic costs of factoring n-bit RSA integers according to [16].

Factoring n-bit RSA integer

Logical Qubits 3n + 0.002n lgn

T -Count 0.3n + 0.0005n3 lgn

Circuit Depth 500n2 + n2 lgn

4.3 Elliptic curve cryptography

Alongside the factoring algorithm, Shor also presented an efficient quantum al-
gorithm for solving the discrete logarithm problem in a multiplicative group of
a prime field Fp [31]. This was later made appropriate to the setting of ellip-
tic curves by Proos and Zalka in [23]. It is this latter setting which is relevant
to contemporary cryptography. Adapting Shor’s algorithm to elliptic curves (or
any abelian group) is straightforward provided the group operation can be im-
plemented efficiently. As pointed out in [18], it is the reversible implementation
of the group operation which contributes the most to the overall cost (in terms
of resources) of the quantum circuit.

As per the scope defined in Section 4.1, works cited here focus only on ellip-
tic curves over prime fields [11, 12, 18, 23], while neglecting binary fields. Given
that curves over binary fields have been deprecated by NIST [21], they shall not
receive treatment in this paper either. Interested readers may look to [2] to learn
more. Thus we shall henceforth be considering an elliptic curve E over a field Fp

with p prime and n denoting the bit-length of p. Also, without loss of generality,
we may assume that E is a Weierstrass curve despite Montgomery and Edwards
curves being commonly used. That follows from the fact that there exist bira-
tional equivalence relations between (twisted) Edwards curves and Montgomery
curves, with every instance of the latter being equivalent to some Weierstrass
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Hybrid approach to public-key algorithms in the near-quantum era 9

curve further still [3,9]. We can thus restrict our attention to Weierstrass curves
wherever this level of detail is necessary.

Roetteler et al. in [27] have estimated that Shor’s algorithm for breaking
ECDLP on E would require:

(448 lg(n) + 4090)n3. (3)

Toffoli gates (recall that each Toffoli gate corresponds to 7 T gates). Häner et
al. [18] improve on the results of Roetteler et al. by reducing the number of
logical qubits and Toffoli gates and providing an asymptotic estimate of the
number of T gates:

436n3 + o(n3). (4)

Häner et al. also present various trade-offs possible when implementing Shor’s
algorithm for ECDLP, optimizing, e.g., for circuit depth (see Table 4) or its
T -depth.

Table 4: Expected costs of solving ECDLP according to [18].

Solving DLP on an n-bit elliptic curve

n = 256 n = 384 n = 512

Logical Qubits (optimized for width) 2124 3151 4258

T -Count (optimized for width) 1.72 · 232 1.51 · 234 1.82 · 235

Circuit Depth (optimized for width) 1.89 · 232 1.77 · 234 1.09 · 236

Logical Qubits (optimized for T -count) 2619 3901 5273

T -Count (optimized for T -count) 1.08 · 231 1.74 · 232 1.00 · 234

Circuit Depth (optimized for T -count) 1.85 · 231 1.31 · 233 1.54 · 234

Logical Qubits (optimized for depth) 2871 4278 5789

T -Count (optimized for depth) 1.34 · 232 1.13 · 234 1.43 · 235

Circuit Depth (optimized for depth) 1.40 · 227 1.48 · 228 1.27 · 229

5 Forecasting evolution of quantum computers: when
practical attacks will be possible

Quantum computing technology, possesses a limited historical track record, and
predictions concerning its future development largely rely on quantum experts’
educated guesses, occasionally supported by more substantiated arguments. In
literature, the performance of quantum computers is frequently monitored via
the following quantities:

– average two-qubit-gate error rate,
– number of physical qubits in a system,
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10 A. Cinal et al.

Table 5: Asymptotic costs of solving ECDLP according to [18].

Solving DLP on an n-bit elliptic curve

Logical Qubits (optimized for width) 8n + 10.2 · ⌊lgn⌋ − 1

T -Count (optimized for width) 436n3 − 1.05 · 226

T -Depth (optimized for width) 120n3 − 1.67 · 222

Logical Qubits (optimized for T -count) 10n + 7.4 · ⌊lgn⌋ + 1.3

T -Count (optimized for T -count) 1115n3/lgn − 1.08 · 224

T -Depth (optimized for T -count) 389n3/lgn − 1.70 · 222

Logical Qubits (optimized for depth) 11n + 3.9 · ⌊lgn⌋ + 16.5

T -Count (optimized for depth) –

T -Depth (optimized for depth) 285n2 − 1.54 · 217

– number of logical qubits in a system.

Remark 2. In our current understanding of quantum computing, the primary
bottleneck for executing any of the aforementioned attacks is likely to be the
maximal circuit depth. Unfortunately, no methodology has been proposed to
forecast the evolution of quantum computers that adequately takes into account
the circuit depth. Moreover, researchers working on quantum computers rarely
share information concerning this topic. Therefore, we base our analyses on a
more freely accessible metric.

5.1 Forecasting based on a statistical model

To the best of our knowledge, the most comprehensive assessment of future
quantum computing progress based on statistical modeling was presented in a
2020 article by Sevilla and Riedel [29]. They gathered all available information
(scientific articles and enterprises’ marketing alike) on quantum computers from
2003 to 2020 [30]. It is vital to note that such data is subject to significant noise
and bias primarily because the decision to report findings or failures lies with
the researchers.

In light of this, Sevilla et al. devised the generalized logical qubits (GLQ)
index, which estimates the number of logical qubits that will be available after
accounting for the error-correction overheads [29].

The GLQ is expressed as follows:

NGLQ = NPQ

4 ·
log

(√
10 eP

eL

)
log

(
eth
eP

) + 1

−2

(5)

where NPQ represents the number of physical qubits, eP is the two-qubit gate
error rate, eth = 10−2 denotes the approximate threshold error under which
fault-tolerance becomes viable for the surface code, and eL = 10−18 represents

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_27

https://dx.doi.org/10.1007/978-3-031-63778-0_27
https://dx.doi.org/10.1007/978-3-031-63778-0_27


Hybrid approach to public-key algorithms in the near-quantum era 11

the acceptable logical error rate. To put it simply, this formula utilizes the num-
ber of physical qubits and the two-qubit gate error rate to estimate the number
of logical qubits available after factoring in the error-correction overhead. In
essence, NGLQ models the development of FTQC over time and should repre-
sent the quantum computer’s “real-world” capability to perform computations.
The authors of [29] claim that formula 5 was coined to fit data well for devices
that have achieved two-qubit gate error rates below the fault-tolerance thresh-
old mentioned above. They propose a multivariate log-linear model that takes
a date as input and outputs a distribution for the combination of metrics that
quantum computers around that date are likely to represent. The model assumes
a linear relation between time and the logarithms of NPQ and eP , thus giving
an exponential relation between time and NGLQ.

Our estimation. We extended the dataset used in [29] by 25% through the
addition of 16 of the most recently published pieces of information regarding
quantum processors. By doing so we allowed predictions to represent real-world
data more accurately. It is noteworthy that many of the state-of-the-art mod-
els currently incorporate technologies other than superconductors, therefore we
trained the model on all types of physical realizations. For the bootstrapping
process, we used the top 15% of samples with the highest NGLQ. Despite intro-
ducing certain refinements to the parameter assumptions of the original model,
the resultant curve still exhibits an overestimation of NGLQ for all data points,
see Figure 1. Prediction of NGLQ for the coming years is presented in Table 6.

Table 6: Expected NGLQ for the coming years.

Year 2035 2040 2045 2050 2055 2060 2065 2070

Predicted NGLQ 2 6 24 96 376 1450 5495 20542

6 Recommendations and closing remarks

According to the estimations presented in Tables 4 and 5, as well as the results
summarized in Table 6, we claim that many classical algorithms currently in
use may continue to be used as the well-studied, conservative fallbacks along-
side (relatively experimental) post-quantum instances. Such hybrids are then
expected to withstand quantum attacks until the year 2065, even if their post-
quantum components have been broken classically by then. The following RSA
parameters are recommended:

– at NIST Security Level 1: the RSA modulus N being a 3072-bit integer,
– at NIST Security Level 3: the RSA modulus N being a 7680-bit integer,
– at NIST Security Level 5: the RSA modulus N being a 15360-bit integer.
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Fig. 1: NGLQ prediction based on a statistical model. Note that the y-axis uses
a logarithmic scale. Horizontal dotted lines are, from the bottom, y = 1 (one
generalized logical qubit) and y = 4258 (“breaking” a 512-bit elliptic curve).
Different markers denote different physical qubit realizations; for details, see [29].

As far as elliptic curve-based cryptosystems are concerned, forecasts in 1 show
that 512-bit curves should be used to ensure security until year 2065. Smaller
elliptic curve groups (e.g., 256-bit) are predicted to withstand quantum attacks
until the year 2060. (Note that RSA is more secure against quantum adversaries
than elliptic curve-based schemes at a similar classical security level, as already
pointed out in [18].) After year 2065 it is nearly impossible to estimate the speed
of evolution of quantum computers and so no further predictions are given.

Note that from a number of possible methodologies for studying the pairing
of post-quantum schemes with classical ones, we have chosen the one which
gives the most practical results (cf. Section 4.1), in the sense that it is not so
pessimistic as to require exceedingly large group orders (elliptic curve or RSA).
We believe, however, that this approach (albeit seemingly best-effort) is the most
pertinent to the problem at hand since, as pointed out already, hybridization and
parallel use of classical and post-quantum cryptography is to be thought of as
a temporary measure for the transition period into the full-blown quantum era.
Still, due to much uncertainty in the projections concerning the development
of large-scale quantum computers, following the trends regularly and adapting
accordingly is imperative. Caution is advised.
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