
Noise robustness of a multiparty quantum
summation protocol

Antón Rodríguez-Otero, Niels M. P. Neumann, Ward van der Schoot, and
Robert Wezeman

The Netherlands Organisation for Applied Scientific Research, The Netherlands, The
Hague

Abstract. Connecting quantum computers to a quantum network opens
a wide array of new applications, such as securely performing computa-
tions on distributed data sets. Near-term quantum networks are noisy,
however, and hence correctness and security of protocols are not guaran-
teed. To study the impact of noise, we consider a multiparty summation
protocol with imperfect shared entangled states. We study analytically
the impact of both depolarising and dephasing noise on this protocol and
the noise patterns arising in the probability distributions. We conclude
by eliminating the need for a trusted third party in the protocol using
Shamir’s secret sharing.
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1 Introduction

Quantum computing is an emerging field where advances are made on the
hardware-side, software-side, as well as applications. Many companies and uni-
versities are working on building better quantum hardware with more resources
of better quality. At the same time, new algorithms are being discovered, and
these new quantum algorithms are applied in various new settings.

The theoretical speedup quantum computers offer for various problems dis-
cerns them from classical alternatives. Amongst these are some of the most com-
plicated problems encountered in every-day life. Examples where quantum com-
puters outperform classical alternatives include breaking certain asymmetric en-
cryption protocols [21], developing new materials and personalised medicines [10],
and solving complex systems of linear equations [12].

Another aspect at which quantum computers distinguish themselves from
classical alternatives, is the security of a quantum state: Opposed to classi-
cal information, in general, quantum information cannot be read out or copied
faithfully. Reading out a quantum state destroys the state irrevocably and loses
information, whereas trying to copy a quantum state leaves the state and its copy
entangled, and operations performed on an entangled copy differ from those ap-
plied to the original unentangled state. Because of this, sharing information via

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_26

https://dx.doi.org/10.1007/978-3-031-63778-0_26
https://dx.doi.org/10.1007/978-3-031-63778-0_26


2 A. Rodríguez-Otero et al.

quantum states is secure. This idea underlies the field of quantum communica-
tion and its subfield quantum key distribution.

Combining quantum computing with quantum communication joins the best
of both worlds: by using quantum communication between different quantum
computers, these devices can collaboratively solve larger problems, while the
information shared between the devices remains secure. This field is called Dis-
tributed Quantum Computing (DQC).

Distributed quantum computing entails the collaborative execution of quan-
tum algorithms using multiple quantum devices. Distributed computations can
occur at various levels: for example, the devices may independently run their
own quantum circuits, after which the outputs are combined to obtain the final
results. Alternatively, the devices may cooperate intricately through quantum
communication to execute a single overall circuit. This study concentrates on
the latter scenario, specifically exploring the execution of a distributed quantum
addition circuit.

The key challenge in this form of distributed quantum computing, is the
application of non-local multi-qubit gates. As any multi-qubit gate can be de-
composed into CNOT gates with additional local one-qubit gates [3], it suffices
to implement the CNOT-gates in a non-local fashion. Eisert et al. gave the
first description of how to perform operations between different quantum de-
vices through the use of local operations and classical communications (LOCC)
and shared entanglement between the different devices [9]. Later, this work was
extended and a distributed version of Shor’s algorithm was theorised [25,24].

Distributed quantum computing works by transforming traditional quantum
algorithms to their distributed version. In these distributed versions, operations
performed between qubits located on different devices are called non-local and
are replaced by a non-local quantum gate established using shared entangled
states. In comparison, operations between qubits on the same device are called
local, and are unchanged. These three works consider all operations, both lo-
cal and non-local, to be perfect. Beals et al. later proved that distributing an
algorithm over different resources incurs only a small overhead in the cost [4].
Hence, when programming quantum algorithms on a higher level, the underlying
structure of the hardware, local or distributed, has only a marginal effect.

Follow-up work mainly focused on applications run using a distributed quan-
tum network [7], or on how to best implement a distributed quantum computer
network [11,5]. One aspect to take into account in these distributed networks is
the robustness against noise, as current hardware is noisy and will remain so for
the foreseeable future. It is therefore interesting to consider the effect of imper-
fect operations in such distributed settings. A first work on this topic computed
the fidelity of a distributed and imperfect quantum phase estimation algorithm,
when distributed over a varying number of devices [16]. Another example is
the work by Khabiboulline et al. where a secure quantum voting protocol is
presented [14].

In this work, we extend this line of research by considering imperfect non-
local operations as well, but applied to the distributed quantum summation

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_26

https://dx.doi.org/10.1007/978-3-031-63778-0_26
https://dx.doi.org/10.1007/978-3-031-63778-0_26


2. PRELIMINARIES 3

protocol [17], which extends the algorithm proposed by Draper [8] and later
improved by Ruiz-Perez and Garcia-Escartin [19]. The quantum summation al-
gorithm uses the Quantum Fourier Transform to map the states to their phase
state representation. In the phase space, addition corresponds to specific con-
trolled phase gates.

In this protocol, we consider different parties which aim to compute the
sum of their inputs, without revealing these inputs. Each party has access to a
local quantum computer, which can generate shared entangled states with other
devices. In practice, quantum hardware remains noisy and it is necessary to
consider decoherence effects when developing applications. Currently, the fidelity
of state teleportation between non neighbouring nodes is around 0.7 [13] while
the fidelity of quantum operations on quantum devices is around 0.95 to 0.99 [15].
For this reason, we omit in this work the effect of imperfect quantum operations,
and focus on the impact of an imperfect quantum network links. Concretely, we
consider how dephasing and depolarising noise on the shared entangled states
affects the output fidelity of this distributed summation protocol.

We also extend this line of research by combining it with a primitive from
cryptography called Shamir Secret Sharing. In earlier works, multiparty proto-
cols are considered with the use of a central server party which is trusted by
everyone. This is not a realistic assumption in practical use cases. In this work,
we show how the considered multiparty summation protocol can be extended
to a setting without the requirement of a trusted server party. We show that
the protocol yields the same output as the original protocol, while none of the
parties learns inputs from other parties.

Section 2 explains the multiparty summation protocol and the two considered
noise models. Next, Section 3 presents the results of simulations for both noise
models. Section 4 contains an analytical study of the noise patterns and the
periodicity therein. Afterwards, Section 5 details the extension of the protocol
to a version without the need of a trusted server party. Section 6 concludes with
a summary and an outlook to future distributed quantum computing work.

2 Preliminaries

2.1 Distributed Quantum Computing

We start by describing the non-distributed version of the quantum summation
protocol, after which we explain the distributed version from [17]. Suppose we
have two integers a, b < 2n that we wish to add and that we have their corre-
sponding quantum states |a⟩ and |b⟩ that are their binary representation using
n qubits. The protocol first applies the quantum Fourier transform of size n,
denoted by QFTn to |b⟩. This yields the phase state representation of b, given
by |ϕ(b)⟩. Then, applying phase gates to the qubits of |ϕ(b)⟩ controlled by the
qubits of |a⟩ gives the quantum state |ϕ(a+ b)⟩. After applying an inverse quan-
tum Fourier transform, the state |a+ b⟩, describing the binary representation of
a+ b, is obtained.
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This summation protocol can be easily extended to allow a server party to
do the addition of k different numbers held by k different computing parties.
Figure 1 showcases the extended protocol for two computing parties with an
additional server party. The server party holds the result at the end of the
protocol. Note that the phase gates applied by different parties commute and
hence, every party can apply their local phase gates simultaneously.

s : |0⟩
QFT

• •
QFT−1s : |0⟩ • •

s : |0⟩ • •
p1 : |0⟩

Add x1

|0⟩
p1 : |0⟩ |0⟩
p1 : |0⟩ |0⟩
p2 : |0⟩

Add x2

|0⟩
p2 : |0⟩ |0⟩
p2 : |0⟩ |0⟩

Fig. 1. Example of DQA [17]. A server party adds integers from two computing parties.
The blocks Add xk denote the phase-gates needed to add integer xk as described above.
The final quantum state in the first register is |x1 + x2⟩.

The above multiparty protocol translates to a non-local protocol by replacing
every CNOT gate by a non-local CNOT gate. The resulting protocol is called
the DISTRIBUTED-QFT-ADDER (DQA). Multiple implementations for the
CNOT-gates exist, some of which even allow simultaneous implementation of
the phase gates by all parties [17].

2.2 Noise models

The quantum network distributes entangled GHZ states between the server
node and the different party nodes. The presence of noise translates to imperfect
entanglement between the nodes.

Current state-of-the-art protocols for entanglement generation between nodes
of a quantum network are heralded, which allows to deterministically know
whether the entanglement distribution process succeeded. Typically, heralding
work in experiments via a photon measurement such that entanglement is es-
tablished if and only if a photon has been detected. We therefore disregard lossy
quantum channels by assuming that the distribution is done in a heralded way.

In this study, we consider two types of noise in the quantum links, namely
dephasing and depolarising noise. These types of noise arise often in physical
implementations and current software packages allow for easy simulation of these
noise type, whilst the analytic study remains feasible at the same time. The
respective noise channels are applied to the quantum links by applying them to
all qubits in the GHZ state independently.
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3. SIMULATIONS WITH NOISE 5

Noise model A: Dephasing channel A dephasing channel is a completely
positive and trace-preserving (CPTP) map that represents the decay of the quan-
tum phase of a system, that is, the off-diagonal elements of the density matrix.
A one-qubit dephasing channel εdepha is usually represented by the map

εdepha : ρ 7→
(
1− p

2

)
ρ+

p

2
ZρZ (1)

which performs a phase flip with probability p/2. Writing the matrix represen-
tation of this channel we see, indeed, that it corresponds to a phase damping
process:

ρ =

(
ρ00 ρ01
ρ10 ρ11

)
→ εdepha(ρ) =

(
ρ00 (1− p)ρ01

(1− p)ρ10 ρ11

)
. (2)

Dephasing errors arise in fiber optic links due to the birefringence phe-
nomenon, which is associated with changes in the refractive index for differ-
ent polarisations or different regions of the material [22]. In fact, using a special
polarisation maintaining optical fiber, the decoherence in these links can be com-
pletely described via dephasing processes [23]. Assuming heralded entanglement
distribution, we can ignore the high attenuation arising in these links. Our focus
is the impact of noise on the fidelity of the protocol, so we omit the entanglement
generation rate and the lower transmission rates.

Noise model B: Depolarising channel The depolarising channel is usually
seen as the quantum equivalent of white noise. Depolarising channels model
processes that completely scramble the starting state with some probability. As
a result, both quantum and classical information is lost. Given a valid n-qubit
quantum state ρ, an n-qubit depolarising channel εdepol can be written as

εdepol : ρ 7→ (1− p)ρ+
p

d
I, (3)

where d = 2n is the dimension of the Hilbert space ρ lives in.
Depolarising channels can, amongst other things, model the misalignment

of reference frames between the nodes in a quantum network [26]. Moreover,
depolarising channels can also model what happens if heralding fails, for instance
when the detector wrongfully measures a photon. Such an event is called a dark
count and leads to reading out an empty quantum memory [6].

3 Simulations with noise

We simulated the quantum summation protocol DQA [17] and included the
noise models discussed above to see how well the protocols perform in noisy
settings. By adding dephasing or depolarising noise to the protocol, we expect
incorrect outcomes found by the server party at the end of the protocol. There-
fore, we report the results as probability distributions in histograms or polar
plots.
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6 A. Rodríguez-Otero et al.

We implemented both noise models using Qiskit [1] where we applied the
noise models only to the quantum links, the part where the GHZ-states are
generated. We implemented these noise models by inserting local noisy identity
gates at the end of the GHZ generation block. We ran experiments for varying
number of parties and inputs, as well as noise levels. Each simulation consists of
9,000 independent runs of the circuit1.

3.1 Dephasing noise

We first consider the impact of the dephasing noise by analysing four parties,
each with input 1 and a dephasing noise of p/2 = 0.07 for each of the four
quantum links.

Fig. 2. Polar representation of the distribution .

Two parties, dephasing noise

(a) p/2 = 0.05 (b) p/2 = 0.25

Fig. 3. Probability distribution for the case of two parties inputting 2, with identical
dephasing noise applied on each entangled qubit pair for varying noise levels, p/2, as
indicated. The correct outcome is given by 100 in binary.

1 The implementations are available upon reasonable request to the authors.
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4. ANALYTICAL STUDY 7

Two parties, dephasing noise

(a) p/2 = 0.05 (b) p/2 = 0.25

Fig. 4. Probability distribution for the case of two parties with inputs 10 and 7, respec-
tively, with identical dephasing noise applied on each entangled qubit pair for varying
noise levels, p/2, as indicated. The correct outcome is given by 10001 in binary.

In the noisy setting, the correct outcome, 4 or 100 in binary, has the highest
probability, followed by outcome 000. The probability distribution seems to have
some symmetry (cf. Section 4), hence Figure 2 shows the probability distribution
in a polar plot. The second most frequent outcome is diametrically opposed to
the correct one; and the next two most frequent outcomes are π/2 radians away
from the highest probability and diametrically opposed to each other.

Interestingly, this symmetry emerges also for a different number of parties
and for varying inputs. First, Figure 3 shows the results for a protocol run with
two parties, both of them inputting 2, for varying values of p. Again, a similar
noise pattern emerges, indicating that the noise pattern is independent of the
number of parties involved. Finally, Figure 4 shows the results for a protocol run
with two parties, where one of them inputs 10 and the other 7, again for varying
values of p. We again see similar symmetries appearing in the noise probability
distribution, which indicates that the probability distribution is independent of
the input values of the parties.

3.2 Depolarising noise

We also performed the analysis for depolarising noise instead of dephasing noise.
Interestingly, the same probability distributions were found as for dephasing
noise, with the same symmetry patterns emerging. We hence omitted the figures,
as they give no additional information compared to the figures in the previous
circuit. In the next section, we proof that indeed the probability distributions
follow a specific pattern with symmetries, independent of the type of noise.

4 Analytical study

The probability distributions shown in the previous sections show some sym-
metry. In this section we analyse this symmetry effect and show that, for fixed
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error probability, indeed the weighted Hamming distance with the correct out-
put string determines the probability of being measured. We derive an expression
for the probability distribution that applies to both dephasing and depolarising
noise, and then discuss the intuition on the relation between the analytical ex-
pression and the observed pattern. Proofs of the results presented in this section
can be found in Appendix A and in the full version of this paper [18].

4.1 Proof of probability distribution

The probability distribution of the DQA under dephasing or depolarising noise
follows a specific probability distribution.

Lemma 1. Under depolarising or dephasing noise, the server party state right
before the application of the Inverse Quantum Fourier Tranform on a DQA for
n parties can be written as

ρ =

n−1⊗
s=0

1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|+ ae−iθs |0⟩ ⟨1|+ aeiθs |1⟩ ⟨0|), (4)

where a =
∏n−1

i=0 ai, with ai = (1−pi)
2 for dephasing noise and ai = 1−(1−pi)

2

for depolarising noise, with pi the noise parameter for party i.

Now, to characterise the output probability distribution of the distributed
adder protocol, we need to look at the product of the ai factors. As we consider
the same error rates for every qubit, we define the fidelity parameter a as a =∏n−1

i=0 ai. In particular, a = 1 corresponds to a noiseless GHZ-state, whereas
a = 0 corresponds to a completely dephased or depolarised GHZ state.

Theorem 1. Let {t(i)}mi=1 be the inputs of m different parties and let for each
s ∈ {0, 1, . . . n− 1}

θs =
π

2n−1−s

m∑
i=1

t(i) =
2π

2n−s

m∑
i=1

t(i). (5)

Then, the m-player DQA protocol produces the output probability distribution
such that for each potential output x

P (x) =
1

2n

n−1∏
s=0

[1 + a cos (θs − 2πx/2n−s)], (6)

with fidelity parameter a ∈ [0, 1] related to the depolarising or dephasing noise
level.

4.2 Understanding the noisy distribution

This section provides intuition for what the proven theoretical distribution in
Equation (6) actually looks like and how it translates to the distribution ob-
served in the simulations. From the equation, it follows that the probability is
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4. ANALYTICAL STUDY 9

maximised if all cosines evaluate to 1, which happens precisely if the argument
of the cosines is an integer multiple of 2π. Setting x = x̃, with x̃ the correct
outcome of the summation, this indeed maximises the probability. The resulting
probability then equals

P (x̃) =

(
1 + a

2

)n

.

A noiseless setting where a = 1, indeed gives a probability of 1.
Now, if y ∈ Z2n is a different outcome, y can be written as y = x̃ + z for

some error z ∈ Z2n\{0}. The probability to observe y then equals

P (y) =
1

2n

n∏
s=1

[1 + a cos(2πz/2s)] (7)

Note, we relabeled the counter with respect to Equation (17). For every s, we see
a periodic behavior in z resulting from the cosines. Combined, we get a complex
periodic behavior in the probability distribution of the possible outcomes.

We can now prove that the probability distribution is symmetric around x:

Lemma 2. Let z ≤ 2n−1, then P (x+ z) = P (x+ (2n − z)).

By the previous lemma, information on noise strings z ≤ 2n−1 gives sufficient
information on all possible noise strings.

In addition, this allows us to show the behaviour observed in Section 3 re-
garding the second and third most frequent outcomes:

Lemma 3. For any integer k ∈ {1, . . . , n−1} and any error string z ∈ {1, 2, . . . 2k},
we have that

P (x+ 2k) ≥ P (x+ z)

This lemma yields indeed that the state diametrically opposite to the correct
outcome has the second largest probability, the states π/2 radians away from
the correct outcome have the third largest outcome, and so forth.

In addition, we see that the probabilities closer to the correct value are larger.
To be more precise:

Lemma 4. For any integer k ∈ {1, 2, . . . , n−1} and error string z ∈ {1, 2, . . . , 2k},
we have

P (x+ z) ≥ P (x+ (2k+1 − z))

Running the circuit multiple times gives samples from the probability dis-
tribution. It would be natural to try and use multiple circuit runs to increase
the probability of obtaining the correct answer, for example by comparing the
obtained distribution with the theoretical distribution derived above. However,
as for fixed fidelity parameter a the probabilities are exponentially small in n,
standard techniques using Chernoff bounds require an exponential number of
samples to lower bound the success probability of retrieving x.
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5 Protocol without Trusted Server

Like most multiparty protocols, the DQA protocol requires a trusted third party.
Although this is a common assumption in some classical multiparty computation
protocols, it is unrealistic in practice. This section therefore introduces a modi-
fication to the protocol which eliminates the necessity of this reliable authority.

For this modification to work, a certain primitive from cryptography is re-
quired, called (Treshold) Shamir’s Secret Sharing [20] (SSS), a well-known clas-
sical protocol originally intended to distribute secrets between several entities,
with the ability to reconstruct them.

Suppose an agent desires to distribute a secret X among k parties. Then the
agent would choose a polynomial of order t < k over a finite field GF (q)

g(x) = X + a1x+ . . .+ at−1x
t−1 (8)

with a prime number q such that X < q. Next, the secret sharer would choose
a set of k different points {x1, . . . , xk} to evaluate the polynomial on and would
send one polynomial evaluation g(xj) to each party. Now, any subset of t parties
can reconstruct the secret by simply performing polynomial interpolation using
the polynomial evaluations that they received and then determining g(0) = X.
Interpolation requires t parties, as the polynomial has degree t − 1. Knowing
t− 1 shares {(xi, g(xi))} does not provide any information about the secret.

SSS can be utilized to perform multiparty summation in a secure manner by
combining it with repeated usage of DQA in multiple rounds. In each round,
a different party acts as server of DQA, the other parties input one of their
shares for the quantum protocol. The party acting as server then receives the
sum of the shares at the end of the round. As shares are only used as input in
the quantum protocol, no party learns the shares of other parties By combining
the shares of any subset of at least t parties, the parties can reconstruct the
summation result. This results in the following protocol:

NO-TP-ADDER (NTPA)
Consider m parties, each holding a number Xi.

– Step 1: the parties agree on a sufficiently large prime q and make q public;
– Step 2: each party i chooses a degree-t polynomial over the finite field GF (q)

gi(x) = Xi + ai1x+ . . .+ ait−1x
t−1 (9)

where the coefficients are chosen at random but non-zero, except for ai0,
which corresponds to the real input from the party (ai0 = Xi);

– Step 3: In each round, a different party will act as the server party, which
requires agreement on the order for the parties to act as server;

– Step 4: m rounds of DQA are performed. For each r ∈ {1, . . . ,m}:
• Party r acts as server;
• Party i inputs share gi(r);
• Party r receives the partial summation

∑
i gi(r)

At the end of all rounds, each party r has received the partial summation∑
i gi(r). It hence knows G(r) for G(x) =

∑m
i=1 gi(x)
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– Step 5: The summation result can be restored by having t parties cooperate
to share their intermediate results G(r). As G(x) has degree at most t − 1,
these t evaluation points of G(x) are hence sufficient to reconstruct G(x),
from which the summation result can be computed by evaluating G(0) =∑m

i=1 gi(0) =
∑m

i=1 Xi. Note that just like in the original SSS protocol, at
most t− 1 shares are not sufficient to conclude anything about

∑m
i=1 Xi.

As each party acts as a server once, no party holds more power or knowledge
than any other, eliminating the need for a trusted third party.

Note that as the parties only know the intermediate shares G(r), they still
need t shares to recover the result of the summation.

6 Conclusions and outlook

As current quantum hardware is noisy, and is expected to remain so for a while,
it is important to study the impact that imperfect operations have on the fidelity
of quantum protocols. Multiple works on noisy quantum algorithms are avail-
able in literature. Similarly, a few works on distributed quantum computing are
available. This work focuses on the combination of distributed noisy operations
and analyses the effect of imperfect operations on the outcome. We restricted
ourselves to imperfect shared entangled states with perfect operations on the
individual devices, as the errors within local devices are generally smaller than
the ones seen on quantum communication.

We considered a practical implementation of the distributed multiparty quan-
tum summation protocol [17]. We apply depolarising or dephasing noise on the
shared entangled states and analytically study the behaviour of the protocol.
The probability distributions corresponding to the final state of a noisy summa-
tion protocol given these noise models show a clear symmetric pattern, proved
in the analytic study. The probability to find an erroneous state depends on
the amount of noise affecting the execution of the protocol and the weighted
Hamming distance between the erroneous string and the correct outcome.

The protocol initially uses a trusted third party. Building upon the classical
Shamir’s Secret Sharing protocol, we could remove the need for a trusted party.
As an added benefit, all parties automatically learn the outcome of the protocol.

Future work should address the effects of other sources of noise that are
present in the protocol, such as imperfect local operations. More importantly, a
proper study of the effects that noise has on the security of the protocol needs to
be done. In a perfect noiseless setting, the quantum no-cloning theorem ensures
that no information is leaked to the outside world without corrupting the states
that the parties share; thus, the parties could detect the presence of an adversary
and abort the protocol before inputting their secrets. However, the signature on
the shared entangled states of the action of an eavesdropper is indistinguishable
from noise. Hence, the parties cannot expose an eavesdropper just by checking
quantum correlations via the shared entangled states. In this case, the amount
of information that can be leaked and learned by an eavesdropper from the ex-
ecution of the protocol should be bounded. As a first step, formal definitions of
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security, anonymity and privacy in the context of quantum multiparty summa-
tion must be established, similar to the field of Quantum Electronic Voting [2].

Although the conclusions from the present study are specific for the inves-
tigated protocol, most quantum multiparty protocols rely on the utilisation of
entanglement at some stage. Thus, the methodology used here can inspire the
analysis of noise robustness in similar protocols.

A Proofs of Results of Section 4

Lemma 5. Under depolarising or dephasing noise, the state of the server party
right before the application of the Inverse Quantum Fourier Tranform on a DQA
run for n parties can be written as in 4; where a =

∏n−1
i=0 (1− pi)

2 for dephasing
noise and a =

∏n−1
i=0 [1 − (1 − pi)

2] for depolarising noise, with pi the noise
parameter for party i.

Proof. From the effect that a one qubit dephasing channel has on an n-qubit
GHZ state

ρ 7→
(
1− pi

2

)
ρ+

pi
2
ZiρZi

=
1

2

(
|0⟩⊗n ⟨0|⊗n

+ |1⟩⊗n ⟨1|⊗n
+ (1− pi)

(
|0⟩⊗n ⟨1|⊗n

+ |1⟩⊗n ⟨0|⊗n
))

,

it can be shown that the application of a noisy non local CNOT between server
party and n parties takes their joint state to

ρs,1,...,n 7→1

2

(
|0⟩⊗n+1 ⟨0|⊗n+1

+ |1⟩⊗n+1 ⟨1|⊗n

+

n−1∏
i=0

(1− pi)
(
|0⟩⊗n+1 ⟨1|⊗n+1

+ |1⟩⊗n+1 ⟨0|⊗n+1
))

.

Then, the parties input their corresponding data through the Z rotations of an
angle θj . After that, a second distributed CNOT under dephasing noise with
parameter takes the state of the server to state in 4, with a =

∏n−1
i=0 (1− pi)

2

For depolarising noise, the same expression holds by replacing
∏n−1

i=0 (1− pi)
by 1− (1− pi)

2. Note that for n > 2, applying an n-depolarizing channel gives a
different result compared to applying a 1-depolarizing channel on all n qubits.

Let ρj be the state of the j-th server qubit. After entanglement generation
and the first non local CNOT under depolarizing error with parameter pi,1, the
parties input their corresponding data by applying local RZ(θj) gates. A second
distributed CNOT under depolarizing noise with parameter pi,2 gives

ρj = (1− pi,1)
(
(1− pi,2)ρ

′
j ⊗ |0⟩ ⟨0|n +

pi,1
2

In+1

)
+

pi,2
2

In+1

=

(
(1− pi,1)(1− pi,2)ρ

′
j ⊗ |0⟩ ⟨0|n +

pi,1(1− pi,2) + pi,1
2

In+1

)
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with ρ′j =
1
2

(
|0⟩ ⟨0|+ |1⟩ ⟨1|+ e−iθj |0⟩ ⟨1|+ eiθj |1⟩ ⟨0|

)
. Taking pi,1 = pi,2 = pi,

setting a = 1− (1− p)2 and tracing out the degrees of freedom of the non server
parties, we can write

ρ′′j = Tr1...n[ρj ] =
1

2

(
|0⟩ ⟨0|+ |1⟩ ⟨1|+ ae−iθj |0⟩ ⟨1|+ aeiθj |1⟩ ⟨0|

)
. (10)

Theorem 1. The m-player DQA protocol produces the output probability dis-
tribution such that for each potential output x

P (x) =
1

2n

n−1∏
s=0

[1 + a cos (θs − 2πx/2n−s)], (11)

with fidelity parameter a ∈ [0, 1] related to the depolarising or dephasing noise
level in the shared GHZ states.

Proof. The state before the final inverse quantum Fourier transform is given by

|Ψ⟩ =
n−1⊗
s=0

1√
2
(|0⟩+ eiθs |1⟩) =

n−1⊗
s=0

1√
2

 ∑
js=0,1

eiθsjs |js⟩

 , (12)

which simplifies to

|Ψ⟩ = 1√
2n

2n−1∑
j=0

ei
∑n−1

s=0 θsjs |jn−1 . . . j0⟩ . (13)

By Lemma 1, the presence of dephasing or depolarising noise on the quantum
edges mixes the state of the server, such that the density matrix takes the form

ρ =

n−1⊗
s=0

1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|+ ae−iθs |0⟩ ⟨1|+ aeiθs |1⟩ ⟨0|) (14)

which can be written as

ρ =
1

2n

2n−1∑
j=0

2n−1∑
k=0

a
∑

s |ks−js|ei
∑

s(θsjs−θsks) |jn−1 . . . j0⟩ ⟨kn−1 . . . k0| , (15)

where a = ã2, as the distributed CNOT gates are performed twice, before and
after the rotations.

The last step of the protocol consists of applying the inverse quantum Fourier
transform. It maps the state in Equation (15) to

IQFTnρQFTn

=
1

22n

2n−1∑
x,y=0

2n−1∑
j,k=0

a
∑

s |ks−js|ei
∑

s(θs− π
2s x)jse−i

∑
s(θs− π

2s y)ks |xn−1 . . . x0⟩ ⟨yn−1 . . . y0| .

(16)
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As the probability of measuring a computational basis state corresponds to the
corresponding diagonal element of the density matrix, we obtain the probability
P (x) by setting x = y, completing the proof:

P (x) =
1

22n

n−1∏
s=0

∑
js,ks=0,1

a|ks−js|ei(θs−
2π

2n−s x)jse−i(θs− 2π

2n−s x)ks

=
1

22n

n−1∏
s=0

(
1 + aei(θs−

2π

2n−s x) + ae−i(θs− 2π

2n−s x) + 1
)

=
1

2n

n−1∏
s=0

[
1 + a cos

(
θs −

2π

2n−s
x

)]
. (17)
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