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Abstract. Inspired by Lyapunov control techniques for quantum sys-
tems, feedback-based quantum algorithms have recently been proposed
as alternatives to variational quantum algorithms for solving quadratic
unconstrained binary optimization problems. These algorithms update
the circuit parameters layer-wise through feedback from measuring the
qubits in the previous layer to estimate expectations of certain observ-
ables. Therefore, the number of samples directly affects the algorithm’s
performance and may even cause divergence. In this work, we propose an
adaptive technique to mitigate the sampling noise by adopting a switch-
ing control law in the design of the feedback-based algorithm. The pro-
posed technique can lead to better performance and convergence prop-
erties. We show the robustness of our technique against sampling noise
through an application for the maximum clique problem.

Keywords: FALQON · QLC · Sampling Noise Mitigation.

1 Introduction

Solving combinatorial optimization problems is one of the leading applications
where noisy intermediate scale quantum (NISQ) devices are expected to show
an advantage over classical algorithms. For NISQ devices, the leading algorithms
that can fulfil these devices’ requirements and are expected to show quantum
advantage are the variational quantum algorithms (VQAs) [3]. VQAs have ap-
plications in quantum chemistry, error correction, quantum machine learning,
and combinatorial optimization [13, 3, 14].

In [12, 11], the feedback-based algorithm for quantum optimization (FALQON)
was proposed as an alternative to VQAs to solve quadratic unconstrained binary
optimization (QUBO) problems. Unlike VQAs, FALQON avoids the classical
optimization problem associated with VQAs. Instead, it updates the circuit pa-
rameters layer-wise through feedback from measuring the qubits in the previous
layer to estimate expectations of certain observables. FALQON was also applied
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to find the ground state of Hamiltonian, specifically in the Fermi-Hubbard model
[10]. It can also be used as a potential initialization technique for the parameters
of the Quantum Approximate Optimization Algorithm (QAOA) [12].

In FALQON, the parameters of the circuit are calculated by estimating the
expected values of some observables using finite number of samples, leading to
noise in the estimation of the parameters. This noise will be fed directly to the
next layer through the feedback law, affecting the algorithm’s performance.

In this work, leveraging tools from quantum Lyapunov control (QLC) theory,
we propose an alternative controller design that can mitigate the noise caused
by the finite number of samples. Inspired by the switching controller design for
QLC proposed in [9], we propose a switching control law that switches between
the standard Lyapunov control law and the bang-bang control law. Unlike the
open loop control problem of quantum systems considered in [9], FALQON re-
quires estimating expected values of observables via quantum measurements, the
number which we strive to reduce by proposing an adaptive sampling technique
with the switching bang-bang and standard Lyapunov control feedback law.

We apply FALQON to the maximum clique problem (MCP) with our pro-
posed approach. Through simulations, we show that our proposal is robust
against sampling noise and can perform better than the standard Lyapunov
technique employed in FALQON with the same number of samples.

The remainder of the paper is structured as follows. In Section 2, we review
QLC and FALQON. In Section 3, we introduce our adaptive sampling noise
mitigation technique. In Section 4, we investigate the robustness of our approach
against sampling noise through application to MCP. Finally, we give a conclusion
in Section 5.

2 Preliminaries

In this section, we provide an overview of FALQON [12, 11] for finding ground
states and solving QUBO problems. We start by reviewing QLC and subse-
quently establish its connection to FALQON.

2.1 Quantum Lyapunov Control

Let us consider the Hilbert space H = CL with associated orthonormal basis
B = {|n⟩}n∈{0,...,L−1} and the set of quantum states given by Y = {|ψ⟩ ∈ CL :

⟨ψ|ψ⟩ = ∥ |ψ⟩ ∥2 = 1}. In the following, all operators will be represented on
the B basis. Consider a quantum system whose dynamics are governed by the
controlled time-dependent Schrödinger equation

i|ψ̇(t)⟩ = (H0 + u(t)H1)|ψ(t)⟩. (1)

where the Planck constant ℏ is normalized to 1, u(t) is the control input and
H0 and H1 are the drift and control Hamiltonian, respectively. In this work,
both H0 and H1 are assumed to be time-independent and non-commuting,
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i.e., [H0, H1] ̸= 0. The main objective here is to find a control law in a feed-
back form, u(|ψ(t)⟩), that guarantees the convergence of the quantum system
(1), from any initial state to the ground state of the Hamiltonian H0, i.e., the
state |ψg⟩ = argmin|ψ⟩∈H ⟨ψ|H0 |ψ⟩. Consider a Lyapunov function of the form
V (|ψ⟩) = ⟨ψ|H0 |ψ⟩, whose derivative along the trajectories of system (1) is
given by V̇ (|ψ(t)⟩) = ⟨ψ(t)| i[H1, H0] |ψ(t)⟩u(t). Hence, designing u(t) as

u(t) = −Kf(⟨ψ(t)| i[H1, H0] |ψ(t)⟩), (2)

where K > 0 and f is a continuous function satisfying f(0) = 0 and xf(x) > 0,
for all x ̸= 0, will ensure that V̇ ≤ 0. Applying the controller (2), under some
assumptions [12, 6], guarantees asymptotic convergence to the ground state |ψg⟩.

2.2 Feedback-Based Quantum Optimization Algorithm

The quantum evolution propagator U(t) associated to (1) is U(t) = τe−i
∫ t
0
H(t′)dt′ ,

where τ is the time-ordering operator. By breaking it into p number of piecewise
constant time intervals of length ∆t, we get U(T, 0) ≈

∏p
k=1 e

−iH(k∆t)∆t, where
the time step ∆t is chosen to be small enough such that H(t) is approximately
constant over the interval ∆t. This can be simplified using Trotterization as
U(T, 0) ≈

∏p
k=1 e

−iu(k∆t)H1∆te−iH0∆t. Hence, we get a digitized formulation of
the evolution in the form

|ψp⟩ =
p∏
k=1

e−iu(k∆t)H1∆te−iH0∆t |ψ0⟩ =
p∏
k=1

U1(uk)U0 |ψ0⟩ , (3)

where uk = u(k∆t), |ψk⟩ = |ψ(k∆t)⟩, U0 = e−iH0∆t, U1(uk) = e−iu(k∆t)H1∆t.
For a drift Hamiltonian H0 specified as a sum of Pauli strings as H0 =∑N0

q=1 cqOq, where cq’s are real scalar coefficients, N0 is given as a polyno-
mial function of the number of qubits and Oq = Oq,1 ⊗ Oq,2 ⊗ ... ⊗ Oq,n with
Oq,d ∈ {I,X, Y, Z}, the unitary U0 can be efficiently implemented as a quantum
circuit. Similarly, to be able to implement the operator U1 as a quantum circuit
efficiently, the Hamiltonian H1 should be designed as H1 =

∑N1

q=1 ĉqÔq.
The quantum circuit that implements U(T, 0) simulates the propagator U(t),

where choosing ∆t sufficiently small, can guarantee that V̇ ≤ 0 [12]. The follow-
ing feedback law is adopted:

uk+1 = −Kf(⟨ψk| i[H1, H0] |ψk⟩) = −Kf(αk), (4)

where αk = ⟨ψk| i[H1, H0] |ψk⟩. This is a discrete version of the controller (2). In
[12], the function f(·) is chosen to be the identity function i.e. f(α) = α, and
the gain K is set to 1. This particular choice of the function f(·) is known as
the standard Lyapunov control law. Hence, we obtain the following controller:

uk+1 = −αk (5)

The implementation of this quantum algorithm follows the algorithmic steps
outlined below. The initial step involves seeding the procedure with an initial
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value for u1 and setting a value for the time step ∆t. Subsequently, a group of
qubits is initialized to an easy-to-prepare initial state |ψ0⟩, and a single circuit
layer is applied to prepare the state |ψ1⟩. The controller for the next layer of
the quantum circuit u2 is estimated on the quantum computer. To estimate the
controller, we expand α in terms of Pauli strings as follows:

αk = ⟨ψk| i[H1, H0] |ψk⟩ =
N∑
q=1

c̄q⟨Pq⟩k, (6)

where we use the notation ⟨Pq⟩k = ⟨ψk|Pq |ψk⟩, Pq is a Pauli string and N is
the number of Pauli strings. Note that N depends on N0 and N1, and since N0

and N1 are given as polynomial functions of the number of qubits, then N is
also a polynomial function of the number of qubits. A new layer is then added
to the circuit, and this sequence is iteratively followed for a depth of p layers.
The dynamically designed quantum circuit

∏p
k=1 U1(uk)U0 along its parameters

{uk}pk=1 constitutes the output of the algorithm. This output can effectively
approximate the ground state of the Hamiltonian H0.

Algorithm 1 FALQON [12]

Input: H0, H1, ∆t, p, |ψ0⟩
Output: circuit parameters {uk}pk=1

1: Set u1 = 0
2: Repeat at every step k = 1, 2, 3, . . . , p− 1
3: Prepare the initial state |ψ0⟩
4: Prepare the state |ψk⟩ =

∏k
l=1 U1(uk)U0 |ψ0⟩

5: Estimate α and calculate the controller uk+1 using (5)
6: Until k = p

3 Proposed Design of the Controller

In this section, we present our approach for modifying FALQON. We propose
an alternative controller design using a switching control law.

In practice, for a finite number of samples M <∞, we have a noisy estimate
of the expectation α̃. Hence the calculated controller becomes ũk+1 = −Kα̃k,
where α̃k is a noisy estimate of αk. As the previous section shows, this con-
troller will be directly fed to the next layer. Therefore, it will directly affect the
performance of FALQON. To tackle this problem, we propose using a switching
control law instead of the standard Lyapunov control law, where the control
switches between a bang-bang controller and a standard Lyapunov control law.
The bang-bang control switches between two states based on the sign of α̃ and
discards the noisy estimate of the expectation, thus mitigating its effect on the
algorithm. In this work, we adopt the following switching control law. By defin-
ing ϵ > 0 to be the additive error in the estimation of the expectation αk, the
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noisy estimate of the controller (M <∞) is given as, with probability (1− δ):

ũk+1 = −K sat(α̃k) =


−W α̃k − ϵ > ϕ

W α̃k + ϵ < −ϕ
−Kα̃k otherwise

(7)

where K > 0 is the controller gain, ϕ > 0 is a parameter to adjust the switching
band, W > 0 and 0 < δ < 1. Note that, with probability 1 − δ, the estimated
controller is totally equivalent to the noiseless controller in the region where
the bang-bang controller is activated, i.e. in the region |α̃k| > ϕ + ϵ. Hence, we
achieve sampling noise mitigation in this region by controller design.

We now quantify the error bound ϵ. From (6), to calculate α = αk, we
need to estimate N expectations of Pauli strings. For this case, performing a
single-shot measurement of the qubits in a single circuit instance is the same as
sampling an element from a distribution over {−1, 1} with an expected value
denoted as ⟨Pq⟩k. To quantify the difference between the actual expectation and
the estimated values, we employ Hoeffding’s inequality. Hoeffding’s inequality
states that when provided with a sample ofM independent and bounded random
variables {Xi}Mi=1 drawn from any distribution whereXi ∈ [−β, β], the difference
between the empirical expected value X̃ and the actual expected value satisfies
the subsequent inequality:

Pr
(
|X̃ − ⟨X⟩| ≥ ϵ

)
≤ 2 exp

(
−Mϵ2

2β

)
=: δ, (8)

which implies that through a number of samples M ≥ 2log(2/δ)/ϵ2, the expec-
tation value ⟨Pq⟩ can be estimated within a precision of ϵ with probability 1− δ

[2]. Since α =
∑N
q=1 c̄q⟨Pq⟩, we consider (8) substituting ϵ/(|c̄q|N) for ϵ and δ/N

for δ. Namely, through Mq ≥ 2log(2N/δ)c̄2qN
2/ϵ2 samples the expectation value

⟨Pq⟩ can be estimated within a precision of ϵ/(|c̄q|N) with probability 1− δ/N ,
and therefore α can be estimated within a precision of ϵ with probability larger
than or equal to 1− δ. In fact,

P (|α̃− α| ≥ ϵ) = P (|
∑
q

c̄q(⟨P̃q⟩ − ⟨Pq⟩)| ≥ ϵ) ≤ P (
∑
q

|c̄q| · |⟨P̃q⟩ − ⟨Pq⟩| ≥ ϵ)

≤ P (∨q{|c̄q| · |⟨P̃q⟩ − ⟨Pq⟩| ≥
ϵ

N
}) ≤

∑
q

P (|⟨P̃q⟩ − ⟨Pq⟩| ≥
ϵ

|c̄q|N
) ≤

∑
q

δ

N
= δ.

Hence, by choosing δ andM = maxqMq, we can find the error bound on α as

ϵ = maxq |c̄q| ·N
√
2log(2N/δ)/M . Based on this, we can calculate the switching

control law defined by (7). From this inequality, we note that by increasing the
number of samples, we can decrease the value of the error bound and, hence,
increase the regions in which the bang-bang controller will be activated. In this
way, we can adopt an adaptive number of samples, where we start with a small
number of samples and check the condition |α̃k| > ϕ+ ϵ if it is not satisfied, we
increase the number of samples to mM , where m > 1 and repeat till we satisfy
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the condition or reach a maximum number of samples Mmax. Simulation results
suggest that this bound is conservative. To address this, we introduce a param-
eter Ke to adjust the bound, resulting in α̃k±Keϵ in the controller design. Note
that better bounds could be achieved by adopting advanced estimation methods
of the expectation α such as adaptive informational complete measurements [7]
and classical shadows of quantum states [8]. We defer the analysis and compari-
son of these methods to future work. The implementation steps of our approach
are outlined in Algorithm 2. This algorithm serves as a subroutine for FALQON,
replacing step 5 in Algorithm 1.

Algorithm 2 Switching control law with adaptive number of samples

Input: |ψk⟩, δ, M , m, Mmax, ϕ, Ke

Output: circuit parameter of the next layer uk+1

1: Prepare the state |ψk⟩ =
∏k

l=1 U1(uk)U0 |ψ0⟩
2: while M ≤Mmax

3: Calculate ϵ using ϵ = maxq |c̄q| ·N
√

2log(2N/δ)/M
4: Estimate α̃k on the quantum computer using (6)
5: if |α̃k| > ϕ+Keϵ
6: Calculate the controller uk+1 using (7)
7: else
8: M ← mM
9: end while
10: Calculate the controller uk+1 using (7)

4 Application to the Maximum Clique Problem

We apply our proposed approach to MCP, known to be an NP-complete opti-
mization problem [4]. For MCP, we are given a graph G = (V,E) where V is the
set of vertices and E is the set of edges. A clique refers to a group of vertices that
form a fully connected subgraph, where every pair of vertices within this group
is connected by an edge in G. The size of the clique corresponds to the number
of vertices it contains. The objective of MCP is to identify a clique within G that
consists of the greatest possible number of vertices. In [4], MCP is formulated
as the following QUBO minimization problem:

min
x∈{0,1}n

−A
∑

i∈V (G)

xi +B
∑

(i,j)∈E(Gc)

xixj , (9)

where B/A is chosen to be sufficiently large. To apply FALQON to this problem,
we first map it into the following Ising Hamiltonian [4]:

H0 =
∑

i∈V (G)

Zi + 3
∑

(i,j)∈E(Gc)

(ZiZj − Zi − Zj) (10)

where we set A = 1, B = 3. For numerical simulation, we consider the instance
of MCP with V = {0, 1, 2, 3, 4} and E = {{0, 1}, {0, 2}, {1, 4}, {1, 2}, {2, 3}}. For
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more details on implementing FALQON for MCP, see [15]. To execute FALQON,
we use the Qiskit Aer quantum simulator [1]. We design the cost Hamiltonian as

H1 =
∑5
i=1Xi and the initial state as the equal superposition state |ψ0⟩ = |+⟩⊗5

.
We set the time step to be ∆t = 0.18 and the number of samples to be M =
Mmax = 5. We run the algorithm using the standard Lyapunov technique and
our approach for circuit depth of 20 layers. The switching control law parameters
are set to be W = 3, K = 2, ϕ = 0.02, Ke = 0.035 and δ = 0.2. The values of
W and K are chosen to match the standard Lyapunov control while ϕ, Ke and
δ are adjusted to increase the band where the bang-bang controller is activated.
The results in Figure 1 show that for a small number of samples M = 5, our
proposed algorithm has better convergence to the ground state, which encodes
the optimal solution to the problem |00111⟩ with optimal value −4.75.

In addition, we run the algorithm for 20 realizations and plot the mean and
the corresponding standard deviation. The results are shown in Figure 2. From
Figure 2, it is seen that for our proposed approach using the switching control
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Fig. 1: Simulation results of one run of FALQON applied to the MCP instance
using the standard Lyapunov control law and the proposed switching control
law for a number of samples M = 5.
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Fig. 2: Simulation results of applying FALQON to the MCP instance. FALQON
is executed for 20 realizations and a number of samples M = 5, comparing the
standard Lyapunov method with the proposed approach. The layer k is plotted
versus the mean trajectory (solid line) and the corresponding standard deviation
(shaded area) of the Lyapunov function Vk = ⟨ψk|H0 |ψk⟩ for both approaches.
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law, the mean of the realizations decreases with the layer depth increase, while
it fails for the standard approach. We note that for larger values of M , the
Lyapunov function has better convergence for all realizations with increasing
depth. However, both techniques have approximately similar performance.

5 Conclusion and Future Work

In this work, we proposed an adaptive sampling noise mitigation technique.
Simulation results show that our approach is robust against sampling noise in an
example of MCP. Our future work will focus on adapting this adaptive sampling
noise mitigation technique to other quantum algorithms that depend on quantum
control theory, such as the quantum imaginary-time evolution algorithm [5].
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