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Abstract. Tactical deconfliction problem involves resolving conflicts be-
tween aircraft to ensure safety while maintaining efficient trajectories.
Several techniques exist to safely adjust aircraft parameters such as
speed, heading angle, or flight level, with many relying on mixed-integer
linear or nonlinear programming. These techniques, however, often en-
counter challenges in real-world applications due to computational com-
plexity and scalability issues. This paper proposes a new quantum ap-
proach that applies the Quantum Approximate Optimization Algorithm
(QAOA) and the Quantum Alternating Operator Ansatz (QAOAnsatz)
to address the aircraft deconfliction problem. We present a formula for
designing quantum Hamiltonians capable of handling a broad range of
discretized maneuvers, with the aim of minimizing changes to original
flight schedules while safely resolving conflicts. Our experiments show
that a higher number of aircraft poses fewer challenges than a larger num-
ber of maneuvers. Additionally, we benchmark the newest IBM quantum
processor and show that it successfully solves four out of five instances
considered. Finally, we demonstrate that incorporating hard constraints
into the mixer Hamiltonian makes QAOAnsatz superior to QAOA. These
findings suggest quantum algorithms could be a valuable algorithmic can-
didate for addressing complex optimization problems in various domains,
with implications for enhancing operational efficiency and safety in avi-
ation and other sectors.

Keywords: Tactical Aircraft Deconfliction · Quantum Approximate Op-
timization Algorithm · Quantum Alternating Operator Ansatz.

1 Introduction

The global COVID-19 pandemic was not enough to stop the long-term trend of
increasing demand for aviation services. According to Airports Council Interna-
tional, in 2023 the number of passengers reached almost 95% of the levels from
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2019, and projections indicate a surpassing of the 2019 level in 2024 [1]. Along
with this trend, problems with airspace congestion are returning, and the de-
mand for specialized algorithms dealing with airspace management comes back,
one of the problems being the tactical aircraft deconfliction.

In literature, aircraft deconfliction, also known as a conflict detection and
resolution problem, refers to the natural and common challenge of ensuring ap-
propriate and safe separation among aircraft operating in the same controlled
airspace. The problem arises due to the limited airspace and the need to accom-
modate multiple aircraft at different directions, altitudes, speeds, and planned
maneuvers. The problem has been a subject of interest among many researchers
within the community. Despite extensive exploration of conflict detection and
resolution, numerous models struggled to sufficiently address the challenges of
considered problem, as noted in a seminal work by Kuchar and Yang [16]. Then,
the work by Pallottino et al. [21] gained much community attention by introduc-
ing the velocity change model, which utilizes mixed-integer linear programming
(MILP) to allow real-time maneuvering to resolve aircraft conflicts. This ap-
proach was further refined by Alonso-Ayuso et al. [3], who incorporated altitude
changes, weather conditions and trajectory recovery into the model while main-
taining real-time capabilities.

In a separate study [27], Vela et al. concentrated on addressing the problem
of future conflicts, which could occur within a timeframe ranging from 15 to
45 minutes, to minimize fuel costs. They reported achieving near-optimal so-
lutions using the MILP approach, incorporating control over both velocity and
altitude. Furthermore, Omer [20] observed that air traffic controllers and aircraft
pilots do not favor all velocity, heading, and altitude changes. Consequently, he
suggested a discretization approach to facilitate easier handling by human op-
erators, resulting in a minor increase in fuel consumption, amounting to a few
kilograms.

Instead of employing MILP, some researchers have proposed using nonlinear
programming to address the issue of aircraft deconfliction. In their study [7],
Cafieri and Durand utilized Mixed Integer Nonlinear Programming (MINLP) as
a natural choice to model separation conditions, addressing the problem using
only velocity change. The study conducted by Alonso-Ayuso et al. [4] also ap-
plied MINLP formulation to solve the deconfliction problem via turn changes.
One notable work that builds upon these two approaches and combines them
was conducted by Cafieri and Omheni [8]. They suggest initially resolving the
problem by adjusting heading angles and subsequently using this solution as a
preprocessing step for modifying velocities.

Various other studies have explored the deconfliction problem, considering
factors such as stochasticity and three-dimensional space [17], or employing a
new method such as bilevel programming [9]. For an in-depth review of research
on deconfliction over the past two decades, one should refer to [22].

Given the recent advancements in quantum computing and still persistent
challenges in the broad domain of air traffic management, it is not surprising
that researchers have been exploring alternative approaches. The initial study
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that focused on the application of quantum computers in aviation was conducted
by Stollenwerk et al. [25], who proposed a method to solve flight-gate assignment
problem using the D-Wave 2000Q quantum annealer. Using the same device,
Stollenwerk et al. [26] addressed the strategic aircraft deconfliction problem by
incorporating takeoff delays into wind-optimal trajectories. Additionally, they
outlined a simplified model for trajectory modifications proposing pairwise ex-
clusive avoidance or introducing delays between two consecutive conflicts. The
D-Wave 2000Q quantum annealer was also used to solve the Tail Assignment
Problem [12] in a study presented by Martins et al. [18]. The problem had been
addressed also thanks to classical simulation of a universal quantum computer in
[28]. Real gate-based quantum hardware, however, was employed to successfully
solve only toy instances of flight-gate assignment in [19, 10].

In this paper, we introduce a novel approach to address the tactical aircraft
deconfliction problem using gate-base quantum computers. Inspired by the ideas
presented in [20], we advocate for conflict resolution through discretized maneu-
vers. Our main contributions include designing a proper cost Hamiltonian for the
Quantum Approximate Optimization Algorithm coupled with the effective relo-
cation of a subset of hard constraints into the mixer Hamiltonian of the Quantum
Alternating Operator Ansatz. Furthermore, we establish a connection with our
previous research by benchmarking our approach against a widely-used circle
problem dataset published by Rey and Hijazi [23], which has been downscaled
to align with the capacity of current quantum machines.

The paper is organized as follows. In Section 2, we formulate the problem,
both classically and in quantum terms. In Section 3, we show how to use our
formulation with existing quantum algorithms. In Section 4, we describe the
results, and conclude the paper with future work in Section 5.

2 Problem Representation and assumptions

Let us assume that during the flight, an aircraft must maintain a minimum
separation of 5 nautical miles horizontally and 1000 feet vertically from other
aircraft, where a nautical mile equals 1852 meters and a foot equals 30.48 cm. A
conflict between two aircraft arises when a pair of aircraft violates at least one
of these constraints. If a particular conflict is detected and resolved within five
to thirty minutes, then we consider the tactical deconfliction. [22]. We further
assume that aircraft motion can be described by a sequence of line segments,
maintaining a constant speed within each segment and allowing instantaneous
speed changes at the beginning of each segment.

2.1 Classical formulation

We present a graphical summary of our approach to the deconfliction problem
in Figure 1. The diagram illustrates the key components of our methodology,
including the set of proposed maneuvers and the conflict matrix, which is intro-
duced mathematically later in this subsection.
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Fig. 1. Diagram summarizing our approach to the deconfliction problem. Initially, three
aircraft are in conflict. After proposing 2 additional maneuvers (totaling 3 maneuvers),
one feasible solution is proposed: aircraft 1 maneuver 3, aircraft 2 maneuver 1, aircraft
3 maneuver 1. After conflicts are resolved, aircraft may return to their original desti-
nations, which, however, is beyond the scope of our approach.

Given a set of n aircraft with their respective positions, heading angles,
speeds, and flight levels, our approach begins by proposing a set of discretized
maneuvers for each aircraft. Maneuvers could be of various kinds, including head-
ing angle change, speed change, or flight level change. For simplicity, we assume
that each aircraft can perform m maneuvers, although the actual number may
vary for an aircraft depending on specific flight requirements. To keep track of
these maneuvers let us introduce a set of the following binary variables:

X = {xij : i = 1 . . . , n, j = 1, . . . ,m, xij ∈ {0, 1}}. (1)

If the variable xij is assigned the value 1 it indicates that the aircraft i
performs maneuver j, whereas a value of 0 indicates the opposite. In this work,
we assume that maneuvers are disjoint for an aircraft, i.e., an aircraft must
perform one and only one maneuver:
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m∑
j=1

xij = 1 ∀i, i = 1 . . . , n. (2)

After proposing the set of maneuvers for each aircraft, we can then fill a
4-dimensional Conflict Matrix (CM) of size n ×m × n ×m with binary values
indicating presence or absence of a conflict between two aircraft,

CM(i, j, i′, j′) =

1 if aircraft i performing maneuver j conflicts
with aircraft i′ performing maneuver j′

0 otherwise.
(3)

To detect the potential conflicts, we use a subroutine proposed by Bilimo-
ria [5] wherein we appropriately transform the coordinate system and calculate
the relative aircraft speed. Naturally, the entire matrix is redundant due to its
symmetry, i.e., CM(i, j, i′, j′) = CM(i′, j′, i, j).

The primary focus of the tactical deconfliction problem is to modify aircraft
trajectories to resolve all conflicts. This objective can be achieved by satisfying
the following constraint:

n∑
i=1

m∑
j=1

n∑
i′=1

m∑
j′=1

xijxi′j′CM(i, j, i′, j′) = 0. (4)

We can clearly see that, while it is relatively efficient to check whether the
solution is feasible, the number of possible solutions grows exponentially with
the number of aircraft and maneuvers.

The aircraft deconfliction problem extends beyond the sole consideration of
avoiding conflicts as it also encompasses the optimization of various parame-
ters such as fuel consumption or average delay. Typically, such criteria can be
aggregated into a cost function to minimize, comprising partial costs for each
aircraft:

C =

n∑
i=1

m∑
j=1

Cij . (5)

In this work, we simplify the optimization process by focusing solely on min-
imizing the total number of changes to the original trajectory. Nevertheless, the
objective can be easily expanded to incorporate more sophisticated criteria as
needed.

2.2 Quantum formulation and encoding

When addressing optimization challenges, quantum computing offers a variety
of approaches to choose from [2]. In this study, our emphasis is on two dif-
ferent optimization algorithms, namely the Quantum Approximate Optimiza-
tion Algorithm (QAOA) [11] and the Quantum Alternating Operator Ansatz
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(QAOAnsatz) [14]. These two algorithms are rooted in the Adiabatic Theorem
[6], which states that a quantum system in an eigenstate undergoing slow enough
changes will remain in that eigenstate. The mathematical connection between
these algorithms and the Adiabatic Theorem is not rigid. In practice, the pro-
cess begins with an arbitrary state, preferably an easy-to-prepare ground state
[15]. This initial state then evolves into the ground state that corresponds to the
solution of the problem described by the problem Hamiltonian. The subsequent
discussion outlines how to construct such a Hamiltonian.

For the translation of the formulas derived in Section 2.1 to quantum Hamil-
tonians we employ the composition rules described in [13]. In this process, we
make use of the Pauli matrices: I = ( 1 0

0 1 ), Z =
(
1 0
0 −1

)
. The first constraint, en-

suring that an aircraft can perform one and only one maneuver, can be described
in the following way:

H1 =

n∑
i=1

I −
m∑
j=1

Hx(xij)

m∏
j′=1,j′ ̸=j

(Hnot(xij′)))

 . (6)

The Hamiltonian term Hnot(xij′) =
1
2 (I + Zij′) represents a boolean clause

that has a value of 1 if aircraft i does not perform maneuver j′. The product
represents a clause with a 1 if any other maneuver, except j, is not performed.
We specify the clause that has a value of 1 if aircraft i performs maneuver j by
the Hamiltonian term Hx(xij) = 1

2 (I − Zij). We repeat the process for every
possible maneuver j to achieve a boolean clause that has a value of 1 if we have
a correct one-hot encoding. Note that we want the ground state to represent the
desired solution, so we must negate the Hamiltonian. Afterwards, we sum over
all possible aircraft.

The second constraint, ensuring that no two aircraft are in conflict, is repre-
sented as follows:

H2 =
∑

i,j,i′,j′:CM(i,j,i′,j′)=1

Hand(xij , xi′j′). (7)

The Hamiltonian term Hand(xij , xi′j′) =
1
4I −

1
4 (Zij + Zi′j′ − ZijZi′j′) rep-

resents a boolean clause that evaluates to 1 only if aircraft i performs maneuver
j and aircraft i′ performs maneuver j′. Summing these situations gives us the
total number of conflicts. Naturally, our objective is to minimize the number of
conflicts, aiming for a value of 0.

The optimization criterion is determined by a Hamiltonian that assigns ap-
propriate weights to the chosen maneuvers of each aircraft:

Hopt =

n∑
i=1

m∑
j=1

wijHx(xij). (8)

Here, wij represents the cost associated with aircraft i performing maneuver
j. When aiming to minimize the number of changes from the original trajectories,
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the weights for the original trajectories are set to 0, while a positive value is
assigned to the weights corresponding to modified trajectories.

These partial Hamiltonians have been crafted to be combined into a final
Hamiltonian, where the ground state aligns with our desired deconflicted solu-
tion:

H = θ1H1 + θ2H2 + θoptHopt. (9)

In the final Hamiltonian, we introduced additional multipliers to ensure that
the ground state consistently corresponds to a feasible solution, regardless of the
number of changes needed in the original trajectory. A simple valid assignment
can be made as follows: θ1 = 1, θ2 = 1, θopt = sum(CM), where sum(CM) is
the number of all conflicts (all 1s) in the CM.

3 Application

The two algorithms, QAOA and its enhancement, QAOAnsatz, are both hybrid
quantum-classical variational algorithms. In these approaches, a parametrized
quantum circuit is designed, and the variational parameters are iteratively ad-
justed using a classical optimizer to minimize the cost function defined by the
expectation value of a chosen observable. We provide a brief overview of the foun-
dations of each of these algorithms and their application in solving the tactical
deconfliction problem.

3.1 Quantum Approximate Optimization Algorithm

Given R qubits, QAOA initializes by preparing the quantum register in the state
|+⟩⊗R, which is the ground state of a mixing Hamiltonian composed of Pauli-
X gates, HM =

∑R
i=1Xi. It then alternately applies the problem Hamiltonian

(also known as the cost Hamiltonian) and the mixer Hamiltonian to the initial
state, p times, where p is a positive integer. The number p is also referred to
as the depth of QAOA. The evolution of Hamiltonians is parameterized by two
sequences of variational parameters, namely −→γ and

−→
β . The former controls Hc,

while the latter controls Hm. Combining these elements, the final state |ψ⟩ after
evolution is expressed as follows

|ψp(
−→γ ,

−→
β )⟩ = e−iβpHM e−iγpHC . . . e−iβ1HM e−iγ1HC |+⟩⊗R. (10)

The role of Hc is to distinguish our desired problem solution by applying a
change in phase to it. In the context of the tactical deconfliction problem, we
simply need to set HC = H, see Equation 9. The HM , on the other hand, aims
to amplify the phase increasing the probability of measuring the desired solu-
tion. This is achieved by adjusting the variational parameters using a classical
optimizer which minimizes the expectation value:

min
−→γ ,

−→
β

⟨ψp(
−→γ ,

−→
β )|HC |ψp(

−→γ ,
−→
β )⟩. (11)
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The expectation value of the circuit measurement is also commonly known as
energy. Minimizing the energy is equivalent to increasing the probability of mea-
suring solution to our problem. It is noteworthy that Hc serves a dual purpose,
as it also functions as a cost function in this context.

3.2 Quantum Alternating Operator Ansatz

We can modify the approach by initializing the quantum register with a state
that corresponds to a feasible solution (or a semi-feasible solution, such as one
that satisfies only one of several constraints). The algorithm then applies HC as
usual to distinguish our desired solution in phase, but the mixer Hamiltonian is
used differently. It is designed to provide transitions from one feasible solution
to another. This way we explore and search for the lowest-energy solution only
within a feasible subspace constrained by the hard constraints of our problem,
which is the essence of the QAOAnsatz algorithm [14].

In the context of the tactical deconfliction problem, we have chosen to encode
only the one-hot constraint (Equation 6) into HM . To achieve this, we employ
a single-qubit ring mixer defined as follows:

HM =

n∑
i=1

XimXi1 + YimYi1 +

m∑
j=1

XijXij+1 + YijYij+1. (12)

Here, the Y symbol represents the Pauli-Y gate. The term XimXi1 + YimYi1
closes the loop between the last and the first qubit, representing the one-hot
encoding for each aircraft.

As we have encoded the one-hot constraint into HM , we can remove the
constraint from HC :

HC = θ2H2 + θoptHopt. (13)

However, it’s important to note that in the presence of noisy hardware, the
evolution may drift away from feasible-only solutions. In such cases, having a
redundant term in the cost Hamiltonian might be advantageous. In this paper,
we choose to use the full cost Hamiltonian, as formulated in Equation 9.

4 Experimental results

In the proposed encoding, the number of qubits was equal to the product of
the number of aircraft and their maneuvers. Consequently, instances with an
identical number of variables could differ in the ratio of aircraft to maneuvers.
We started our set of experiments by investigating how altering these two factors
affects instance difficulty. For this purpose, we introduced a set of instances that
require only 12 qubits but feature different numbers of aircraft and maneuvers,
and these instances were artificially generated by constructing CM to ensure
only one solution exists.
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Fig. 2. Average success probability as a function of instance type. Instances are ordered
based on the number of aircraft, ranging from 2 aircraft with 6 possible maneuvers to 6
aircraft with only 2 possible maneuvers. The comparison involves two different QAOA
depths.

For each instance, we executed 100 QAOA circuits on a noisy simulator with
varying initial variational parameters, and the results of success probability were
averaged. We used SPSA [24] as the optimizer, as it has proven to perform well
on noisy setups. The outcomes are presented in Figure 2. Observing both circuit
depths p, we noted that the algorithm faces increasing difficulty in finding the
correct solution as the number of maneuvers grows. Conversely, increasing the
number of aircraft at the expense of maneuvers tends to make the instance easier.
This behavior aligns with our expectations, as ensuring that no two aircraft are
in conflict requires less entanglement between qubits compared to constraining
that an aircraft can perform one and only one maneuver. More entanglement
naturally makes the circuit longer, introducing additional noise. Moreover, en-
tangling gates are typically more error-prone than single-qubit gates. As a side
note, we observed that increasing the circuit depth also appears to result in a
slight improvement in the average success probability. After conducting initial
experiments on a quantum simulator, we evaluated the capabilities of physical
quantum computers.

Existing quantum hardware in the noisy intermediate-scale quantum (NISQ)
era provides access to several hundred superconducting qubits. Promising qubit
implementations use other quantum technologies, such as trapped ions, neutral
atoms, or photons. However, the superconducting quantum architectures lack
all-to-all qubit connectivity, requiring multiple swaps to make them adjacent
before entanglement. Introducing extra SWAP quantum gates may cause addi-
tional errors, potentially degrading the solution quality and, in extreme cases,
leading to a failure to find one. With this in mind, we decided to downscale
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Fig. 3. Probability of finding a solution to the deconfliction problem in the function of
instance difficulty and QAOA depth. The instances are the Random Circle Instances
with n aircraft, each of the aircraft having m maneuvers to choose from (e.g., n = 5,
m = 3 for RCP 5× 3). Experiments were launched on the 133-qubit ibm_torino.

the Random Circle Problem (RCP) instances [23] to involve 3, 4 and 5 aircraft.
For instance, with 3 aircraft, we proposed 2 maneuvers and for 4 aircraft we
proposed 3 maneuvers. The instance with 5 aircraft was approached with 3, 4,
and 5 maneuvers. This results in a total of five RCP instances, requiring 9, 12,
15, 20, and 25 qubits, respectively.

We evaluated the performance of the latest IBM quantum computer using
the superconduting 133-qubit ibm_torino quantum computer in solving all in-
stances across three different QAOA depths. The results are illustrated in Figure
3. Clearly, instances requiring fewer qubits are generally easier to solve. As we
move to cases with 5 aircraft, the probabilities of measuring a correct solution
drop below 0.01 (less than 1%). It is important to note that this low success
probability does not indicate failure, as each circuit is typically measured sev-
eral thousand times. Given the exponential complexity of the tactical decon-
fliction problem, achieving a correct solution for even a dozen qubits surpasses
the performance of a random guess. Even a single positive outcome is sufficient
to solve the considered instance. Unfortunately, the quantum computer selected
for our experiments could not solve the problem instance with 5 aircraft and 5
maneuvers. Additionally, we could not identify any noticable trend within the
circuit depth, largely due to the inherent randomness of a quantum device. Con-
sequently, further experiments are necessary.

Our final set of experiments involved a comparison between QAOA and
QAOAnsatz. Once more, we measured the difference on a quantum simulator
and take the average of 100 runs. Given that the tactical deconfliction problem
is an optimization problem, we choosen to minimize the number of changes to
the original flight schedule. Consequently, we present the probabilities of find-
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Fig. 4. Comparison between QAOA and QAOAnsatz on a noisy quantum simulator
across various two depths, with a focus on the optimization criterion of minimizing
changes to the original trajectory. The probabilities of finding a solution to the RCP
5× 3 problem are averaged over 100 runs.

ing a correct solution for the RCP 5× 3 instance in a function of the number of
changes required to achieve a correct solution. The results are shown in Figure 4.

We observed that leveraging the feature of QAOAnsatz, which allows for
incorporating hard constraints into the mixer Hamiltonian, provides a signifi-
cant advantage over using mixers from the vanilla QAOA. The probabilities of
measuring a solution to the problem are much higher for QAOAnsatz. How-
ever, QAOAnsatz still faces challenges in finding solutions that require only one
change to the flight schedule to deconflict aircraft. The experiments demonstrate
that QAOAnsatz might be a noteworthy algorithm candidate capable of solving
deconfliction instances that QAOA could not handle. We leave this investigation
for future work.

5 Conclusions and future work

In this paper, we have successfully shown how to formulate the aircraft deconflic-
tion problem in a way that is applicable to solve using quantum variational algo-
rithms. By designing a proper cost Hamiltonian for the Quantum Approximate
Optimization Algorithm (QAOA) and incorporating hard constraints into the
mixer Hamiltonian of the Quantum Alternating Operator Ansatz (QAOAnsatz),
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we have demonstrated the efficacy of quantum computing in addressing this chal-
lenge. Our experiments have validated the feasibility of quantum approaches
in handling the complexity of aircraft deconfliction and shed light on the nu-
anced interplay between aircraft and maneuvers in determining solution diffi-
culty. Moreover, using physical quantum machines, such as the IBM quantum
computer, has underscored the practicality of our proposed methodologies in
real-world settings.

We plan to extend our work in a twofold manner. Firstly, we plan to enhance
the series of experiments qualitatively. One intriguing avenue for exploration
involves investigating the effects of removing the constraint that limits each air-
craft to one and only one maneuver. Suppose an airplane can execute more than
one maneuver simultaneously. In that case, it implies that both maneuvers are
conflict-free, enabling the decision-making process to be deferred to the post-
processing phase. Another way of improving the solution finding would be to
perform a more in-depth analysis of QAOAnsatz variants, mainly by incorporat-
ing controlled state transitions to the mixer Hamiltonian. We should not neglect
the fact to address trajectory recovery, which was considered in some papers.

Secondly, we plan to enhance the series of experiments quantitatively by per-
forming more experiments and trying to solve bigger problem instances. Some
of the implemented qualitative measures, e.g. moving the one and only one con-
straint to the post-processing phase, will naturally allow for performing larger
experiments. A notable consequence of the time-dependent three-dimensional
domain of the problem is that some maneuvers do not with each other. It means
that we can find such a bijection between variables and qubits so that the no-
conflicting maneuvers correspond to qubits which are distant from each other on
the quantum computer processor topology, which could significantly reduce the
need for SWAP gates, suppressing the noise. Finally, performing more experi-
ments on the same size instances would also improve the precision and potential
findings of the experimental results.
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