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Abstract. Quantum annealers (QA), such as D-Wave systems, become
increasingly efficient and competitive at approximating combinatorial
optimization problems. However, solving problems that do not directly
map the chip topology remains challenging for this type of quantum com-
puter. The creation of logical qubits as sets of interconnected physical
qubits overcomes limitations imposed by the sparsity of the chip at the
expense of increasing the problem size and adding new parameters to
optimize. This paper explores the advantages and drawbacks provided
by the structure of the logical qubits and the impact of the rescaling
of coupler strengths on the minimum spectral gap of Ising models. We
show that logical qubits encoded over densely connected physical qubits
require a lower chain strength to maintain the ferromagnetic coupling.
We also analyze the optimal chain strength variations considering dif-
ferent minor embeddings of the same instance. This experimental study
suggests that the chain strength can be optimized for each instance. We
design a heuristic that optimizes the chain strength using a very low
number of shots during the preprocessing step. This heuristic outper-
forms the default method used to initialize the chain strength on D-Wave
systems, increasing the quality of the best solution by up to 17.2% for
tested instances on the max-cut problem.

Keywords: quantum annealing · Ising chain strength · minor embed-
ding

1 Introduction

The idea of using Quantum Annealers to solve combinatorial problems is not
new and was exposed by Kadowaki et al. [13]. Despite strong theoretical proofs
based on the quantum adiabatic theorem, the speed-up brought up by quantum
annealers still needs to be quantified for real useful applications. It comes from
the fact that quantum annealers implement a noisy version of the more general
Adiabatic Quantum Computation (AQC) (the reader may refer to Albash et al.
[2] for an introduction to AQC). Indeed, D-Wave systems suffer from more than
five different sources of Integrated Control Errors (ICE) [1] and have limited
connectivity between qubits. The maximal number of qubits available on the
quantum chip limits the size of the problem that can be solved. Minor embedding
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algorithms transform the initial problem into a new one that fits the sparsely
connected quantum chip. The transformation consists of mapping the initial
problem’s logical variables to a set of physical variables that can be straightly
encoded on the physical qubits of the quantum annealer. As mentioned in Gilbert
et al. [10], assessing the quality of an embedding is not trivial. The number of
physical qubits used in the embedding can serve as a first quality indicator,
but the physical qubit’s topology used to encode the logical qubits can also be
considered. To the authors’ knowledge, a single contribution on this issue was
made by Pelofske [15]. Topologies used for physical qubits are usually chains of
qubits because this structure maximizes the number of potential connections of
the logical qubit. E. Pelofske shows that the performance of the quantum solver
is increased when logical qubits are encoded on cliques instead of chains. The
minor embedding of a logical variable into a set of physical qubits requires the
setting of an accurate ferromagnetic coupling. Current state-of-the-art methods
often scan a static range of values to find the appropriate ferromagnetic coupler
strength.

In this context, we explore the advantages and drawbacks of different log-
ical qubit encodings. This first analysis shows that the minimum spectral gap
varies depending on the qubit encoding, as well as the minimum chain strength
required to maintain ferromagnetic couplings. We perform a detailed analysis of
the average performance of the two main existing minor embedding methods.
This analysis helps to select sets of instances on which we compute the chain
break tendency w.r.t the chain strength value. In particular, we discover that the
optimal value of the chain strength varies depending on the embedding choice,
which suggests that a per-instance chain strength setting method is desirable.
The final contribution of this article is the design of a simple algorithm used to
find appropriate values for the chain strength using very few preprocessing calls
to the quantum computer. This new algorithm outperforms the default method
implemented by D-Wave.

The rest of the paper is organized as follows: Section 2 introduces background
about quantum annealing and minor embedding methods. Section 3 surveys the
related work used in the study. Section 4 describes the method and technical set-
tings for the experiments. Section 5 analyzes and proves the minimum spectral
gap reduction induced by coupler strength rescaling. Section 6 gathers exper-
iments on embedding and chain breaks that are used to build the algorithm
presented in Section 7.

2 Quantum Annealing and Minor Embedding Methods

D-Wave systems are based on the transverse field Ising model. This model can be
described with a linear interpolation of two Hamiltonians: a mixing Hamiltonian
HM, which ground state (i.e., state of lower energy which can be degenerate) is
easy to prepare, and a problem Hamiltonian HP, which ground state encodes
the solution to the problem. The evolution of the system at annealing fraction
s = t

T is described by the Hamiltonian:
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H(s) = (1− s)HM + sHP (1)

where T denotes the total run time of the quantum evolution and t ∈ [0, T ].
This evolution scheme is simplified compared to the real annealing schedules of
D-Wave systems available at [1]. Considering a Hamiltonian based on a graph
Gs = (Vs, Es) with n = |Vs|, the transverse field Hamiltonian HM =

∑
v∈Vs

σx
v

has its ground state defined by a uniform superposition of all the quantum states
of the computational basis. The problem Hamiltonian can be fully specified by
the user:

HP =
∑
v∈Vs

hvσ
z
v +

∑
(u,v)∈Es

Juvσ
z
uσ

z
v . (2)

The ground state of the Hamiltonian HP gives the solution to the Ising cost
function minimization problem :

minC(x) =
∑
v∈Vs

hvxv +
∑

(u,v)∈Es

Juvxuxv (3)

where xu, xv ∈ {−1,+1} and hv, Juv ∈ R. The optimal solution is given by
x* = (x0, x1, ..., xn−1). The Hamiltonian H(s), at a fixed annealing fraction s,
corresponds to a Hermitian matrix Hs, and can be decomposed in terms of its
eigenvalues Ei(s) and eigenvectors |vi(s)⟩:

Hs |vi(s)⟩ = Ei(s) |vi(s)⟩ with E0(s) < E1(s) < ... < Ek(s). (4)

This decomposition is also called eigenenergies decomposition as the eigenvalues
Ei(s) correspond to the energy of each eigenvector |vi(s)⟩. The minimum spectral
gap of the Hamiltonian ∆min is the difference between the energy of the first
excited state and the energy of the ground state at any annealing fraction s:

∆min = min
0≤s≤1

(E1(s)− E0(s)). (5)

The adiabatic theorem guarantees that a quantum state remains in its instanta-
neous ground state if T is chosen large enough to smooth the quantum evolution.
In the best case, the time T scales as O(1/∆2

min) [2].
When the Ising cost function of interest cannot be straigthly mapped on the

chip topology, one has to use a method to minor embed the problem into the
quantum chip. This problem is well defined by the theory of graph minors de-
veloped by Robertson and Seymour [18]. The problem is defined as follows:

Given a source graph Gs = (Vs, Es) and a target graph Gt = (Vt, Et), the aim
is to find a mapping function ϕ : Vs −→ P(Vt) such that :

1. each vertex v ∈ Vs is mapped onto a connected subgraph ϕ(v) of Gt.
2. each connected subgraph must be vertex disjoint ϕ(v)∩ϕ(v′) = ∅, with v ̸= v′.
3. each edge (u, v) ∈ Es is mapped onto at least one edge in Et : ∀(u, v) ∈

Es,∃u′ ∈ ϕ(u),∃v′ ∈ ϕ(v), such that (u′, v′) ∈ Et.
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For each vertex v ∈ Vs, a ferromagnetic coupling strength Fϕ(v) (also called
chain strength) is applied to each edge of the subgraph ϕ(v). When this ferro-
magnetic coupling strength is the same for all ferromagnetic couplers, we note
it Fϕ. In the rest of the paper, we refer to Vs as the set of logical qubits and Vt

as the set of physical qubits. A chain break on a logical qubit v means that at
least one ferromagnetic coupling in ϕ(v) is corrupted. An edge of the subgraph
ϕ(v) is a ferromagnetic coupling.

3 Related Work

Two categories of methods are used to find a minor embedding of an Ising prob-
lem. The first category comprises a set of heuristics for which the source graph
Gs and target graph Gt are given as input. The state-of-the-art implementation
for this category is the CMR heuristic of Cai et al. [4]. The first step of this
algorithm aims to find an initial embedding of each logical qubit with possible
overlaps between their associated connected subgraph of physical qubits. The
second step is a refinement that tries to reduce this overlap to return a valid
embedding. The second category of methods considers that the source graph
Gs is a clique (i.e., a complete graph) and that the target graph Gt is static.
One example is the method used to generate Clique Minor Embeddings (CME)
on D-Wave systems [3], which is an iterative method that leverages the regular
topology of the quantum annealer and considers inoperable qubits. Both CMR
and CME methods have been extended with some pre or post-processing [21].

In [5], Choi formulates two bounds that estimate the value of the ferromag-
netic coupling strength Fϕ(v). The first bound is specific to each vertex v ∈ Vs:

Fϕ(v) < −

|hv|+
∑

u∈nbr(v)

|Juv|

 (6)

where nbr(v) gives the set of nodes connected to v. This bound is fast to compute
with O(D) complexity, where D is the vertex degree. V. Choi also details a more
elaborated bound calculated in O(DL) where L is the chain length. In the paper
of Fang et al [9], the authors derive a new tighter bound that can be computed
in O(D2L). The main idea is to set the chain strength with a negative strength
with its absolute value greater than the maximum potential energy gain of any
configuration of the physical qubits that are not part of the ground state. Thus,
this method scales exponentially w.r.t the size of the chain length. Venturelli
et al. [19] provided a second approach. They study the value of the optimal
coupling strength by setting a global chain strength Fϕ. They observe that the
optimal coupling value Fϕ grows as the critical point of temperature of their
embedded Sherrington-Kirkpatrick model. Beyond this critical value, the success
probability decreases. In the paper of Raymond et al. [17], the authors suggest
that the chain strength should be tuned as:

λ = λ0

√
std2n = λ0τ

√
n (7)
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where std2 = 2
n(n−1)

∑
(u,v)∈Es

J2
uv is the variance of the coupling strength

(which is 1 for clique spin glasses). Their motivation is that a spin glass transi-
tion exists at optimal λ0. However, λ0 remains to be set empirically. This paper
led to the default method uniform torque compensation implemented on D-Wave
systems [1], which sets the value of the chain strength:

Fϕ = −1.414×
√
d̄×

√√√√ 1

|Es|
∑

(u,v)∈Es

J2
uv (8)

where d̄ is the average degree of the graph Gs. This formula comes from the
fact that, for general Ising problems, the chain strength scales as τ

√
n where τ

is the root mean square of the quadratic couplers. In practice, the value of the
chain strength is mostly set with a basic chain scan method used to maximize
the average expectation value of the QA. For detailed experimental studies on
chain strength scanning, the reader may refer to [12,20]. The chain scan method
performs well but is very expensive in the number of calls to the QA. The
optimization of the chain strength is usually done based on the expectation value.
A single advanced optimization method of the chain strength has been recently
developed for the max-clique problem and is based on augmented lagrangian
method [8]. Recent studies have benchmarked the chain break properties. Grant
et al. [11] show that the chain break concentrates on specific locations of the D-
Wave 2000Q processor and design post-processing strategies to limit this bias.
In another recent paper of Pelofske [16], it is seen that the approximation ratio
is inversely correlated with the rate of getting chain breaks. The author shows
that the optimal chain strength is also conditioned by the density of the problem
and the type of quantum solver used. We reuse these conclusions as well as the
first theoretical bound given in Eq. 6 to create an efficient method to set the
chain strength.

4 Method

We test our methodology on two problems: the weighted Ising problem and
the max-cut problem. Section 5 is based on a non-degenerate instance of the
weighted Ising problem, which consists in minimizing the Ising cost function
formulated in Eq. 3. The minimum spectral gap of the problem∆min is calculated
using the exact diagonalization of the Hermitian matrix Hs at each step of the
annealing schedule s ∈ [0, 1]. The schedule used is the one corresponding to
D-Wave Advantage6.4 [1].

The max-cut problem is studied in Sections 6 and 7. The weights Juv are
set to 1 for all edges, hv weights are set to 0. All the experiments are run at
a constant annealing time of 100µs. We use uniform logical weight spreading,
majority vote to unembed the problem and the auto-scale method for weight
rescaling. We do not use spin reversal methods or annealing offsets. The figures
always show the chain strength in absolute value. The heatmaps from Fig. 2
are generated from sets of 100 instances for each size and density. Erdős-Rényi
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graphs and random d-regular graphs are generated using the Python networkx
library. The CMR heuristic runs until a valid embedding is found. The CME
heuristic is the default method provided by D-Wave [1]. For all the experiments,
we select the first valid embedding found. The plots from Fig. 3 are averaged
over 30 instances of random Erdős-Rényi graphs of size n = 80 and density
p = 0.3. The solver used is the Advantage6.4 and the number of shots is set
to 1024 for each chain strength value. The plots from Fig. 4 are obtained from
a single Erdős-Rényi instance of size n = 60 and density p = 0.4. The solver
used is the Advantage2 prototype2.2 and the number of shots is set to 4096 for
each chain strength and for the runs with uniform torque compensation method.
The results obtained in Table 1 are obtained with solvers Advantage6.4 and
Advantage2 prototype2.2. The results are averaged over 30 instances of Erdős-
Rényi graphs for each specified size and density. The number of shots in the
preprocessing method is set to 128. The final run used to retrieve the statistics
is set to 4096. The run with uniform torque compensation method is also set to
4096.

We compare the performance of CMR and CME methods in Fig. 2 using the
average ratio of the number of qubits in mappings found by each method:

remb =
1

Np

Np∑
i=1

nCMR
i

nCME
i

(9)

where Np is the number of instances, nCMR
i and nCME

i is the number of physical
qubits found by the embedding method CMR resp. CME on instance i. The
average breaking chain rate ϵb of a single shot is defined by:

ϵb =
1

nlq

nlq∑
i=1

pb(i) (10)

with nlq the number of logical qubits. pb(i) is set to 1 if the logical qubit contains
at least one broken chain and 0 otherwise. The average breaking chain rate of a
serie of shots ns is given by:

ϵ̄b =
1

ns

ns∑
i=1

ϵ
(i)
b . (11)

5 Logical Qubit Structure

We study the evolution of the minimum spectral gap ∆min of a single weighted
Ising instance by exhaustively simulating the quantum system evolution via ma-
trix diagonalization. While ∆min is not believed to directly impact the evolution
of D-Wave systems that have a long annealing time [7], recent experiments have
shown that these systems can operate with much shorter annealing times [14]
(in the order of the nanosecond). It makes the study of the spectral gap relevant
for future experiments. For this purpose, we design a single instance of an Ising
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Cycle encoding
Chain encoding

Native encoding
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Native encoding rescaled 1/4
Native encoding rescaled 1/2

Cycle encoding
Clique encoding

a) Native encoding

c) Cycle encoding

b) Chain encoding

d) Clique encoding

e)

f)

Δ
m

in

Fig. 1. Minimum spectral gap evaluations considering different types of logical qubits
encoding a) Native Ising problem instance b) Same instance as in a. with the red qubit
encoded as a chain of physical qubits c) Same instance as in a. with the red qubit
encoded as a cycle of physical qubits d) Same instance as in a. with the red qubit
encoded with a clique of physical qubits. Black edges represent logical couplers and red
edges represent ferromagnetic couplers parametrized by the chain strength Fϕ. The
auto-coupler strength h6 is uniformly spread on each physical qubit. e) Evolution of
∆min considering the whole annealing schedule for different values of the global chain
strength |Fϕ|. f) Spectral gap evolution of each encoding type programmed with the
corresponding optimal chain strength indicated by dashed lines in e.

problem with 6 nodes (see Fig. 1.a). We choose three possible encodings for the
physical qubits ϕ(vred) that replace the red logical qubit vred in Fig. 1.a. The
selected structures are: chain, cycle and clique. Each structure is respectively
shown in Fig. 1.b, 1.c and 1.d. Figure 1.e shows the evolution of the minimum
spectral gap of each encoding according to the chain strength value used to main-
tain the ferromagnetic coupling. For each encoding, the chain strength starts at
the minimum analytical value, which is sufficient to maintain the ferromagnetic
coupling of the logical qubit (0.3 for the clique, 0.45 for the cycle and 0.9 for the
chain). Each embedding exhibits some sweet spots that maximize the minimum
spectral gap. The size of the minimum spectral gap decreases when the chain
becomes too strong. The optimal value of the chain strength decreases with
the density of the logical qubit encoding. This is a desirable feature as D-Wave
quantum processors have a limited working range for auto-coupler (h range) and
coupler (extended j range) strengths. In addition, the maximum coupling range
limit imposes that the total strength of the couplers linked to each qubit remains
in a specific range. These two physical limitations lead to a global rescaling of
coupler strengths when the values exceed these ranges.
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Reusing the work of Choi [6], it is straightforward to demonstrate that rescal-
ing the coupler strength in the problem Hamiltonian also rescales with the same
factor the minimum spectral gap of the Ising Hamiltonian. Let the α-rescaled
Hamiltonian with s2 ∈ [0, 1] and α > 1:

H1/α(s2) = (1− s2)HM + s2
1

α
HP. (12)

We take Eq. 1 as the initial Hamiltonian H with annealing fraction s1 ∈ [0, 1].
Consider the system: {

H(s1)
1−s1

= HM + s1
1−s1

HP

H1/α(s2)
1−s2

= HM + s2
α(1−s2)

HP

(13)

The equality s1
1−s1

= s2
α(1−s2)

can be solved with s1 = s2
(α−1)(1−s2)+1 and s2 =

s1
1
α (1−s1)+s1

. Using this correspondance, we have:

H1/α(s2)

1− s2
=

H(s1)

1− s1
. (14)

The rescaled Hamiltonian has the form:

H1/α(s2) =
1− s2
1− s1

H(s1) =

(
1 +

(
1

α
− 1

)
s2

)
H(s1). (15)

The eigenenergies of the Hamiltonian are then rescaled with the same factor.
According to Eq. 4, we have:

E
1/α
i (s2) =

(
1 +

(
1

α
− 1

)
s2

)
Ei(s1). (16)

Figure 1.f shows the effect of couplers strength rescaling on the spectral gap. This
figure shows that rescaling the global coupling strength reduces the minimum
spectral gap by the same factor. It also shifts the spectral gap to the right.
Encoding logical qubits on a set of physical qubits has a detrimental effect on
the spectral gap of the instance. The difference in spectral gap reduction between
these encodings seems negligible compared to the rescaling of the weights. Logical
qubit encodings that are dense, such as clique, require a lower coupling strength
to maintain ferromagnetic coupling within the physical qubits. This type of
encoding could be favored compared to chain encoding in specific cases to limit
the effect of coupler strength rescaling imposed by D-Wave systems.

6 Embeddings and Chain Break Analysis

Figure 2 compares the embedding performance in terms of the number of qubits
used by the CMR method [4] against the CME method [3]. The comparison is
done on Erdős–Rényi and d-regular graphs. It shows that CMR performs better
on sparse graphs of small size, while CME is almost always preferred for large
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Erdős–Rényi graph embedding Advantage_system6.4

a) b)b)

c) d)

D-regular embedding Advantage_system6.4

Fig. 2. Heatmaps showing the average percentage overhead of the number of qubits
used to embed similar instances using either CMR or CME methods. Each score is
an average done over 100 instances. The score calculation in each cell is detailed in
Eq. 9. a) and b) are embeddings generated for Advantage6.4 topology for Erdős-Rényi
and d-regular graphs. b) and c) are embeddings generated for Advantage2 prototype2.2
topology using the same instances. Advantage6.4 and Advantage2 prototype2.2 can
embed complete graphs of maximum size 174 and 82.

graphs. We use this heatmap to select sets of instances for which CMR and
CME methods produce embeddings with approximately the same number of
physical qubits. We set each edge weight to 1 to build the max-cut instance
associated with the graph. We choose to generate 30 random instances of the
max-cut problem with size n = 80 and density p = 0.3. The aim is to analyze the
impact of the embedding method on the chain strength and length. CMR and
CME produce embeddings with a similar number of physical qubits for these
instances. To be fair in the comparison, we force the CMR method to generate
minor embeddings with ±1% qubits compared to the embeddings generated by
CME. Figure 3.a and b. respectively show the repartition of the chain length
for CMR resp. CME embeddings. While the CME method produces almost
uniform chains of lengths 8 and 9, the CMR method produces chain lengths
that approach a Gaussian distribution and vary from 4 to 15. The coupling
strength required by the CME embeddings to obtain the same breaking chain
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Fig. 3. Statistics on the breaking chain rate (see Eq. 11) averaged over 30 instances of
Erdős-Rényi graphs of size n = 80 and density p = 0.3. a) resp. b) show the average
chain length repartition of embedding obtained with CMR resp. CME methods. Blue
bars show the average frequency of each chain length. Orange bars show the average
breaking chain rate with a black error bar for the standard deviation. c) shows the
average and median frequency of corrupted ferromagnetic couplings on CMR embed-
dings. d) shows the number of different ferromagnetic couplings that are corrupted at
least once during the 1024 shots on CMR embeddings.

rate is higher than for CMR embeddings. For the CMR method, the optimal
solution probability occurs at chain strength 8, while this value is raised to 12
for CME embeddings. Figure 3.d shows that the number of different corrupted
couplings only slightly changes when the chain strength is increased. Figure 3.c
shows that when the chain strength is insufficient to maintain ferromagnetic
couplings, the average number of corrupted ferromagnetic couplings is very high
compared to the median. It suggests that the corruptions concentrate on the
same few ferromagnetic couplings. When the chain strength is increased, the
average number of corruptions decreases but the number of different corrupted
couplings remains the same. It suggests that the corruption becomes sparse when
the chain strength becomes sufficient. We computed statistics on the number
of corrupted ferromagnetic couplings per logical qubit. At the optimal chain
strength value, the most likely scenario is to have only a single corruption of
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couplings on the connected subgraph ϕ(v) (99.9% cases) and very few chances
of double corruption of couplings (0.01% cases).

The above experiment shows that the optimal chain strength value is re-
lated to the embedding. We select another instance that produces approxi-
mately the same number of qubits for both embedding methods for the Ad-
vantage2 prototype2.2. We generate four different embeddings for a single graph
of 60 nodes and 0.4 density. The first embedding is generated by the CME
method. We generate three other embeddings using the CMR method: one with
a similar number of qubits as in the CME embedding (±1%), one which has 10%
less qubits than the CME embedding, one which has 10% more qubits than the
CME embedding. These graphs are then used to create the max-cut instances.
Figure 4 shows the best cut size found with each embedding. At first, we can
see that the uniform torque compensation method performs well in all the cases
compared to the chain scan that requires heavy preprocessing (93% of the best
cut size in the worst case with CME embedding). For each instance, the best cut
size reaches a plateau when the chain strength becomes sufficient. This plateau

|Fɸ|

CME embedding CMR embedding

CMR embedding -10% CMR embedding +10%

chain scan
torque compensation

|Fɸ| |Fɸ|

|Fɸ|

Fig. 4. Maximum cut size obtained with a chain scan on four different embeddings of
the same instance. The uniform torque compensation is run once for each embedding
(hence, it is independent of the chain scan). The CME and upper right CMR embedding
have the same number of physical qubits (±1%). The two other embeddings have 10%
more and 10% less qubits than the CME embedding. The red violins show the average
breaking chain rate ϵ̄b related to the chain scan curve.
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is reached at different chain strength values for each instance. This plateau can
also be located by only considering the average breaking chain rate from Eq. 11
(for example, considering that the chain break probability should remain under
2×10−2). As specified in [15], the chain break probability susceptible to provide
the best result depends also on the quantum computer.

7 Chain Strength Setting Heuristic

The previous section detailed our motivations for designing a heuristic to set
the chain strength for general instances of Ising models. Algorithm 1 describes
this method in pseudo-code. The algorithm performs a binary search to find
the optimal chain strength value within an initial interval of chain strengths
csInterval . When the user does not specify it, the default interval’s upper bound
is set according to Choi’s first bound (see Eq. 6 and line 3):

|Fϕ| = max
v∈Vs

|Fϕ(v)|. (17)

At each iteration, the chain strength cs is chosen as the midpoint of the chain
strength interval csInterval (line 6). The embedded instance embInstance is
then sent to the quantum annealer with the specified chain strength cs (line
7). We then compute the breaking chain rate of the result according to Eq. 11
and check if the new breaking chain rate is in the interval specified by the user
cbInterval. If this is the case, the algorithm converges (lines 9 and 10), and the
loop breaks. If the chain break is higher than the upper bound of cbInterval, the
chain strength is insufficient and requires an increase: we then rescale the lower

Algorithm 1 Chain strength binary search

Require: embInstance, cbInterval, csInterval (nullable)
Ensure: cbInterval[0] < cbInterval[1]
1: hasConverged← False
2: if csInterval is None then
3: csInterval← [0, getUpperBound(embInstance)] ▷ (see Eq. 17)
4: end if
5: while not hasConverged do
6: cs← csInterval[0] + (csInterval[0]− csInterval[1])/2
7: res← runQA(embInstance, cs)
8: ϵ̄b ← getChainBreakRate(res) ▷ (see Eq. 11)
9: if cbInterval[0] ≤ ϵ̄b ≤ cbInterval[1] then
10: hasConverged← True
11: else if ϵ̄b > cbInterval[1] then
12: csInterval[0]← cs
13: else
14: csInterval[1]← cs
15: end if
16: end while
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bound of csInterval (lines 11 and 12). In the other case, the upper bound of the
chain strength interval is rescaled (line 14). The subtlety of this algorithm relies
in the setting of the chain break interval cbInterval which stops the algorithm
when the sampling produces a breaking chain rate in this interval. This interval
depends on the effective noise of the quantum computer and may also depend
on the size of the instance. We test our heuristic on the max-cut problem and
compare the results obtained with the default method implemented by D-Wave
that relies on Eq. 8. The comparison is done both on Advantage2 prototype2.2
on small Erdős-Rényi instances (n = 40 and n = 80) and Advantage6.4 for
large instances (n = 100 and n = 170) with density p ∈ {0.1, 0.5, 0.9}. For
each instance set, we choose the embedding heuristic that provides the best av-
erage performance based on the size and density of the instance (see Fig. 2).
We empirically set the interval cbInterval to [6 × 10−3, 2 × 10−2] for the Ad-
vantage2 prototype2.2 and to [2 × 10−2, 5 × 10−2] for the Advantage6.4. This
range stays untouched during the whole experiment. Each preprocessing step
is done with 128 shots. The final run of our heuristic, as well as the default
D-Wave method, is programmed with 4096 shots for instances run on Advan-
tage2 prototype2.2 and 3072 shots for instances run on Advantage6.4. Table
1 shows the result of this experiment. With a global setting of the value for
cbInterval, our heuristic is able to outperform in almost every case the default
uniform torque compensation method. The breaking chain rate can be obtained

Table 1. Performance comparison between D-Wave’s default method (uni-
form torque compensation) and our binary search heuristic on max-cut instances. The
column Best cut size shows the average of the maximum cut size obtained for each
instance with the uniform torque compensation method. The column Cut size improve-
ment contains the minimum and maximum cut size improvement obtained with the
chain strength found by Algorithm 1. The standard deviation is shown is column std.
The column Step counts the average number of iterations required by our heuristic.

Advantage2 prototype2.2 Best cut size Cut size improvement Step

Instance size Density Embedding min max mean std

n = 40
0.1 CMR 66.4 +0% +0% +0% 0% 5.4
0.5 CMR 243 +0% +2% +0.2% 0% 5.8
0.9 CMR 362.8 +2.1% +8.2% +5% 1.6% 4.6

n = 80
0.1 CMR 235.5 +0% +0% +0% 0% 4.7
0.5 CME 804 +9.8% +17.2% +12.5% 0.2% 4.2
0.9 CME 1435 +2% +4.7% +3.2% 0.6% 4.2

Advantage6.4 Best Cut size Cut size improvement Step

Instance size Density Embedding min max mean std

n = 100
0.1 CMR 355.9 +0% +0.3% +0% 0% 4.5
0.5 CME 1271.4 +5.6% +14.5% +8.8% 1.8% 2.7
0.9 CME 2243 +1.4% +3.7% +2.5% 0.5% 3.7

n = 170
0.1 CMR 950.8 −2.1% +0.6% −0.5% 0.5% 2.1
0.5 CME 3631.4 +2.8% +6.2% +4.5% 0.7% 2.1
0.9 CME 6519.4 +0.4% +1.4% +0.8% 0.2% 3.2
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with relatively high fidelity in few shots. It gives a considerable advantage to our
method compared to the basic chain strength scans that always use the expecta-
tion value to find optimal values of the chain strength and, hence, require a very
high number of shots. Our optimization method does, on average, between 2 and
6 iterations to find a suitable value for the chain strength, which corresponds
to approximately 750 extra shots per instance in the worst case. This overhead
is almost negligible compared to the 4096 and 3072 shots used to evaluate the
final chain strength and the uniform torque compensation method. The default
uniform torque compensation performs well on embeddings generated by CME
for dense graphs and on embeddings generated by CMR on sparse graphs. Our
heuristic seems to perform the best with mid-density instances with the increase
of the cut size by up to 17.2% for the Advantage2 prototype2.2 and 14.5% for
the Advantage6.4.

8 Conclusion

This paper presented a detailed analysis of the minimum spectral gap evolution
considering different topologies for the set of physical qubits representing a single
logical qubit. Each encoding required a specific chain strength value to main-
tain ferromagnetic couplings between the physical qubits. The denser the logical
qubit encoding was, the lower the chain strength had to be. This feature is de-
sirable as the coupler strength rescaling, usually driven by chain strength values
in combinatorial problems, reduces the minimum spectral gap of the problem,
which may have an impact on very short annealing time evolutions. This con-
sideration could be included in future embedding heuristics designs to enhance
the quality of the generated minor embeddings.

The analysis of the breaking chain rate considering different embeddings of
the same instance has shown that the optimal chain strength varies depending
on the embedding used. This experiment led to the design of a simple but fast
heuristic used to optimize the chain strength for each instance. The heuristic
converged in most cases in less than 5 preprocessing steps. This number has
to be considered cautiously as it strongly depends on the chain break interval,
which acts as the breaking condition of the heuristic. We used large intervals
in this experiment. The precise identification of the breaking chain rate that
produces the best results for each quantum computer could help to refine these
bounds. Even if this new method does not provide better solutions than the basic
chain scan, the original use of the breaking chain rate in the optimization process
drastically reduces the preprocessing time required by a simple chain scan and
does not require any assumption over the scanning range of chain strengths.

The performance of our heuristic can be questioned due to the relatively
low gain on the max-cut size (17% in the best case). However, even a small
percentage gain in the cut size can reduce the Time To Solution of several orders
of magnitude, which can justify the use of our heuristic.

A detailed study on the determination of refined breaking chain intervals for
each solver is a relevant perspective. This heuristic could also be used as a fast
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preprocessing routine to find relatively good global chain strengths, followed by
a refinement step optimizing each ferromagnetic coupling strength individually.
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