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Abstract. Optimizing quantum circuits and reducing errors plays a crucial role 
in quantum circuit computation. Every quantum circuit can be represented using 
algebraic expressions, we propose an approach that directly derives algebraic ex-
pressions, ensuring that parallelism is maximized, that is, the number of circuit 
slices is minimized, and secondly, the computation required for obtaining the de-
sired algebraic expression is reduced. This results in quantum circuits that are 
more efficient in space and computation time.  The simplification of algebraic 
expressions offers methods to streamline optimized circuits, reducing the number 
of gates and depth. This reduction is aimed at minimizing the overall complexity 
of the expressions, resulting in more efficient quantum computations. In this pa-
per, we also show through simulations that the optimized circuit will have less 
errors when compared to original circuits.  

Keywords: Quantum Computing, Algebraic expressions, Quantum circuit opti-
mization and Quantum error correction. 

1 Introduction 

Although Quantum computing algorithms have been proven to be much faster than 
classical algorithms, a major obstacle to its successful realization is high error or noise 
rates. Due to this noise, qubits are rotated by the wrong amount that cause the final 
output state to not be the final correct state that is expected [7]. Unlike classical circuit 
optimization, quantum circuit optimization not only improves the execution time but 
also helps to reduce error. This is because quantum noises are linearly dependent on the 
size of the circuits [8]. As a quantum circuit becomes larger and more complex, they 
involve a higher number of qubits and quantum gates. Larger circuits tend to require 
longer coherence times to complete the computations successfully. Qubit coherence 
time is finite. Hence, the probability of errors occurring during quantum operations in-
creases. An error in an early gate (a gate that does the computations early in execution 
of an algorithm) can affect the state of qubits as they propagate through subsequent 
gates. Thus, by reducing the circuit size the errors can also be mitigated. 

Quantum algorithms are implemented as quantum circuits, which consist of quantum 
gates. Quantum Circuit Optimization is the process of finding a more efficient and 
streamlined way to represent a given quantum circuit or algorithm. This is achieved by 
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reducing the number of gates used and shortening the overall depth of the circuit. The 
optimized circuit should implement the same algorithm as the original circuit and hence 
yield the exact same results as the original circuit while operating more efficiently in 
terms of errors and execution time. 

There are several ways to represent quantum circuits such as Quantum Assembly 
Language (QASM) [10], Quantum Gate Matrices, Directed Acyclic Graphs (DAGs) 
[1]. Every representation has its own advantages and disadvantages. One common tech-
nique for optimization involves representing a quantum circuit as a Directed Acyclic 
Graph (DAG) with gate commuting properties. This approach allows for the cancella-
tion of gates and the merging of gates to simplify the quantum circuit. [1-5, 9] proposes 
various optimization and pattern matching techniques using DAG.  

In this paper we propose an algorithm to obtain efficient algebraic expressions for 
quantum circuits. Algebraic expressions ensure that the algorithm itself does not change 
because of optimization. Using algebraic expressions, quantum circuits can be analyzed 
and optimized. Algebraic simplification leads to less complex logic expressions which 
results in reduced circuit complexity. This leads to improved performance, lower power 
consumption and fewer errors. Simulations show that the resultant optimized circuit 
has less errors than the original circuit. 

2 Proposed Approach 

Quantum algorithms are expressed using quantum circuits, which are sequences of 
quantum gates. These gates perform quantum computations. Each quantum gate can be 
mathematically represented by a unitary matrix, which describes the transformation as 
it applies to quantum states. A quantum circuit can also be viewed as a composite uni-
tary matrix. If there is a n-qubit quantum circuit, the corresponding unitary matrix to 
the circuit will have a dimension of 2n × 2n . At each depth or layer in the quantum 
circuit, a quantum gate acts on its respective qubit. If the quantum circuit has n depth 
of layers (or “slices”) of parallel computations, then there will be n slices present. Mul-
tiplication of the slices result in composite unitary matrix of the quantum circuit. 

When a quantum circuit contains single-qubit gates, they are represented using their 
respective matrices. When the circuit includes multi-qubit gates, these quantum matri-
ces are decomposed into elementary unitary matrices. An efficient approach for this 
decomposition was developed by Hutsell et. al. [6]. They proposed the use of two 2 × 
2 matrices, D0 and D1, as a means of decomposing larger unitary matrices into smaller 
2 × 2 matrices. This decomposition allows for a more efficient representation of the 
algebraic expressions involved.  

 
where I is the identity matrix. We utilize this work [6] as a foundation for our proposed 
new approach.  

We use Hutsell’s work [6] to address the general case where a slice of a quantum 
circuit contains multiple target qubits acting on a control qubit or multiple multi-qubit 
gates. Figure 2a provides an illustration. Using the approach proposed in [6], the given 
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slice is broken down into further slices to achieve the desired algebraic expression, as 
demonstrated in Figure 1b. A slice refers to a layer of parallel computation. 
 

                      
Figure 1a: Circuit with the slice which          Figure 1b: Slice S1 is divided into two slices                   
has 2 targets (Z and Not) with only 1                      S1a and S1b to get algebraic expressions. 
respective control qubit (|q1⟩) 

The disadvantage with this approach is when the number of target qubit exceeds the 
number of control qubits, the circuit will decompose into many slices which will result 
in an inefficient algebraic expression, resulting in a less optimized algebraic expression 
which leads to a less optimized circuit. Our proposed work introduces a novel method 
to handle situations where the number of target qubits exceeds the number of control 
qubits. Figure 2a provides an example. To get an algebraic expression for circuit S1 the 
previous method [6] needs slicing into S1a and S1b (Figure 1b). The disadvantage of 
slicing is that it increases the depth of the circuit (Figure 1b). This means more slices 
which results in more inefficiency and errors. In quantum circuit computation, each 
slice of n qubits is represented by 2n × 2n  Unitary matrix, Although the final matrix 
remains unchanged, obtaining the final matrix involves more matrix multiplications as 
the number of slices increases. There is a computation for each slice followed by a 
computation to merge the results from each slice. The primary objective of the proposed 
work is to eliminate the need for further dividing slices so as not to increase the depth 
of the circuit. Instead, our method directly derives algebraic expressions, ensuring that 
parallelism is maximized (or the depth is minimized) and thereby the computation re-
quired for obtaining the desired expression is reduced. 

In this paper, we propose a method that directly yields algorithmic expressions with-
out the necessity of dividing the circuit into additional slices. This approach maximizes 
parallelism while effectively reducing the computational burden associated with ob-
taining algebraic expressions. Secondly, we optimize the resulting algebraic expres-
sions by using circuit identities and cancellation rules to get optimized circuits. The 
proposed approach is outlined in Algorithm_1. 

 
Algorithm_1: Optimization Outline 

Input: - Original Quantum circuit C 
Output: - Optimized Quantum circuit C1 

1) Represent Quantum Circuit C as algebraic Expression. 
2) Optimize algebraic Expressions by using circuit identities and gate cancella-

tion rules. 
3) Convert optimized algebraic expression to optimized Quantum Circuit C1   

        Algorithm_1: Outline of optimization procedure using algebraic expressions. 

S1a                
  S1b 
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3 Representing quantum circuits as Algebraic expressions 

The proposed approach to represent quantum circuits as Algebraic expressions while 
maximizing parallelism is outlined next. 
Step 1: - Identifying Number of terms: Given a slice with N control nodes, the number 
of terms in the algebraic expression will be 2N terms. If Ti represents term i, then the 
slice will have the algebraic form.        

           U =   ∑ 		𝑇!!	
#$% i   

Step 2: - Representing each term: If we have a m qubit quantum circuit (qm-1, qm-

2.......q0), each term Ti represents the Tensor products of qubits from left to right. In 
each term, there will be m characters represented by Ci  representing each quantum bit 
in the quantum circuit.  

 
 Step 3: - Finalizing the expression: If the control bit is in state |1⟩, then the target bit 
undergoes the corresponding target gate computation. On the other hand, if the control 
bit is in state |0⟩, the target gate acts as an identity gate, leaving the target bit unchanged. 
We term that D0 as the inactive control matrix and D1 as the active control matrix. 

If in the slice, there are k control bits represented as a1, a2....,ak qubits respectively ({for 
all ai} ∈ {0, 1, ...  m-1}), then we have 2k terms as mentioned in step 1 and each term 
in the final expression will be represented in binary notation as shown below.  

     U =  ∑ 𝑇!"&'
#$% k  ,  ( k ∈ { 0,1} n ) 

For example, If there are three control nodes acting on a1, a2, a3 qubits where each ai is 
a control qubit, the final expression can be represented as 
U = T0 + T1 + T2 + T3 + T4 + T5 + T6 + T7 = T{000} + T{001} +  T{010} + ……+ T{111} 

1.1 In each of the terms generated from the k control bits, in the term represent each 
bit which equal to ‘0’ as the inactive control qubit and ‘1’ as the active control 
qubit respectively. 

1.2 Step 2 presents how each term Ti  can be represented as a tensor product ⊗ 0j=m-1 

Cj = Cm-1 Cm-2......C0 . In the binary representation of each term T{k}, each kp which 
is a control qubit represents a character in the algebraic expression. where p ∈ ( 0 
… n-1 ) and n is the number of control nodes in the respective slice. Each kp 
represents a character representing the ai qubit. Therefore, the character kp is in the 
Caith position. In each term, if kp  is 0 then D0 replaces the respective Caith position 
in the term. If kp is 1 then D1 replaces the respective Caith position in the term. 

1.3 In the quantum circuit, each control node may be associated with one or more target 
bits. Similar to the previous step described, when considering the algebraic repre-
sentation, if a target bit is associated with an inactive control node, an identity gate 
will be substituted at the respective target qubit position within the term. If a target 
bit is associated with an active control node, which is replaced by the matrix D1, 
the target gate matrix will be substituted at the respective qubit position within the 
term. This allows for the incorporation of control gates into algebraic expression. 
The behavior of the control node determines whether the target gate is applied or 
replaced with an identity gate. By considering the status of the control node, the 
corresponding gate operation can be appropriately represented within the term, re-
sulting in an accurate and comprehensive algebraic expression for the quantum 
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circuit. When there are multiple targets, similar steps will take place, that is, 
multiple targets which are associated to the same control node will be replaced at 
once.When dealing with multiple targets in a quantum algorithm, similar steps will 
occur where multiple targets associated with the same control node are replaced 

Example: -  

                   
Figure 2a:  Example for proposed algorithm.                Figure 2b: Existing algorithm breaking into slices 
            

Consider the quantum circuit with one slice S1 and multiple quantum gates as shown 
in figure 2a. This example illustrates how the proposed approach works and also its 
efficiency in generating optimized algebraic expressions.  

The algebraic expression using our proposed approach is:  
1. There are two control nodes in the slice, so the number of terms in the algebraic 

expression is 22 = 4. By step 1, S1 = T0 + T1 + T2 + T3 
2. Each term can be represented as a tensor product of characters (= number of 

qubits).  Here there are five qubits. By step 2, 
    T0 + T1 + T2 + T3= C4C3C2C1C0 + C4C3C2C1C0 + C4C3C2C1C0  + C4C3C2C1C0  

3. There are two control nodes acting on the q3 and q0 qubits, Binary indices of term 
indices are represented as S1 =T{00} + T{01} +  T{10} + T{11} 

4. In the Binary representation of T{ij} where i represents qubit q3 and j represents 
qubit q0. For example, the 2nd term T{01} ,   ij = 01 ; here i = 0 representing the q3 
qubit  and j = 1 representing the q0 qubit .  

5. In step 1.3 replace C3 with D0  and C0 with D1 .  
6. In T{01} , q3 is inactive and q0 is active, the replacement process involves replacing 

the target nodes that are associated with q3, namely q2 and q4, with the identity 
matrix. At the same time, substitute the target matrices associated with q0, that is 
the q1 qubit, at their respective positions within the algebraic expression. The final 
expression is given in equation 1 and is represented in figure 2a. 

S1 = ID0IID0 + ID0IND1 + ND1VID0+ ND1VND1                  --                  (1) 
Comparing equation (1) with the algebraic expression generated with the existing 

method [6] as shown in figure 2b.   
S1 = S1a    ×  S1b  ×  S1c 

                               = [( ID0III + ND1III) × ( ID0III + ID1VII) × ( IIIID0 + IIIND1)]      --            (2) 
We observe equation (1) is a simplified version when compared to equation 2. 

Hence, the proposed methodology not only offers a correct method (that is, the outcome 
remains the same), but also a more efficient approach by directly providing the equation 
to be solved.  
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4 Optimizing the Algebraic Expressions 

The next step is to optimize the algebraic expressions. Algebraic expression of quan-
tum circuits provides a concise and simple way to represent complex quantum circuits. 
It uses elementary quantum operators such as X, Y, Z, H, phase shift, CX, CCX, SWAP 
to express the relationships between inputs and outputs. The use of these universal uni-
tary operators ensures consistency in representing quantum circuits across different de-
signs. This readable representation of a quantum circuit allows circuit behavior to be 
expressed in a natural and intuitive way, making it easier to understand and communi-
cate quantum circuit functionality. 

The quantum circuit is represented as a list of gates that are applied sequentially. The 
following transformation rules are then applied to optimize the quantum circuits. 

To simplify or eliminate gates in a quantum circuit, remove gates that are directly 
next to their inverse. By rearranging the gates in the circuit, it becomes possible to 
transform or eliminate them. Specifically, when there is a U gate in the circuit, the 
optimization algorithm looks for a corresponding U† gate where U† is the adjoint. If a 
U† gate is found, the U gate is successfully canceled out. For some elementary gates 
such as X, Y, Z, H, and CNOT, U† is equal to U. In such cases, if two instances of 
those gates are adjacent to each other, they get cancelled out. 

For two rotation gates RZ(θi) and RZ(θj) that have a shared control line or adjacent 
to each other, merge the two rotations to make it a single gate. This we call gate fusion. 

By using techniques such as the cancellation rule and gate fusion the depth is reduced 
by rearranging for possible commuting quantum gates. The quantum circuit can be sim-
plified, leading to improved performance in terms of time and size of the circuits. Until 
now as shown in the previous section, we have represented the quantum circuit using 
the most optimal algebraic expressions. In this section we extend this work in the opti-
mization of quantum circuits by building on the algebraic expressions discussed in sec-
tion 3. The proposed method uses the following steps, to begin the optimization process, 
we first analyze the circuit shown in Figure 3a and express it using algebraic expression 
notation. This algebraic expression represents the overall behavior of the circuit in 
terms of mathematical operations and variables. By manipulating and simplifying this 
expression using basic identities [1] and distributive properties of algebra, we arrive at 
an optimized form. Once the optimized algebraic expression is derived, the next step 
involves converting it back into a quantum circuit. This conversion process translates 
the algebraic operations and variables into corresponding quantum gates and qubits 
which results in figure 3b.  

 
Figure 3a:  Circuit C2.                                                               Figure 3b:  Simplified version 

                     of circuit C2  
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The process of optimizing the given quantum circuit C2 involves the following steps: 
The unitary matrix U representing the circuit C2 is formed by, 

U= S1 × S2 ×	S3 × S4 × S5 × S6 × S7 × S8 × S9 × S10    where each slice is given by 
algorithm mentioned in above section 
     S1 = IIH;     S2= ID0I+ID1Z;     S3=IIH;  S4=ID0I+ZD1X ;  S5 = IHZ; 
            S6= ID0I+ID1X;   S7 = ZII;  S8 =IZI;   S9  = ID0I+ID1X;     S10 = IHI; 
 S1 ×	S2 × S3 × S4 ×S5 × S6 × S7 × S8 ×S9 × S10 = 
= (IIH) (ID0I+ID1Z) (IIH) (ID0I+ZD1X) (IHZ)(D0II+D1XI) (ZII)(IZI)(D0II+D1XI) (IHI) 
=(ID0H+ID1 H.Z) (IIH) (ID0I+ZD1X)(D0HZ+D1H . X Z) (ZII)(IZI)(D0HI+D1X. HI) 
=(ID0I+ID1H.Z.H) (ID0I+ZD1X)( (D0HZ+D1H . X Z) (ZII)(D0 Z.HI+D1 .Z. H.ZI)      
= (ID0I+ID1X) (ID0I+ZD1X)(D0HZ+D1H . X Z) (D0 Z.HI -D1 XI)                 
= (ID0I + ZD1I) IXZ 
the resultant unitary matrix for circuit C2 ;  U = (ID0 I + ZD1I) (IXZ)  

This algebraic expression simplification process can be automated/implemented by 
creating an algorithm that parses algebraic expressions into Abstract Syntax Trees 
(AST), applying predefined simplification rules recursively until we get the same ex-
pression as the outcome and converts the simplified AST back into algebraic expression 
format. The expression is then converted into a quantum circuit. As a result of simpli-
fying using our approach, the circuit is reduced by 75% in terms of the number of gates 
in C2. The simplified optimized circuit is shown in Figure 3b. Instead of 10 levels there 
are only 2 levels resulting in improved performance and reduced error.  

5 Results 

Quantum circuit optimization can be measured by gate count, depth, Mitigation Over-
heads, Mitigation time, Average fidelity, and Execution time. Average fidelity quanti-
fies how closely the actual gates on your device match the ideal gates. The ideal process 
matrix is subtracted from estimated calibration matrices (readout, Decoherence, cross 
talk). Error mitigation is a process for enhancing the reliability of quantum computa-
tions. The average resultant state of a given circuit is obtained by sampling. This will 
be done by the processor. Obviously if the circuit size is large the mitigation time and 
mitigation overheads increase. The circuits 3a and optimized 3b are executed on the 
ibm_perth processor [11]. Both circuits return the same resultant state |010> with dif-
ferent optimization metrics values shown in figure 4 and table 1. 

  
         Figure 4: Optimization Results        Table 1: Optimization results    
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The results show that the proposed algebraic simplification method results in re-

duced Gate count, depth, execution time, mitigation time, while increasing the average 
fidelity. This is for a small circuit. The improvement using our proposed approach on 
larger circuits will be more substantial and significant. 

6 Conclusion 

This paper proposes a novel approach to represent quantum circuits using algebraic 
expressions. These expressions serve as identities to analyze and simplify quantum cir-
cuits. By applying algebraic simplification techniques, we can transform complex log-
ical structures within circuits into more straightforward and efficient forms. This sim-
plification process reduces circuit complexity, which in turn improves the overall per-
formance of quantum circuits and lowers their power consumption. 
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