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Abstract. This paper explains the main design decisions in the develop-
ment of variational quantum time series models and denoising quantum
time series autoencoders. Although we cover a specific type of quan-
tum model, the problems and solutions are generally applicable to many
other methods of time series analysis. The paper highlights the benefits
and weaknesses of alternative approaches to designing a model, its data
encoding and decoding, ansatz and its parameters, measurements and
their interpretation, and quantum model optimization. Practical issues
in training and execution of quantum time series models on simulators,
including those that are CPU and GPU based, as well as their deploy-
ment on quantum machines, are also explored. All experimental results
are evaluated, and the final recommendations are provided for the devel-
opers of quantum models focused on time series analysis.

Keywords: Quantum machine learning · Autoencoder · Quantum en-
coding · Quantum measurement.

1 Introduction

The area of quantum time series analysis finds its foundations in a mature and
well-published field of classical time series analysis [14], as well as in the new,
dynamic, and not yet tested area of quantum machine learning [27].

Our exploration of quantum machine learning approaches to time series anal-
ysis has been motivated by our long-term interest in quantum methods for the
detection and removal of irregularities in temporal data [4].

In general, there are two categories of irregularities found in time series [4]:
(1) noise and errors, or unwanted data that need to be removed from data; and
(2) anomalies, representing events of interest, which need further analysis and
understanding, often with great urgency.
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The presence of abnormal data in time series may be due to poor data entry
practices, the use of substandard recording devices, or the impacts of environ-
mental factors. Eliminating noise could improve the quality of analytical models
trained with these data [1]. For example, the removal of noise and errors from
time series could improve the accuracy of systems responsible for financial fore-
casting [28], monitoring the condition of industrial machines [17], or helping
physicians perform medical diagnoses [30]. However, identification and under-
standing of anomalies discovered in financial transactions could reveal fraudulent
customer behavior, anomalies in machine vibration could represent the onset of
its catastrophic failure, while anomalies in ECG recordings could signify early
signs of heart attacks.

The handling of simple noise (such as Gaussian) and simple anomalies (such
as jumps in amplitude or shifts in time) can be handled by using simple filters
and algorithmic solutions [19]. More complex temporal patterns involve the de-
velopment of machine learning models [20]. In more demanding cases, methods
to eradicate time series problems require massive computing resources, leading
researchers to explore quantum solutions [25,15].

Much of this area of research is exploratory and includes a lot of fragmented
and highly specialized "proof-of-concept" projects. These explorations include
quantum signal processing [11], evaluating similarity measures to support tem-
poral data analysis [21], methods of quantum time series classification [32], quan-
tum time series forecasting [12], the adoption of deep learning models, such as
RNN and LSTM, for quantum modeling [2,29,8], and some work on noise removal
and anomaly detection in time series [18].

The machine learning model adopted in this project aims to analyze time
series using a neural network autoencoder (AE) [13, ch14], and more specifically
its quantum counterpart, the quantum autoencoder (QAE). In general, autoen-
coders feature lossy data compression [10], allowing data sequences to preserve
their most important or recurrent features, while removing their less significant,
noisy, or infrequently occurring data [9, sect. 2.2.2].

Although there are many applications of classical AEs [16,3], there are very
few examples of QAE use. The best received QAE studies include efficient data
compression [25], image processing [15,5], analysis of marketing media [24], and
anomaly detection in signals, although only in the frequency domain [26].

Other research explored the ability of QAE to deal with data in the time do-
main. They investigated the impact of data encoding on QAE performance [5],
performed data sequence compression and reconstruction with high accuracy
[25], and efficiently managed resources in hybrid quantum-classical computa-
tional settings [15,26].

Applications of quantum autoencoders for time series analysis, compression of
temporal data, noise elimination, representation learning, and anomaly detection
are all in uncharted territory and hence worth further investigation.
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Fig. 1: Full QAE for circuit training (all qubits measured).

Fig. 2: Full QAE for circuit testing.

2 QuTSAE design

There have been few prior attempts at applying quantum autoencoders to time
series analysis. The design of the well-known quantum time series autoencoders
(QuTSAE) commonly utilizes the variational quantum algorithms [7], which ma-
nipulate quantum circuits with parameterised operations (or gates) (see Figures
1 and 2). QuTSAE operations are arranged into blocks that include the following:

– Input block coding classical data as the state of a quantum circuit.
– Trainable encoder block compressing the quantum state into a latent space.
– Latent space defining an active subset of qubits and discarding (reinitializing)

the state of the remaining “trash” qubits.
– Trainable decoder block decompressing the quantum state of the latent space.
– Output block reversing the circuit state to the initial state (zero).
– Measurements converting the final quantum state into classical data.

2.1 Design choices for QuTSAE architecture

When designing the QuTSAE model, the following well-known architectural
choices have been considered.

Replicating QAE
Initially, consider the QAE training model (see Figure 1), of which the latent
space includes all qubits, the output block inverts the gate sequence of the
input block, and a decoder is the inverse of an encoder with both sharing
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their parameters. The training circuit works as an identity that reverses the
quantum state around the latent space, to reproduce the initial quantum
state |0⟩n, regardless of the parameter values. As the QAE testing model
(see Figure 2) drops the training circuit’s output block, its decoder returns
a quantum state encoded on input. The final state can be measured in a
variety of ways - all qubits at once or one at a time (as shown in the figure).

Approximating QAE
When the size of the latent space is reduced (see Figure 1), the training QAE
could no longer act as an identity for all sets of parameter values. However,
the QAE encoder/decoder parameters can be optimized to minimize error in
measured circuit values. When the output block is removed (see Figure 2),
the QAE circuit returns an approximation of the input state on the output.
The smaller the size of the latent space, the more information is lost by the
circuit and the more imprecise the reconstruction of the input on the output.

Denoising QAE
Autoencoders are known for their ability to denoise data. However, since
the input/output and encoder/decoder blocks are their respective mirror
twins, when QAE is given some noisy input, the same noise would be recon-
structed on output. To prevent this from happening, the input/output and
encoder/decoder pairs need to be decoupled by making their parameter sets
distinct. In this case, in QAE training (see Figure 1), input and output can
be assigned noisy and pure data, respectively, and encoder / decoder pa-
rameters can be optimized independently, thus allowing the reconstruction
of pure data from noisy data.

Custom QAE
Other types of QAEs have been developed, and in particular hybrid neural
networks, with some interface (called dressing) between classical and quan-
tum components [24].

2.2 Design choices for QuTSAE input encoding

As the above QAEs make no assumptions about data on input and output, it is
possible to apply them to time series and implement a functional QuTSAE.

Time series have to be represented in a way that allows the model to continu-
ously fit the series and its subsequences. A sliding-window protocol was therefore
selected to represent and process time series subsequences. The time series was
also preprocessed by differencing and scaling its values, making the series (par-
tially) stationary and its values manageable (as per ARIMA), [14, ch 9.1, 13.3].

As the window moves along the series during training or testing, its values
need to be encoded as the QuTSAE quantum states of the input and output
blocks. It is preferable to adopt a single encoding scheme for these two purposes.

There are several ways of quantum encoding schemes that are applicable to
time series, i.e., basis, amplitude, QRAM, angle, and others [31]. Each of these
schemes has its own strengths and weaknesses. For example:
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Basis encoding
adopts the binary representation of numbers on input; it is simple, but limits
the circuit to handle single values only or multiples of imprecise values.

Amplitude encoding
represents a window as a distribution of expectation values, as in circuit
measurement; great for results interpretation; however, encoding of different
input values leads to circuits of different structures, making very inefficient
execution on QPUs or GPUs.

QRAM encoding
precodes all window (or time series) values in the circuit and allows “refer-
ring” to them as needed; very flexible in processing; however, leads to large
circuits, making their execution on quantum devices prone to errors.

Angle encoding
encodes time series values as qubit state rotations, making it flexible, effi-
cient, circuit size friendly, and easy to manipulate and measure. Its main
weakness is its susceptibility to quantum noise, which could affect the accu-
racy of the results obtained from noisy NISQ-term quantum machines.

Angle encoding, which was adopted for QuTSAE (see Figure 3), can be re-
alized as a series of (Ry(x0), Ry(x1), ..., Ry(xn)) qubit rotations around the y
axis. To facilitate later measurement and interpretation of the encoded values,
we selected the state |+⟩ to represent the value 0, |1⟩ as −1, and |0⟩ as +1. Any
adjustment in a qubit value ∈ [−1,+1] is a Ry rotation of value×0.5π×(1−2×ϵ)
(with ϵ as an error range). Due to time series differencing, the values handled
by QuTSAE are small, resulting in qubit states very close to |+⟩.

It is worth mentioning that early experiments with the Z and ZZ feature
maps, which are commonly used to encode input data, were found to be difficult
to use along the QAE decoder for output reversal and result interpretation.

2.3 Design choices for QuTSAE output decoding / cost function

Measurement and interpretation of the QuTSAE model are vital to the successful
optimization of its parameters through a cost function; and, to gaining the ability
to extract the reconstructed input from the output block.

Half-QAE with swap test
When dealing with approximating QAEs, where the input-encoder pair shares
its parameters with the decoder-output pair, the QAE circuit can be trained
on the input-encoder half of the circuit alone [25].

This can be accomplished with a cost function using a swap test circuit,
which aims for the measurement of the trash state to approach zero, and thus
for the state of the latent space to represent the maximum of information
present on input. Unfortunately, when the trash size is large (say, greater
than 5 qubits), the swap test becomes slow and inefficient.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_18

https://dx.doi.org/10.1007/978-3-031-63778-0_18
https://dx.doi.org/10.1007/978-3-031-63778-0_18


6 J.L. Cybulski and S. Zając

(a) TS value angle encoding. (b) TS input encoding circuit.

Fig. 3: QuTSAE input encoding

Full-QAE and interpretation of measurements
When data are highly redundant, the model’s latent space can encode input
without any loss of information with just a few qubits, in which case the
swap test is less effective working with large trash area.

Instead, in model training, the optimizer could measure the state of the entire
input-encoder-latent-decoder-output sequence, which should approach the
initial state of zero, when the probability of all qubits to be simultaneously
zero is p(|0⟩n) ≈ 1 (n is the number of qubits, see Figure 1). This is achieved
by minimizing the cost function of the form Cost = 1 − p(|0⟩n), whose
implementation requires measuring all qubits at once and testing a single
distribution outcome of |0⟩n.

In model testing (with the output block removed), the output value can be
derived from the angular state of individual qubits. This can be calculated
from the probability distribution of measuring all qubits at once. However,
as the number of qubits increases, the space of expectation values grows ex-
ponentially, resulting in the calculation to be of exponential complexity. To
overcome this problem, it is possible to measure every qubit state individ-
ually (see Figure 2 as an example), which provides single-qubit expectation
values, easily interpreted as qubit amplitudes, cast back to qubit Ry rota-
tions, and decoded as part of the time series output. Although the latter
process has linear complexity, with the small number of qubits and a long
execution time of quantum simulation, in practice the process is much slower.

2.4 Design choices for QuTSAE encoder/decoder ansatze

Another factor that affects the QuTSAE model is the selection of an ansatz
implementing the QAE encoder and decoder. An anzatz is a template with
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Fig. 4: QAE input block, encoder (with 3 extra qubits, Rx and Ry gates, and 1
rotation/entangling block) and a latent space. A decoder and an output block
(for training) are not shown (an inverse of the input and encoder structure).

trainable parameters that can be assigned specific values to create an executable
circuit instance. A great variety of anzatz types are available from quantum
libraries (such as Qiskit or PennyLane). They can be customized to have specific
structural characteristics, the type and number of rotation and entanglement
blocks, and other properties (see Figure 4).

The following are four important aspects of the QuTSAE ansatz design.

Ansatz structural symmetry
The structural symmetry between the encoder and decoder ansatze is nec-
essary to ensure the reversibility of the QAE components on both sides of
the latent space and the ensuing effectiveness of the adopted cost function.
This decision led to the rejection of ansatz structures that interweave input
and encoding blocks to facilitate reuploading of input data [23]. While data
reuploading improves circuit trainability, it breaks the QAE symmetry and
prevents easy interpretation of the output.

Ansatz rotation blocks
To keep the structure of the QuTSAE ansatz simple and consistent with
the Ry input encoding and interpretation of the output, the ansatz was
initially designed using only the Ry rotations. However, this imposed a severe
limitation on the possible circuit states, which impeded the model learning.
Subsequently, to take advantage of the entire space of possible qubit states,
rotation blocks consisting of Rx and Ry gates were adopted.

Ansatz size (width and depth)
The QuTSAE performance is influenced by the ansatz size, i.e. its width (the
number of qubits) and depth (the longest gate path). In QuTSAE, the ansatz
width is controlled by extra qubits that offer additional degree of freedom
but do not participate directly in input/output activities (option aw), and
its depth by the number of rotation/entangling blocks (option reps).

Optimization of the ansatz parameters
Typically, the model optimizer cannot be selected without performing a pre-
liminary investigation of the model parameter space and the effectiveness
of the optimization algorithm. For example, this project reviewed gradient-
based optimizers (such as ADAM and SPSA), as well as linear and nonlin-
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(a) QAE original data.

0 50 100 150 200 250
Range (window si(e=8, window ste =4)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Di
ffe

re
nc
ed
 v
al
ue
s (
de
lta

s)

Diff and augmented TSs (flattened),  lus 1 noisy series with estimated noise of 5.15% (dots)

Training Validation

(b) QAE differenced data.

Fig. 5: Fragment of the original and differenced beer sales data (training set as
a dashed line, validation as a solid line, noise shown as dots).

ear approximation methods (such as COBYLA and BFGS), with COBYLA
found to be the quickest, most effective and producing the best results.

In our design deliberation of QuTSAE time series processing, we initially
adopted the approximating half-QAE model developed by Romero et al. [25]
and the enhancements recommended by Bravo-Prieto [5]. The resulting models
produced a high level of accuracy in replicating inputs into outputs, with or
without noise - the behavior undesirable in sequence denoising. Subsequently,
the full-QAE model was proposed, leading to slower model optimization, but
more successful noise reduction in time series.

3 Experiments

A series of experiments were conducted to test the ability of QuTSAE to remove
“simple noise” from temporal data, and investigate the influence of model design
decisions on its performance in training and validation. To manage the complex-
ity of noise presence in the data and noise generated by quantum machines, it
was decided to develop QuTSAE models using noise-free quantum simulators.

Data used for QuTSAE training related to beer sales in the USA, which was
sampled from the IRI Marketing Data Set [6]. We selected a small sample of
time series data consisting of 160 data points, which was split into two parti-
tions (0.75/0.25) - 120 data points for model training and 40 data points for its
validation (see Figure 5). We refer to the original data as pure. A copy of the
pure data was injected with 3% of uniformly distributed noise, and consequently
we refer to these data as noisy. Differencing was applied to all pure and noisy
data sets, resulting in data sets with noise exceeding 5.8%.

Subsequently, all data sets were segmented into windows of 8 data points
each, sliding with a step of 4. This resulted in 29 training windows and 10
validation windows. Note that the window size of 8 (and various step sizes) was
established in earlier experiments with half- and full-QAEs and synthetic data.
After some investigation, it was decided that a window of size 8 and a step of 4
was suitable for the experiments with full-QAEs and beer sales data.

The experiments were carried out on a Qiskit quantum simulator running on
Ubuntu 22.04.4 LTS, on a workstation equipped with an i9 CPU (24 cores and 32
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Fig. 6: Cost vs iterations in training models of the same latent space (lat=7) but
different width and depth. Based on training cost, 5 best models (out of 14).

threads), 64GB RAM, and a NVIDIA GPU GeForce RTX 4090. Initially, all ex-
periments used GPU; however, later code improvements resulted in significantly
faster CPU-based runs.

3.1 Determining the optimum ansatz size

The first group of experiments aimed to decide on the optimal size of the QuT-
SAE ansatz. Fourteen separate denoising models were created in Qiskit using a
TwoLocal anzatz. All models shared the same number of input/output qubits
(8, same as window size), the same size of the latent space (of 7 latent qubits,
plus 1 trash qubit to test the QuTSAE data compressing behavior), same type
of entanglement (shifted circular-alternating “sca” entanglement), and parame-
ter training blocks (using Rx and Ry rotations). However, the models differed in
their width (aw = 1..5), rotation / entanglement block repetitions (reps = 1..4),
and the resulting number of trainable parameters (varying from 64 to 180).

In training, models with narrower and shallower circuits, and consequently
smaller numbers of parameters, converged the quickest (within 1000 iterations).
Models with wider and deeper circuits, featuring a large number of parameters,
needed more training time (up to 2000 iterations; see Figure 6).

In each optimization step (see Table 1, Ex. 1), the training cost and model
parameters were saved for later analysis. The parameters were used to derive
the training and validation scores R2 (R-squared), RMSE, MAE, and MAPE
metrics for all intermediate stages of each model evolution. The MAPE score
was not used in the comparison of the performance of the models. It was, how-
ever, produced to provide information on the distribution and variance of the
output (with respect to input).

Based on the MAE validation scores, among the models with a latent space
of 7 qubits, two were selected for further experiments (see Table 1, Ex. 1 models
with additional depth aw = 3, and repeating blocks lat = 1 and lat = 2).
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Table 1: Cost and scoring results (top 4 models in Ex. 1, 2a and 2b experiments)
Experiment Min Training Validation

Lat Aw Reps Cost R2 RMSE MAE MAPE R2 RMSE MAE MAPE
Ex. 1 (Qiskit/QNN)

7 3 2 0.089 0.767 0.081 0.059 3.592 0.803 0.074 0.058 1.421
7 3 1 0.054 0.742 0.085 0.067 4.471 0.782 0.078 0.064 1.946
7 5 1 0.078 0.738 0.086 0.071 3.416 0.767 0.081 0.068 2.455
7 4 1 0.065 0.658 0.097 0.074 3.880 0.723 0.088 0.072 2.191

Ex. 2a (Qiskit/QNN)

7 3 1 0.054 0.742 0.085 0.067 4.471 0.782 0.078 0.064 1.946
6 3 1 0.070 0.399 0.130 0.087 2.745 0.442 0.116 0.088 2.367
4 3 1 0.063 0.428 0.126 0.085 3.346 0.331 0.137 0.094 1.568
5 3 1 0.066 0.455 0.123 0.095 4.603 0.403 0.129 0.097 2.654

Ex. 2b (Qiskit/QNN)

7 3 2 0.089 0.767 0.081 0.059 3.592 0.803 0.074 0.058 1.421
8 3 2 0.086 0.761 0.083 0.066 4.743 0.741 0.085 0.068 1.952
2 3 2 0.086 0.752 0.085 0.068 4.668 0.690 0.090 0.072 2.490
5 3 2 0.105 0.396 0.132 0.088 3.122 0.461 0.115 0.079 1.473

Ex. 3 (PyTorch/MLP, lat=7)

Enc=3/Dec=3 0.012 0.996 0.010 0.006 0.225 0.751 0.081 0.059 1.310

3.2 Impact of latent space on performance

As the size of the latent space determines the quality of time series reconstruc-
tion, the second group of experiments was conducted to identify the optimum
ratio between latent and trash space in the QuTSAE circuits.

We used the two models selected previously and varied the size of their latent
space, from 1 to 8 qubits (with size 0, interaction between the encoder and the
decoder was not possible, thus generating errors). This resulted in 14 additional
models to be investigated. Each model was optimized, its training and validation
scores plotted (e.g., see Figure 7a), and those with suboptimal performance were
rejected. Subsequently, the models within each size group were compared (e.g
see Figure 7b for models of the same size, given as aw = 3 and reps = 2).

As indicated by MAE validation scores, the best 4 models were then selected
from each model size group (see Table 1, Ex. 2a and Ex. 2b). By analyzing
their performance scores, the two best performing models overall were found
to have a ratio of 7:1 latent to trash space (the most desirable ratio for this
data set), 3 additional qubits (beyond the 8 input/output quibits), and 1 to 2
rotational/entangling blocks.

To assess the performance of QAE models against the equivalent classical
autoencoders, a number of such models were developed using the PyTorch pack-
age. Each model had a differently sized latent space (from 1 to 8 variables) and
consisted of two multilayer perceptrons (MLP) acting as the AE encoder and
decoder, featuring 3 hidden layers each, and a total of 19,741 parameters (see
Table 1, Ex. 3 PyTorch model with lat = 7). Training of PyTorch and quantum
models used the same windowed and differenced data, and identical approaches
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Fig. 7: QuTSAE model performance.

to data coding. Although PyTorch models excelled in their training performance,
their validation performance was on par with that of quantum models.

3.3 Time series denoising

The final experiment was to investigate whether the QuTSAE models are capable
of denoising time series.

To this end, for each model developed so far, we created its two separate
instances: the first by instantiating its parameters with values found to be opti-
mal during training, and the second by instantiating its parameters with values
determined to be optimal for model validation. We then re-examined all model
instances by applying the previously used scoring metrics to assess differences
between reconstructed vs. pure sequences, as well as differences between noisy
vs. pure sequences. Should the reconstructions be closer to the pure sequences
than noise, we would then regard such models as capable of denoising time series.

Significantly, the final model scoring was carried out in two stages. As the
time series windows had some significant overlaps due to their stepwise creation,
in the first scoring process, we identified data points of high score variance com-
monly present at window edges, which were removed to improve the model scores
produced in the second stage. We then reintegrated the remaining window over-
laps by averaging to produce the adjusted sequences suitable for the presentation
of the pure, noisy and reconstructed series (see Figure 8).

As an example, let us take the best performing QuTSAE model, characterized
by its hyperparameters lat = 7, aw = 3, and reps = 2. Table 2 provides its training
and validation scores for pairs of pure, noisy, and reconstructed sequences. In
the left column, we find the scores comparing the original pure time series vs.
the measurement of noisy time series. In the right column, the scores compare
pure time series vs. the reconstruction of pure time series from noisy input.

In validation, the scores of R2, RMSE, and MAE indicate that the recon-
structed sequences fall between pure and noisy sequences. Hence, the model is
capable of removing a modest level of noise from previously unseen time se-
ries. Unfortunately, the training scores tell a different story. Although the MAE
scores are still indicative of the models’ denoising abilities, the R2 and RMSE
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(a) Quantum QAE (Qiskit).
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(b) Classical AE (Torch).

Fig. 8: Reintegration of time series for quantum and classical models, showing
the original pure data (solid line), the noisy input (lighted dotted line), and
reconstructed data with reduced noise on output (dashed line).

scores, which are more sensitive to the presence of outliers, suggest that the
model had difficulty with noise removal in training. In contrast, the classical
models’ reconstructions fitted pure data very closely, eliminating virtually all
noise in the process. However, their denoising performance on previously unseen
data was no better than that of the quantum models.

At the end of this discussion, it is important to take a closer look at the
reintegrated time series (see Figure 8). We can observe that the QuTSAE re-
constructions (dashed line) seem to follow the shape of the noisy input (dotted
line) (see Figure 8a). However, the classical PyTorch reconstructions (dashed
line) follow the shape of the pure data (solid line) (see Figure 8b). However,
the validation performance of both models is similar. The likely explanation for
this phenomenon is that the QuTSAE cost function did not allow the model
to fully learn, which can be confirmed by investigating the slope of the cost vs.
performance scores over time (compare Figures 6 and 7a). This may have been
caused by the lack of nonlinear activations within the quantum model structure
[22]. PyTorch models, in turn, converged very quickly; however, the algorithm
had insufficient training data to avoid overfitting. Neither of the two models had
the opportunity to reach its full potential.

4 Conclusions

Quantum time series analysis is at the intersection of classical time series analysis
and quantum machine learning. This article discussed a specific area of quantum
time series processing, concerning the application of quantum autoencoders to
the elimination of noise from temporal data. The article explained how different
design decisions impact the function and performance of quantum time series
autoencoders (QuTSAE). In this final section, we provide some reflections on
the key design choices for quantum models in general, which could guide and
assist researchers and developers of quantum machine learning models.

Requirements. In the initial steps of a quantum model development, one must
consider not only the model structure and algorithms suitable for its processing
(e.g. the need for the encoder and decoder), but also requirements (e.g. ability of
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Table 2: Final QAE model performance (lat=7, aw=3, reps=2, ep=2000)
Training Accuracy (no edge distortion)
R2 (org-pure, in-noisy) = 0.782 R2 (org-pure, out-rec) = 0.767
RMSE (org-pure, in-noisy) = 0.078 RMSE (org-pure, out-rec) = 0.081
MAE (org-pure, in-noisy) = 0.064 MAE (org-pure, out-rec) = 0.059
MAPE (org-pure, in-noisy) = 3.985 MAPE (org-pure, out-rec) = 3.592
Validation Accuracy (no edge distortion)
R2 (org-pure, in-noisy) = 0.795 R2 (org-pure, out-rec) = 0.803
RMSE (org-pure, in-noisy) = 0.076 RMSE (org-pure, out-rec) = 0.074
MAE (org-pure, in-noisy) = 0.064 MAE (org-pure, out-rec) = 0.058
MAPE (org-pure, in-noisy) = 1.962 MAPE (org-pure, out-rec) = 1.421

handling temporal data) and constraints (e.g. level of noise in data not exceeding
5%) imposed on the structure and function of any acceptable solution.

Input. Input encoding schemes (such as QuTSAE angle encoding around |+⟩)
must match the strategy to measure and interpret the model output (e.g. inter-
pretation of measurements into qubit angular states). The adopted design choices
may restrict the use of certain devices for model execution, e.g. QPU or GPU.

Output. Quality design of quantum model observables, their measurement,
and interpretation of results are essential for training and testing the model.
Design of a suitable cost function (such as swap test or zero testing) is also of
pivotal importance, and its use by an optimizer will determine the model train-
ability, and ultimately its capabilities (such as denoising), size (e.g. width and
depth), and efficiency (due to complexity of obtaining and interpreting results)
of its architectural options (e.g. half-QAE or full-QAE in QuTSAE).

Ansatz Design. Quantum toolkits offer rich libraries of ansatze suitable for
the design of model components (such as the QuTSAE encoder and decoder). It
is also possible to hand-craft a parameterized custom ansatz. Several important
objectives in ansatz design must be considered. The ansatz structural properties
must fit the model function (such as the need for QuTSAE symmetry). The
rotational and entanglement blocks must match the input encoding and output
decoding methods (the simplicity and compatibility of the RealAmplitude ansatz
vs. the versatility of the TwoLocal ansatze in QuTSAE). The ansatz design, with
its width, depth, the number of trainable parameters, as well as the required
degree of freedom, will determine the suitability of its optimization strategies.

Model Training and Validation. Virtually all design choices for quantum mod-
els will have a major impact on their performance in training and validation.
Typically, a series of experiments should be designed to establish which de-
sign aspects could influence model performance. To this end, an overarching
experimental framework may need to be introduced, with data repositories and
development tools (e.g. IRI marketing data, Qiskit and PyTorch toolkits), mea-
suring instruments for model scoring and analysis (e.g. R2, RMSE, MAE and
MAPE), results capture and presentation facilities (e.g. MLFlow), and eventu-
ally source code and results distribution (e.g. via github).

Objectives and Success Criteria. From the outset, it is necessary to clearly
define quantum project objectives (e.g. analysis of temporal data) and a set of
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testable success criteria (e.g. the target level of noise reduction in data). It is
important to clearly state what goals are aspirational only and hence out of
scope (such as the quantum model’s ability to detect and remove “complex noise
patterns”), but which could be investigated in the future.

As is evident from this article, quantum model development must constantly
balance the quality and precision of the results with the complexity of developed
models and processes, the available resources, and the practical execution time
to produce useful results. It is a difficult process to manage and master. Never-
theless, the research and development process that we followed in this project
provided us with some valuable learning experience.

We believe that our insights, as reported in this article, are transferable to
other researchers and developers, other types of quantum time series analysis
model, and quantum models in general, using different data, with distinct ob-
jectives, and a variety of quantum and machine learning tools.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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