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Abstract. The quantum volume is a comprehensive, single number met-
ric to describe the computational power of a quantum computer. It has
grown exponentially in the recent past. In this study we will assume this
remains the case and translate this development into the performance
development of another quantum algorithms, quantum amplitude esti-
mation. This is done using a noise model that estimates the error prob-
ability of a single run of an algorithm. Its parameters are related to the
quantum volume under the model’s assumptions.
Applying the same noise model to quantum amplitude estimation, it
is possible to relate the error rate to the generated Fisher information
per second, which is the main performance metric of quantum ampli-
tude estimation as a numerical integration technique. This provides a
prediction of its integration capabilities and shows that quantum ampli-
tude estimation as a numerical integration technique will not provide an
advantage over classical alternatives in the near future without major
breakthroughs.

Keywords: Quantum volume · Quantum amplitude estimation · Noisy
quantum computing.

1 Introduction

The promise of the quantum computer is that it can speed up some computation
routines quadratically or can even solve classically intractable problems with an
exponential speed-up. The capabilities of current quantum computers are limited
by errors rather than by size or speed. The origin of these errors lies in the details
of their physical realization. Given that there are multiple physical approaches
to build a quantum computer, each with different components, strengths and
weaknesses, it is hard to compare quantum computers’ performance on an al-
gorithm from the reported error characteristics of the physical components. To
obtain more understanding of the execution quality, performance metrics focus
increasingly on application benchmarks [16,18,19]. These use the size, speed or
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solution quality of an application on a quantum machine as metric. Currently,
the most reported metric of this kind is the quantum volume (QV) [7].

This paper studies the implications of the development of the QV for the
quantum amplitude estimation (QAE) algorithm. Can the available QV be trans-
lated into a performance estimate for QAE?

1.1 Quantum volume

Using application-based metrics rather than component properties to benchmark
the performance of a quantum processing units (QPU) provides a view on the
performance that is of direct interest for the user. The best-known metric of
this kind today is the quantum volume. It gives in a single number the size of
a specific computational problem, finding the heavy outputs of a randomized
circuit, that can be run reliably.

The QV metric considers both the width of the machine and the depth of
the circuit that is run. Circuits that are too wide, do not fit onto the available
number of qubits. If the circuit becomes too deep, a run of the circuit becomes
unreliable as a result of errors in the gate execution. The QV is the largest size
of the problem that can be run on a quantum machine, without being dominated
by noise. As such, it is a property of the hardware. In most current designs of
quantum computers, the depth is the bottleneck for the development of the QV.

The QV will not remain the common performance metric in the future. Noise-
less executions of the circuits are needed to determine the QV. In the near future
these can only be performed using long-lasting simulations on classical hardware.
These simulations will take so lang that for such QPU’s alternative metrics, such
as the Error per layered gate [30], will be needed.

1.2 QAE as a numerical integration technique

On a quantum computer, numerical integration can be performed with quantum
amplitude estimation (QAE) algorithms [25,15,27,11]. Compared to the classical
algorithms, QAE enjoys faster convergence rates in ideal, noiseless settings. Fur-
thermore, it may function on near-term NISQ devices [22,26]. This paper aims
to study if these convergence rates are feasible on near-term quantum hardware.

For this we compare QAE with the Monte Carlo integration (MCI) technique
for classical computers. In MCI a random sample from the domain is chosen and
its average function value is multiplied by the volume of the domain as an esti-
mate of the integral. Since the function is evaluated once for each sample point,
the number of function evaluations N is the same as the number of samples. The
error of MCI decreases as N−1/2 [24]. The accuracy of this method is determined
only by the number of samples that is processed.
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Both MCI and QAE treat a finite number of samples. Thus, the sampling
error is present too in QAE. In the approach [25] used here, a circuit of n + 1
qubits generates 2n samples. QAE can only be beneficial, if 2n > N , where N
is the number of MCI samples. The classical example in section 2.6 suggests 226

samples are needed for this, so quantum computers with at least 27 qubits are
needed [25]. This puts a lower bound on the QV required to perform competitive
QAE.

Besides this sampling error, the quantum computer suffers from other errors
inherent to the quantum process. The challenge is thus to device a method for
which the quantum errors decay faster than N−1/2, where N is interpreted as
the number of function evaluations.

1.3 Related work

The quantum volume [7,4] is shown to be a suitable candidate for a quantum
metric by [3]. Limitations of randomized application-centric benchmarks have
been studied in [23]. An exponential growth of the quantum volume has been
observed, since its conception [9].

The QAE algorithm is based on the quantum phase estimation algorithm [5,8].
Replacing the quantum Fourier transform with maximum likelihood estimation
[25] simplifies the circuit considerably. A method without post-processing is It-
erative QAE [12] at the price of a varying execution length. Generalizations
for real-valued integrands [17] or minimal circuit depth [13] have also been con-
structed. To avoid very deep circuits, maximum-depth approximations have been
tested in the noiseless setting [21]. The performance of QAE in the presence of
noise has been studied in [6,28,26].

1.4 Our contributions

How can a user estimate the performance of a quantum algorithm from the avail-
able QV? We try to provide a first answer to this question. To this end a noise
metric will be used that can be derived from the QV. It gives for a single circuit
run an estimate of the error rate as a function of the size of the transpiled and
decomposed circuit and the number of measurements.

A second contribution lies in the application of this method to QAE. The
QAE algorithm of [25] looks very promising [20], but it is unclear when it will
outperform classical integration methods. The observed exponential growth of
the quantum volume can be translated into error parameters for QAE runs. Us-
ing these, predictions for the Fisher information per second can be made, which is
the metric that determines the accuracy. These shows that major breakthroughs
are needed to make QAE competitive with classical methods in the near future.
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This article is structured as follows. In section 2 an introduction of the QV,
our noise model and QAE is given. The theoretical relation between the noise
model and the quantum volume, as well as an applicability test of our noise
model are given in section 3. These are combined with the size characteristics of
the QAE and QV circuits in section 4 to provide an estimate of the integration
power of QAE in the near future. The paper is concluded with section 5.

2 Preliminaries

This section briefly treats the concept of QV, introduces our noise model with
its assumptions and summarizes the framework of QAE and Fisher information
for noiseless and noisy quantum processors.

The quantum volume of a QPU with N available qubits is determined from
a set of experiments on squared circuits, meaning that the number of qubits
q used is equal to the number of randomized layers, where q = 1, 2, . . . , N . In
each layer, the qubits are permuted randomly, divided into pairs that are ro-
tated with a random element of SU(4). Such a circuit on q qubits will return on
measurement each q-bit answer with a certain probability. By definition, half of
the answers will have a probability larger than the median. These are called the
heavy outputs. The idea of a QV experiment is to reproduce as many of these
heavy outputs using the noisy quantum computer. An ideal machine would pro-
duce 84.66% of the heavy outputs [3] and guessing would yield half of the heavy
outputs. A quantum volume experiment is defined [7] to be successful if 2/3 of
the heavy outputs is found with a one-sided 2σ certainty. The quantum volume
is the largest layer depth q for which the experiments is successful.

To estimate when certain algorithms become feasible on a quantum computer
one could look to the evolution of quantum volume. IBM reached a quantum
volume of 512 with its Prague machine [10], which corresponds approximately
to a doubling of the quantum volume every 9 months since 2018 [14]. Based
on [1] one would deduce that the quantum volume doubles every 4 months for
Quantinuum systems since June 2020. There are estimates [9] that the quantum
volume has doubled approximately every 6 months since its conception, which
is what we will use as a forecast

VQ(T ) = 22+T/6 , (1)

where T is the time in months since November 2018. In section 1.2 it was es-
timated that 27 qubits may suffice. Based on (1) a reliable machine to execute
QV circuits with 27 qubits may be available in May 2031. According to IBM’s
roadmap [2], circuits of 109 gates should be feasible then. However, the error
sensitivity and implementation size of QAE circuits is different.
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2.1 The noise model

Quantum processors are not deterministic, so statements regarding the quality
of an algorithm run must be statistical. In addition, current QPU’s are noisy,
meaning that the execution of gates succeeds with a probability strictly smaller
than 1. It follows that results on the probability of an error occurrence must be
derived from statistics of the observations, the expected noiseless outcomes and
the expected outcomes with noise. However, describing the outcome in the case
of a faulty gate execution is very cumbersome, if possible at all. To avoid this, we
make the simplifying assumption that a uniformly random answer is measured
upon an error. In other words, if an error occurs, we assume that all structure
is lost and a random output will be measured.

Half of the outcomes of a QV circuit are heavy outputs and in the QAE
circuits of [25] only one qubit is measured. So, in both algorithms errors reduce
the assumed success probability of a measurement to 0.5. Under this assumption,
if i should be measured with probability pi in a noiseless case and the probability
of an error occurring is 1−a, upon measurements i will be found with probability

p′i = api + 0.5 · (1− a) .

Most sources of errors lead to similar behavior of QV experiments [4]. As a
simplification, only two sources of error will be considered, the execution of the
gates and the measurements. The probability of a successful measurement of a
qubit will be given by b and the probability that 100 gates are executed correctly
by c. Based on two parameters, the number m of measurements and the size s
of the circuit, decomposed in the basis gates and transpiled into the topology of
the hardware, this yields a total probability of an error-free run of

a = bm · cs/100 . (2)

In practice, b will be close to 1.0 and the number of measured qubits q small, so
that the formula is dominated by the second factor. In a different context, such
assumptions have been applied to QAE in [28,6,26].

2.2 QAE without noise

To apply the noise model to the QAE algorithm, we recall some results on the
Fisher information for the noiseless and noisy case. The implementation used in
this study is based on [25], because its implementation is shallow and has a size
that is known upfront.
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The numerical integral we study is given by

I[f ] =

∫ 1

0

dx f(x)p(x)

≈ Ep[f ] =
1

2q

2q−1∑
x=0

f(
x

2q
) p(

x

2q
) (3)

=: sin2 ϑ . (4)

It is assumed that the function f can be shifted and scaled, so that 0 ≤ I[f ] ≤ 1
and an angle ϑ ∈ [0, π/2] exists satisfying (4). It is this angle that the QAE
algorithm computes.

The probability distribution on the q qubits is implemented by the unitary

P : |0⟩q 7→
2q−1∑
x=0

√
p(x)|x⟩q

and the function f is implemented by a unitary operator R on q + 1 qubits

R : |x⟩q|0⟩ 7→ |x⟩q
(√

f(x)|1⟩+
√
1− f(x)|0⟩

)
.

Together, these operators define A = R(P ⊗ 1). This is the state preparation

|Ψ⟩ = A|0⟩q+1 = sinϑ|Ψ1⟩|1⟩+ cosϑ|Ψ0⟩|0⟩ ,

which is split into a good state Ψ1 and a bad state Ψ0. Upon measurement of the
last qubit, the probability to find |1⟩ is

sin2 ϑ =

2q−1∑
x=0

p(x)f(x) .

In order to generate a quantum speed-up, an amplification operator is needed.
This operator is defined [25] as Q = −AS0A−1SΨ1

. The operators

S0 : |0⟩q+1 7→ −|0⟩q+1 and SΨ1
: |Ψ1⟩|1⟩ 7→ −|Ψ1⟩|1⟩

and act trivially on other states. It follows that the operator A is a rotation, so
that

Qk|Ψ⟩ = sin((2k + 1)ϑ)|Ψ1⟩|1⟩+ cos((2k + 1)ϑ)|Ψ0⟩|0⟩ .

The amplification operator Q contains both A and A−1, so that operating
Q once counts as two function evaluations. After k amplification steps there are
2k+1 function evaluations performed. Because the amplified angles provide more
information about the value of ϑ [25,6], amplification increases the efficiency and
constitutes the potential quantum advantage of QAE.
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After the circuits have been run for a selection of amplification powers, the
angle ϑmust be derived from the outcomes. For each amplification power k ∈ M,
Nk shots are performed with hk measurements of 1. The best choice for ϑ is the
one that maximizes the likelihood

L(ϑ) =
∏
k∈M

(
sin2((2k + 1)ϑ)

)hk

×
(
cos2((2k + 1)ϑ)

)Nk−hk

.

2.3 QAE on noisy processors

On a noiseless QPU more amplification rounds result in more information. For
noisy processors the situation is more complex [28]. Larger amplification powers
yield larger circuits and more noise, reducing the amount of extractable infor-
mation. The challenge is to optimize the amount of generated information based
on the error parameters of the QPU.

Before the noise model (2) can be used, it should be validated whether it
can be used to explain the observed noisy measurements. This is done by using
small dummy QAE circuits, because complete QAE circuits are too large and
the outcomes would be dominated by noise. These dummy QAE circuits can
be simulated without errors to obtain the noiseless outcomes pi of measuring a
state i. Repeating the experiments on a noisy QPU provides the noisy outcomes
p′i. Afterwards, the best fitting probability a is found that minimizes

V1 =

2∑
i=1

(
p′i − (api +

1− a

2
)
)2

= − (a− 1)2

2
+

∑
i

(p′i − api)
2 ,

which is solved by

a =
2p′1 − 1

2p1 − 1
. (5)

This means that the error probability, the noisy and the noiseless probabilities
are related by

p′i = api +
1− a

n
.

The ratio of V1 against V0 =
∑2

i=1(p
′
i − pi)

2 can be used to describe the quality
of the noise model. It is given by R2 = 1− V1

V0
.

The interpretation as a probability dictates that a ∈ [0, 1], but fluctuations
in the measurement results may lead to solutions of (5) outside this interval.
Both p′0 > p0 > 0.5 and p′0 < p0 < 0.5 imply a > 1. Negative values of a are
observed for p′0 < 0.5 < p0 and p0 < 0.5 < p′0. Noise should drive the observed
noisy probabilities p′i from pi towards 0.5, but statistical fluctuations may lead
to negative values for single experiments.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_16

https://dx.doi.org/10.1007/978-3-031-63778-0_16
https://dx.doi.org/10.1007/978-3-031-63778-0_16


8 Jins de Jong and Carmen R. Hoek

2.4 Dummy QAE circuits

Standard QAE circuits are too deep to run on available noisy hardware and are
thus unsuited to validate the noise model. Therefore, dummy QAE circuits com-
posed of the same gates are used. Such circuits consist of R rounds of not-gates
and one multi-controlled y-rotation. The rotation acts on the last qubit and is
controlled by randomly selected qubits, flipped to 1 and back after the rotation.
Only the last qubit is measured. The tests are run on IBM-perth (7 qubits) and
the results are used to fit the noise model. The results are shown in section 3.2.
Tests have also been run on IBM-guadalupe (16 qubits), but these circuits are
so large that all obtained values of a will be effectively zero and prevent fitting.

Besides IBM-perth and IBM-guadalupe, it is useful to run the circuits on
quantum processors of intermediate sizes. Therefore, simulations with a noise
model have been performed on a series of topologies for 8 until 12 qubits that
interpolate between IBM-perth and IBM-guadalupe. The idea behind the choices
is that the topology should have a similar influence on the observed noise pa-
rameters in all the experiments. Since these are not available as hardware, the
noise effects are simulated with a thermal noise model that mimics the noise
characteristics of IBM-perth.

2.5 Fisher information

The amount of information generated by a numerical integration method is given
by the Fisher information I. Its relevance follows from the Cramer-Rao bound

Var(ϑ) ≥ 1

I(ϑ)

which is an equality for this approach of QAE [25]. For QAE with depolarizing
noise it can be derived [6,28] from the noiseless case. Writing the noiseless and
noisy probabilities for k amplification rounds as p(k) = cos2(2k+1)ϑ and p′(k) =

akp(k) +
1−ak

2 , the Fisher information is given by

I(ϑ) =
∑
k∈M

a2kNk(2k + 1)2

p(0)(1− p(0))

p(k)(1− p(k))

p′(k)(1− p′(k))
. (6)

The angle ϑ is obtained through maximization of the noisy likelihood function

L′(ϑ) =
∏
k∈M

(p′(k))
hk(1− p′(k))

Nk−hk .

The formulas above show that the value ϑ = π/4 is of particular interest. In
this case p(k) = p′(k) = 1/2, so that the error parameters are irrelevant and the
Fisher information is maximal. QAE problems are ideally formulated in a way
that the expected angle is close to π/4, so that

I(ϑ) = 4b
∑
k

(2k + 1)c2k ·
(
Nk(2k + 1)

)
. (7)
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Maximizing this against the available number of function evaluations M =∑
k Nk(2k + 1) yields Nk1

= M
2k1+1 , where k1 maximizes (2k + 1)c2k. To de-

termine precisely when to switch from k − 1 → k amplification steps, solve

(2k + 1)c2k ≥ (2k − 1)c2k−2 ⇒ k =
⌊ 1

1− c2
− 1

2

⌋
. (8)

2.6 A Monte Carlo example

The interest in QAE comes from its ability to converge faster than MCI, so a
simple estimate of the reference speed of MCI is useful to choose the param-
eters of the quantum algorithm. For this purpose a 1D integral is determined
numerically with N = 107 samples in 47.4 seconds on a legacy processor, esti-
mated at 0.2 Tflops. In an operational setting, a computing cluster of 100 Tflops
could thus evaluate approximately 108 samples per second. MCI works without
amplification, so the Fisher information per second is 4 · 108, according to (7).

3 Results

3.1 Success in a quantum volume experiment

The probability to find a heavy output on an ideal QPU is r = 0.8466 [3]. In
a QV experiment on a noisy QPU with q qubits a heavy output will be found
with probability r′ ≤ r with variance r′(1 − r′). After N measurements, the
experiment has passed the test, if

2N

3
+ 2σ ≤ Nr′ ⇒ r′(1− r′) ≤ N

4
(r′ − 2

3
)2 ,

so a QV experiment can succeed as long as r′ > 2
3 . Since half of the states are

heavy outputs and we assume to measure a random state if an error occurs,

r′ = ar +
1− a

2
.

A QV experiment will fail, if the probability of an error-free run drops below

aQ =
r′ − 1/2

r − 1/2
= 0.4809 . (9)

From the values r′ and r the value of the error parameter a can be derived,
which we attempt to model by (2) with m = q.

3.2 Results for the error model

To test the assumptions behind the noise model dummy QAE circuits are run
on real and simulated hardware. The results are used to fit the parameters of
the noise model (2) with m = 1. The quality of the resulting model can then
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be expressed by the R2-score. The obtained results are presented in Table 1.
To test whether this noise model also works for more qubits, the procedure
has been repeated for larger simulated machines with a modified thermal noise
model. This causes the difference between the values for c in Figure 1 and the
value found in (the caption of) Table 1.

Fig. 1: The error per 100 gates c ver-
sus the number of qubits in the cir-
cuit. The average value of b = 0.9958.
The dummy QAE circuits used here are
discussed in paragraph 2.4. All exper-
iments are simulated using a modified
thermal noise model.

Rounds Tests Depth Size a ã

0 20 1.0 1.0 0.938 0.923

1 20 74.2 99.3 0.278 0.351

2 20 144.5 202.8 0.233 0.127

3 20 206.7 294.8 0.010 0.051

4 20 290.6 408.4 0.044 0.017

5 20 348.5 495.8 0.093 0.007

6 20 401.4 570.5 -0.044 0.003

7 20 497.5 725.5 0.056 0.001

Table 1: The results for dummy QAE
circuits on IBM-perth (7 qubits). The
obtained parameters for (2) are b =
0.938 and c = 0.374. The average
probability for an error-free run is
given by a, its prediction by (2) is ã.
This noise model can explain R2 =
0.75 of the variance in the data.

3.3 Speed of the QPU

The unit of speed of IBM’s quantum computers is the circuit layer operations
per second [29] or CLOPS. This gives the number of layers of a QV circuit it
can process per second. The size in gates of the transpiled and decomposed QV
circuits can be determined to translate this speed metric into one applicable to
other quantum circuits. This shows the 2.9K clops of IBM-perth corresponds to

S = 1.0× 106 ± 0.6× 106 basis gate operations per second. (10)

3.4 Estimations for the size of circuits

Within the frame of the noise model of paragraph 2.1, the size of the circuit is the
dominant parameter. We need, therefore, the scaling of the size of the circuits
for more qubits. The size S1 of a QAE circuit as a function of the number of
qubits q and the number of amplification rounds R is

S1 = α1 · (2R+ 1) · 10β1·q with α1 = 17.35 and β1 = 0.46 . (11)
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The size of the QV circuit depends on the number of qubits only, since it
is squared. The depth in layers is equal to the number of qubits. Because the
circuit need to be transpiled, a quadratic relation between the number of qubits
and the depth of the circuit is obtained, which implies a cubic relation between
the number of qubits and the size of the circuit. This relation is given by

S2 = α2 · q3 + β2 · q2 with α2 = 0.24 and β2 = 8.13. (12)

4 Application of the noise model to QAE

Now that all elements required are present, they can be combined to sketch the
prospect of the integration power of QAE. This is the topic of this section.
The parameters b and c of the noise models for QV and QAE circuits represent
properties of the QPU rather than of the circuits run on them. Our claim is that
they are the same for both types of circuits. In this way we may translate the
development of the QV into an error parameter for a single circuit run. This can
then be used to model the Fisher information that a QPU can generate.

4.1 General functions

The number of qubits that can pass a QV experiment (1) is expected to grow
as q(T ) = 2 + T

6 . The expected probability r′(T ) to run a QV circuit without
errors at future time T can be inferred from (1) and (9). In terms of the (gate)
size s of a circuit this probability can be modelled as

a = bqc
s

100 ≈ c
s

100 .

To simplify the computations it is assumed that b = 1. This is justified by the
values of b seen in (the captions of) Figure 1 and Table 1.

Expressing the error probability per depth c deduced from a QV experiment
with size (12) as a function of q(T ) yields

c(T ) = a
100

α2q(T )3+β2q(T )2

Q .

Combined with the size of a QAE circuit (11) this yields the probability

aOP (T ) = a
α1(2R+1)·10β1Q

α2q(T )3+β2q(T )2

Q (13)

to run a QAE circuit with R amplification rounds on Q qubits without errors.

Each function evaluation takes the same amount of time. The number of
amplification rounds that yields the most Fisher information per unit of time
is the same as maximizing it per number of function evaluations. The optimal
number of amplification rounds (8) then is

R(T ) =
⌊(

1− a
2·α1·10β1Q

α2q(T )+β2q(T )2

Q

)−1

− 1

2

⌋
.
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This leads to an optimal number of amplification rounds shown in Figure 2a and
an optimal operational success probability of (13). This probability decreases
after the number of amplifications rounds has just increased, but this is com-
pensated by the extra information gained from the experiments. Assuming that

(a) The optimal number of amplification
rounds (magenta) and the scaled optimal
operational error rate (purple).

(b) The Fisher information per second
(red) and the time November 2018 cubed
with some prefactor (orange).

Fig. 2: The performance characteristics of QAE on 8 qubits. The length of the x-
axis is chosen to show the trends and general development clearly, not to suggest
the lifespan of our predictions.

the speed of the QPU’s remains constant and is given by (10), the achievable
Fisher information per second (7) is given by

I(1
2
) = 4 · 1.0 · 106 · a2OP (T ) ·

(
2R(T ) + 1

)
α110β1Q

.

Figure 2b shows that the Fisher information will increase cubically in time
as a function of the exponentially increasing quantum volume. This shows that
this approach for QAE will not be competitive in the coming years.

4.2 Shallow functions

Figure 2b shows that the Fisher information increases cubically with time,
whereas the QV increases exponentially in time. The implementation of these
functions is too deep to yield reliable QAE circuits. Significant improvements
are needed to make QAE faster than classical methods. Switching to shallower
functions could be an option. And to approximate the 108 samples a computing
cluster may evaluate, the QAE algorithm should be executed on at least Q = 27
qubits. To see the effects of these changes, the analysis of the previous section
is repeated here with a hypothetical shallow implementation size of

s3 = 1.0 · (2R+ 1) · q3 . (14)
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(a) The optimal number of amplification
rounds (magenta) and the scaled optimal
operational error rate (purple).

(b) The Fisher information per second
(red) and the time since November 2018
cubed with some prefactor (orange).

Fig. 3: The performance characteristics of QAE with a shallow function imple-
mentation (14) on 27 qubits. The length of the x-axis is chosen to show the
trends and general development clearly, not to suggest the lifespan of our pre-
dictions.

The results are summarized in Figure 3. This shows that the amount of
Fisher information generated per second for shallow circuit implementations of
the integrand increases cubically and will remain much lower than for MCI.

5 Conclusions

We have used a phenomenological noise model of measurement and depolariz-
ing noise to model the error probability for a single run of a quantum volume
experiment. This same model with the same parameters can be used in the con-
text of other quantum algorithms, such as quantum amplitude estimation. The
main parameter of the noise model is the size of the circuit decomposed into
basis gates and transpiled for the topology of the quantum processor. Using in-
formation on the circuit size, the computational limits of other algorithms can
be related directly to the corresponding quantum volume. This provides a novel
view on the applicability of such algorithms in the near future.

Applying this method to quantum amplitude estimation, it can be used to
estimate to achievable Fisher information per second in the upcoming years. This
shows that both for general functions and for (hypothetical) shallow functions
the implementation size of the circuit will be prohibitive to achieve an actual
quantum advantages. This shows that significant improvements in the QPU are
needed to achieve a quantum advantage for quantum amplitude estimation in
the NISQ era.
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