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Abstract. CFD has emerged as an indispensable tool for comprehend-
ing and refining fluid flow phenomena within engineering domains. The
recent integration of CFD with AI has unveiled novel avenues for expe-
dited simulations and computing precision. This research paper delves
into the accuracy of amalgamating CFD with AI and assesses its per-
formance across modern server-class Intel CPU/GPU architectures such
as the 4th generation of Intel Xeon Scalable CPUs (codename Sapphire
Rapids) and Intel Data Center Max GPUs (or Ponte Vecchio).
Our investigation focuses on exploring the potential of mixed-precision
techniques with diverse number formats, namely, FP32, FP16, and BF16,
to accelerate CFD computations through AI-based methods. Particular
emphasis is given to validating outcomes to ensure their applicability
across a CFD motorBike simulation.
This research explores the performance/accuracy trade-off for both AI
training and simulations, including OpenFOAM solver and interference
with the trained model, across various data types available on Intel
CPUs/GPUs. We aim to provide a thorough understanding of how differ-
ent number formats impact the performance and accuracy of the DNN-
based model in various application scenarios running on modern HPC
architectures.

Keywords: HPC · CFD · AI/ML · DNN · mixed precision · CPU/GPU
· Intel architectures

1 Introduction

Computational Fluid Dynamics (CFD) has emerged as a cornerstone in under-
standing and optimizing fluid flow phenomena across various engineering disci-
plines. In recent years, the intersection of CFD with artificial intelligence (AI)
has sparked new possibilities, promising both accelerated simulations and en-
hanced accuracy. This paper addresses a crucial amalgamation of topics at the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_15

https://dx.doi.org/10.1007/978-3-031-63778-0_15
https://dx.doi.org/10.1007/978-3-031-63778-0_15


2 K. Halbiniak et al.

forefront of this intersection—floating-point number formats, mixed precision in
AI, and the utilization of Intel CPU and GPU architectures in CFD simulations.

In this paper, our focus centers on unraveling the intricacies of AI-accelerated
CFD simulations by concentrating specifically on the Intel CPU and GPU archi-
tectures. Notably, we deliberately abstain from exploring the extensively studied
NVIDIA GPU platform due to the wealth of existing literature in this domain.
By directing our attention to the Intel ecosystem, we aim to contribute a distinc-
tive perspective on mixed-precision computations, recognizing the diverse range
of processors and graphics units integral to many computational environments.

Our study leverages the capabilities of OpenFOAM, a versatile and open-
source CFD software, to conduct a comprehensive simulation of steady flow
around a motorcycle and rider. OpenFOAM’s flexibility and robust numerical al-
gorithms make it an ideal tool for capturing the intricate fluid dynamics involved
in complex scenarios. By utilizing OpenFOAM, we aim to not only investigate
the impact of mixed-precision computations and Intel CPU/GPU architectures
on the simulation accuracy and efficiency but also to showcase the practical
application of these advancements in a real-world CFD scenario.

Our paper includes a list of contributions that we have made. These contri-
butions are outlined below:

– Utilizing different number formats for improved performance and validated
accuracy. Investigating the impact of floating-point data formats — float32
(FP32 ), float16 (FP16 ), and bfloat16 (BF16 ) —in CFD AI acceleration is a
central focus of this work. We systematically explore the performance gains
and trade-offs associated with each datatype. Additionally, we emphasize
the crucial aspect of validating the accuracy of results obtained using these
datatypes to ensure their applicability across diverse engineering scenarios.

– AI acceleration of OpenFoam CFD simulation. The adaptation of AI-accele-
rated techniques in CFD simulations, particularly through the integration
of machine learning models into OpenFOAM, represents a significant stride
towards more efficient and adaptive fluid flow predictions. Our paper demon-
strates how AI can catalyze accelerating OpenFOAM simulations, leading to
quicker turnaround times without compromising accuracy.

– Verification on Intel CPU and GPU Platforms. In pursuit of a holistic un-
derstanding, our paper extends beyond theoretical considerations. We delve
into the practical implementation of our findings on Intel CPU and GPU
architectures, offering a comparative analysis of performance and accuracy.
By verifying the results on these widely used platforms, we bridge the gap
between theoretical advancements and real-world applicability.

2 Related work

In the realm of CFD simulations, the choice of data formats significantly influ-
ences both the accuracy and efficiency of computations. This work delves into
the fundamental aspects of floating-point data formats, with a particular focus
on FP32, FP16, and BF16. Additionally, we explore the application of mixed
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precision in deep learning techniques to accelerate CFD simulations, shedding
light on the trade-offs between precision and computational efficiency in the
context of AI-driven fluid dynamics simulations.

In recent years, there has been a notable surge in research exploring the
integration of AI techniques within CFD simulations. These efforts aim to en-
hance the efficiency and precision of CFD simulations [16], thereby enabling the
handling of more intricate and realistic problems [26, 10].

A prevalent approach involves leveraging machine learning algorithms to
model fluid behavior. For instance, neural networks have been successfully em-
ployed to simulate turbulence [2], forecast drag and lift forces on aircraft, and op-
timize the design of turbulent flow control devices [20]. Additionally, researchers
have delved into utilizing AI techniques for optimizing CFD simulation param-
eters and settings [15]. Methods such as genetic algorithms have been utilized
to determine the optimal mesh size and solver configurations for specific simu-
lations, with the ability to dynamically adjust these parameters based on simu-
lation outcomes [3].

Furthermore, investigations have explored employing AI techniques to ana-
lyze and interpret CFD simulation results [27]. Clustering algorithms have been
effective in grouping similar flow patterns [21], while classification algorithms
have been instrumental in identifying and categorizing various flow types.

To the best of our knowledge, there is a lack of literature exploring the usage
of the newest Intel server-class GPUs (as well as CPUs) for CFD simulations
incorporating AI techniques. In particular, in our previous works [16, 17], we
used NVIDIA V100 GPUs, while Graphcore IPU accelerator was employed in
paper [18]. Despite the growing interest in leveraging AI for CFD acceleration
and the increasing utilization of NVIDIA and AMD GPUs, there appears to be a
gap in research addressing the optimization and performance assessment of Intel
GPUs in this domain. The same conclusion is pertinent for the newest Intel data
center CPUs, introducing AMX accelerators.

3 Floating-point data formats and mixed precision in
AI-accelerated CFD simulation

Precision in deep learning models is a critical factor influencing performance,
memory utilization, and overall computational efficiency. This section provides
an in-depth analysis of different floating-point data formats, namely FP32, FP16,
and BF16, and their implications for mixed precision deep learning. By under-
standing the nuances of these formats, we aim to unravel the potential advan-
tages and challenges associated with employing mixed precision techniques in
the context of accelerating AI algorithms for CFD simulations.

The FP32 format was the backbone of deep learning for a long time [14]. It
offers a high range of representable values, making it suitable for a wide array
of AI computations, particularly in problems where accuracy is crucial. On the
other hand, FP32 requires relatively a lot of memory and computing resources.
In contrast, lower precision formats such as FP16 and BF16 sacrifice precision
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Fig. 1: Comparison of FP32, FP16 and BF16 data formats (ranges for normal-
ized values) [12]

in favor of reduced memory usage and computational demands [12], making
them an attractive choice for large-scale AI computations (e.g., training of large
models). Nonetheless, reduced precision may lead to numerical instability in
certain computations. Therefore, the optimal choice of floating-point precision
depends on the specific application and the trade-off between precision needs,
memory constraints, and computational efficiency.

Figure 1 illustrates the comparison of FP32, FP16 and BF16 data formats.
The FP32 uses 32 bits to represent a floating-point number. In this format, a
single bit is allocated for the sign, 8 bits for the exponent, and 23 bits for the
mantissa. Half-precision FP16 format utilizes 16 bits to represent floating-point
values. Within these 16 bits, a single bit is reserved for sign, 5 bits for exponent,
and 10 bits for mantissa [12]. This format offers a reduced precision compared
to FP32, making it more memory-efficient and computationally faster. However,
it comes with the cost of the smaller range of representable values [12]. The
BF16 also uses 16 bits while balancing precision and efficiency. It provides the
approximate dynamic range of FP32 format by retaining eight exponent bits
but supports only a 7-bit mantissa rather than the 23-bit [4, 12]. The BF16 is a
replacement for the FP16 format. It allows for fast conversion to and from FP32.
Unlike FP16, which usually requires special techniques, conversion from FP32
to the BF16 is performed by truncating the mantissa field [12]. This difference
can be seen in the training process, where the use of FP16 forces adding a loss
scaling process to preserve small gradient values [14]. Another advantage of BF16
is the hardware cost. By having three fewer mantissa bits, the BF16 multiplier
takes up about half of the hardware area (number of transistors) against the
FP16 unit [25]. The BF16 data format is implemented in modern Intel CPUs
and GPUs, Google’s TPU, and NVIDIA GPUs [24].

Mixed-precision is a technique used to optimize the performance of numerical
computations using a combination of lower and higher-precision data formats.
It has become a powerful optimization to accelerate AI computations, especially
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deep learning training and inference processes [12]. Employing a combination of
16-bit and 32-bit floating-point data formats in a model during training aims to
run it faster and reduce memory utilization. Additionally, accelerating the com-
putations and reducing the execution time with lower-precision number formats
allows decreasing energy consumption. By preserving certain parts of the model
in the FP32 format for numeric stability, the model will have a lower step time
and train equally as well in terms of the evaluation metrics (e.g., accuracy) [24].
Modern deep learning frameworks and libraries, such as TensorFlow or PyTorch,
provide tools to facilitate the implementation of mixed precision in both model
training and inference. Although mixed precision can be run on most hardware,
it will only speed up the computations on the devices that support mixing 16-bit
and 32-bit data formats [24].

4 Intel CPU and GPU architectures in deep learning
mixed-precision computation

As the landscape of deep learning accelerates, the choice of hardware architec-
tures plays a pivotal role in achieving optimal performance [19]. Focusing on
modern Intel’s CPU and GPU architectures, this section investigates their role
in facilitating mixed-precision computations for deep learning tasks. In partic-
ular, we investigate how the features and capabilities of the 4th Generation of
Intel Xeon Scalable CPUs (codename Sapphire Rapids) [6] and Intel Data Center
Max GPUs (codename Ponte Vecchio) [9] can be used in practice to accelerate
AI computations.

The Intel Xeon Sapphire Rapids processors revolutionize a landscape of
AI computations on general-purpose processors by introducing a built-in Intel
Advanced Matrix Extension (Intel AMX) accelerator. Intel AMX is a dedicated
hardware block of the processor core that helps optimize and accelerate deep
learning training and inferencing workloads relying on matrix operations [6]. It
allows running AI computations directly on the CPU instead of offloading them
to a discrete accelerator (e.g., GPU). The Intel AMX architecture consists of
two components [6]: (i) tiles consisting of two-dimensional registers (each 1KB
in size) that store large chunks of data; (ii) Tile Matrix Multiplication (TMUL)
which is an accelerator engine attached to the tile that performs AI matrix
multiplication.

The AMX accelerator supports INT8 (8-bit integer) and BF16 data formats.
While the first is a data type used for inferencing, the second can be used for both
training and inference. Using the AMX, Intel Sapphire Rapids-based processors
can quickly pivot between optimizing the AI workloads and general computing.
In practice, the programmers can code AI computations to take advantage of the
AMX instruction set and implement non-AI functionality based on the processor
instruction set architecture [6].

Intel Data Center GPU Max is a series of general-purpose discrete GPUs,
designed for breakthrough performance in data-intensive computing models used
in AI and HPC [9]. The GPUs are available as PCIe cards and OpenCompute

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_15

https://dx.doi.org/10.1007/978-3-031-63778-0_15
https://dx.doi.org/10.1007/978-3-031-63778-0_15


6 K. Halbiniak et al.

Accelerator Modules to offer remedies for servers with high GPU density. Intel
Data Center GPUs are based on the Xe HPC architecture with a compute-
focused, programable, and scalable element named the Xe-core [9]. Each core
consists of 512-bit wide vector engines, 4096-bit wide matrix engines called Intel
Xe Matrix eXtensions (Intel XMX), L1 data cache and shared local memory [9].
The vector engines of Xe-core support FP64, FP32 and FP16 vector compu-
tations. Simultaneously, the XMX is engineered to accelerate AI computations
and provides support for TF32 (19-bit tensor float format), BF16, FP16 and
INT8 data formats.

The Intel Data Center GPUs are built upon the Xe HPC Stacks, which are
made up of various tiles stacked on top of each other within a single package.
The Xe HPC Stack includes of the Xe-core Tile (Compute Tile), L2 Cache Tile,
Base Tile (PCIe paths, media engine, etc.), High Memory Bandwidth Tile, Xe
Link Tile for scale-up and scale-out, and the Embedded Multi-Die Interconnect
Bridge for communication between Xe HPC Stacks [9]. These components all
reside within a Multi Tile Package. The top-of-the-line Intel Data Center Max
1550 GPU contains two Xe HPC Stacks with 64 Xe-cores, 204MB of L2 cache
and 64GB HBM2e each. This Intel GPU offers the peak performance of 832
TFLOP for BF16 and 52 TFLOPS for both FP64 and FP32 computations [9].

To leverage Intel CPUs/GPUs architectures in deep learning mixed-precision
computation, the programmers may use the TensorFlow framework together with
Intel Extension for TensorFlow (ITEX in short). ITEX is a heterogeneous, high-
performance, deep-learning extension plugin based on the TensorFlow Pluggable
Device interface [7]. It is designed to optimize the performance of TensorFlow-
based applications on Intel computing architectures. The ITEX provides a fea-
ture called Advanced Auto Mixed Precision (AMP in short), which allows users
to enable mixed-precision computations. The AMP is similar to stock Tensor-
Flow Auto Mixed Precision but offers better usage and performance on Intel
CPUs and GPUs [8]. Listing 1.1 shows the snippet of code that enables mixed-
precision computing on Intel CPUs and GPUs with ITEX. The presented code
sets the global policy leading to the mixed-precision computations based on
BF16 data format. As a result, it allows AI computations to be performed using
AMX and XMX instruction sets on Intel Xeon Sapphire Rapids CPUs and Intel
Data Centers Max GPUs, respectively. The programmer can easily change the
mixed-precision policy to FP16 data format by replacing itex.BFLOAT16 with
itex.FLOAT16.

Beyond specifying the data format used in mixed-precision computing, the
AMP also allows controlling operators that can be converted to lower-precision
data types. TensorFlow provides Allow, Deny, Clear, and Infer list of operators to
classify operators based on the operation’s numerical safety [5, 7]. The numerical
safety corresponds to how the accuracy of the model is affected by using lower
precision. The exact lists could be found in auto_mixed_precision_lists.h
file in the TensorFlow GitHub repository [23]. Listing 1.2 presents the snippet
of code corresponding to the usage of the AMP to add and remove operators
from the TensorFlow lists. This presented code adds the Conv2D operator to

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_15

https://dx.doi.org/10.1007/978-3-031-63778-0_15
https://dx.doi.org/10.1007/978-3-031-63778-0_15


Mixed Precision in AI-Accelerated CFD Simulation on Intel CPU/GPU 7

the Deny list which holds operations considered to be numerically dangerous
in lower precision [5]. Simultaneously, the Conv2D operator is removed from the
list of operators considered as numerically safe for execution (Allow list). The
modification of the remaining lists is analogous. It is important to note that it
is not allowed for the same operator to be in more than one list [24].

1 import intel_extension_for_tensorflow as itex
2

3 amp_options = itex.AutoMixedPrecisionOptions ()
4 amp_options.data_type = itex.BFLOAT16
5

6 graph_options = itex.GraphOptions(
auto_mixed_precision_options=amp_options)

7 graph_options.auto_mixed_precision = itex.ON
8

9 config = itex.ConfigProto(graph_options=graph_options)
10 itex.set_config(config)

Listing 1.1: Activation of Advanced Automatic Mixed Precision on Intel CPUs
and GPUs using Intel Extension for TensorFlow

1 import intel_extension_for_tensorflow as itex
2

3 amp_options = itex.AutoMixedPrecisionOptions ()
4 amp_options.denylist_add= "Conv2D"
5 amp_options.allowlist_remove = "Conv2D"

Listing 1.2: Modification of TensorFlow lists of operators using advanced
Automatic Mixed Precision of Intel Extension for TensorFlow

5 AI-accelerated CFD simulation

5.1 CFD simulation of steady flow around a motorcycle and rider

Applying the basic approaches discussed in the preceding sections, we shift our
focus to a practical application — CFD simulation of steady flow around a mo-
torcycle and rider. This job uses OpenFOAM [1] to calculate the steady flow.
The simpleFoam solver is used for this case, performing steady-state, incom-
pressible Reynolds-Averaged Navier-Stokes calculations (RANS) over the mesh.
RANS is a widely used approach in CFD for simulating turbulent flows. In fluid
dynamics, the Navier-Stokes equations describe the motion of fluid, taking into
account viscosity, pressure, and velocity.

In this study, we aim to harness the power of AI to streamline and enhance
the evaluation of crucial fluid dynamic parameters, specifically velocity U and
pressure p, within the framework of RANS. By integrating AI methodologies
into the evaluation process, we seek to improve the accuracy and efficiency of
estimating U and p fields.
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Fig. 2: The idea of integrating the AI module with CFD simulation, where a)
presents standalone CFD simulation, b) idea of time reduction by combining
CFD simulation with AI, c) the mechanism of management of the CFD simula-
tion by AI supervisor.

5.2 Integration of AI acceleration with CFD solver

This study exploits the methodology proposed in our previous work [17] aimed
at enhancing CFD simulations by integrating two main components: the AI su-
pervisor and the AI accelerator. During the inference stage, the AI accelerator
uses the previously trained AI model to predict the simulation results based
on a relatively small number of iterations generated by the CFD solver. The AI
supervisor dynamically switches between traditional CFD simulation and AI pre-
dictions, while the AI accelerator module expedites the process by extrapolating
simulation results. Initially, the traditional CFD solver runs for a predetermined
number of iterations to establish initial data points, subsequently utilized by a
machine learning model to forecast fluid flow dynamics. Upon generating out-
put, the AI supervisor directs the CFD solver to resume simulation based on the
predicted data, iteratively alternating between CFD and AI components until
convergence is reached. The convergence threshold hinges on factors such as the
complexity of simulated flow dynamics and the quality of training data. The idea
of our method is presented in Fig. 2.

The AI supervisor’s role in this methodology is pivotal, discerning data pat-
terns within the simulation to gauge if a steady state has been attained. By
analyzing CFD simulation output, it determines whether to invoke the AI ac-
celerator or conclude the simulation. The specifics regarding the AI model, in-
cluding its architecture and training methodology, are presented in our prior
publications [17, 11]. The model primarily comprises convolutional layers, form-
ing the backbone of its architecture. These convolutional layers play a central
role in extracting features from the input data, enabling the AI model to learn
and predict fluid flow dynamics effectively. All the operators within the model
can be safely converted and used with lower precision.
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5.3 Training dataset

Machine learning algorithms, trained on vast datasets generated through RANS
simulations, are employed to infer and optimize the estimation of U and p param-
eters. These datasets are carefully constructed, with each simulation representing
various operational conditions, such as different motorbike speeds, alongside ad-
ditional parameters like ambient temperature, and turbulence intensity. In our
case, 50 simulations of a motorbike at different speeds were conducted, each
comprising a window of 5 consecutive iterations. They are spaced at intervals
of 20 timesteps, with steady-state conditions achieved after 500 iterations. To
ensure robustness and diversity, 500/20 = 25 samples are extracted from each
simulation, resulting in the generation of 20 ∗ 25 = 1250 samples in total.

6 Experimental results

6.1 Testing Platforms

In the tests, we use the following computing platforms:

1. a server with the two 4-th generation 56-core Intel Xeon Platinum 8480
CPUs and 512 GB DDR5 main memory;

2. a server with two 32-core Intel Xeon Platinum 8462Y CPUs, 1024 GB DDR5
main memory and four Intel Data Center Max 1550 GPUs.

Both servers are empowered with TensorFlow 2.13.0, Intel Extension for Tensor-
Flow* 2.13.0.1 and Intel oneAPI Base Toolkit 2023.2.0. The computing platform
with Intel Xeon 8480 CPUs has installed Python 3.9.16, while the server with
Intel Max GPUs uses Python 3.11.5.

6.2 Accuracy and performance results

Table 1 shows the execution times TCPU and TGPU obtained for the AI training
workloads running on two Intel Xeon 8480 CPUs and a single Intel Data Center
Max 1550 GPU. In the benchmarks, we focus on pure FP32 and the mixed-
precision training with BF16 and FP16 formats, respectively. In the case of

Table 1: Execution times (in seconds) and speedups achieved for AI training
with different data formats running on two Intel Xeon 8480 CPU and a single
Intel Data Center Max 1550 GPU

Data format
Intel Xeon Intel Max

SGPU8480 CPUs 1550 GPU
TCPU SFP32 TGPU SFP32

FP32 2326 1 408 1 5.7x
BF16 1544 1.51x 238 1.71x 6.48x
FP16 — — 430 0.95x —
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Intel GPU, the AI workloads are executed using a single Compute Tile from
both available in the accelerator. This is because the TensorFlow environment,
by default, treats every Intel Max 1550 GPU tile as a TensorFlow individual
device. To maximize the performance of training, different batch sizes for Intel
Xeon CPUs and Intel Max GPU were evaluated.

Intel Extension for TensorFlow employs OpenMP to parallelize the computa-
tions across cores/threads of Intel CPUs. To maximize the performance of the AI
training, we also investigate different setups of OpenMP environment variables.
Among the considered environment variables are [23]:

– OMP_NUM_THREADS which sets the number of OpenMP threads;
– KMP_AFFINITY which bind OpenMP threads to physical cores;
– KMP_BLOCKTIME which sets the time (in milliseconds) that a thread should

wait, after completing the execution of a parallel region, before sleeping.

When benchmarking Intel CPUs, these variables were set as follows:

– OMP_NUM_THREADS=112;
– KMP_AFFINITY=fine,compact,1,0;
– KMP_BLOCKTIME=0.

The performance results presented in Table 1 are obtained for the training
process with batch sizes equal to 64 and 8 for Intel Xeon 8480 CPUs and Intel
Data Center Max 1550 GPU, respectively. Besides the execution times, the ta-
ble presents also speedup SFP32 obtained against FP32 data format. The last
column of Table 1 illustrates the speedup SGPU = TCPU/TGPU obtained for
Intel Max 1550 GPU against two Intel Xeon 8480 CPUs. The performance re-
sults in Table 1 indicate significant benefits of using mixed-precision training
based on BF16 number format. The speedup achieved against the pure FP32
AI computations is about 1.5 and 1.7 times for Intel Xeon CPUs and Intel Max
GPU, respectively. The Advanced Auto Mixed Precision feature does not sup-
port mixed-precision FP16 AI computations on Intel processors [23]. Thus, we
are not able to measure the performance of mixed-precision training for this data
format. At the same time, the utilization of FP16 during training on Intel Max
GPU yields even longer execution time than FP32 data format. The explanation
for unexpected low performance may be the cost of casting tensors from FP32
to FP16, or vice versa. In some cases (especially for operations on huge tensors),
the casting cost surpasses the performance benefit of using low precision [5].

Based on Table 1, we conclude that Intel Data Center Max 1550 GPU outper-
forms two Intel Xeon 8480 CPUs. Already for FP32 computations, a single tile
of Intel GPU allows executing the training process 5.7 times faster. Even greater
performance gain is notable for FP16, where the Intel GPU allows accelerating
the AI computations about 6.5 times against two Intel CPUs.

Fig. 3 displays the mean square error (MSE) for CFD simulations using vari-
ous configurations of the CFD solver in conjunction with the AI accelerator. The
MSE serves as a crucial metric indicating the deviation between predicted and
actual values during the convergence process toward the steady state. This figure
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Fig. 3: MSE comparison and the number of iterations required to execute by the
CFD solver to achieve the steady state with the AI accelerator.

provides insights into the number of iterations required by each data precision
to meet the designated MSE threshold, thereby reaching the desired accuracy
and correlation levels.

Each configuration aims to achieve a specific MSE threshold predetermined
by our AI supervisor. This threshold is selected to ensure that the result accuracy
surpasses 97%, and the Pearson correlation coefficient exceeds 0.98 compared to
the CFD standalone version.

Table 2 compares accuracy metrics for various configurations of the CFD
solver integrated with the AI accelerator executed on both CPU and GPU plat-
forms. It outlines the number of iterations required for convergence, MSE, Pear-
son correlation coefficient, and accuracy percentages for each configuration. No-
tably, it highlights the trade-offs between precision levels provided with various
data formats (FP16, BF16, and FP32 ) for the studied platforms (CPU and
GPU) in terms of computational model accuracy.

The last row of Table 2 represents the speedup determined as the ratio of
iterations for the standalone CFD solver and AI-accelerated simulation. This
way of calculating the speedup is justified by the fact that the execution time
for performing CFD solver iterations is much longer than the execution time of
AI predictions.

Fig. 4 illustrates the number of iterations required by the CFD solver in
conjunction with an AI accelerator to achieve a steady state during application
execution. It is important to underline that the CFD solver’s computational load
significantly influences the overall execution time of the application.
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Table 2: Accuracy comparison and the number of iterations required to execute
by the CFD solver to achieve the steady state with the AI accelerator

CPU BF16 AMX CPU FP32 GPU BF16 GPU FP16 GPU FP32
Iterations 45 35 20 95 20

MSE 19.32 19.34 19.61 19.24 18.54
Pearson 0.983 0.983 0.983 0.986 0.984

Accuracy[%] 96.9 96.9 96.9 96.9 97.0
Speedup 11.1 14.3 25.0 5.3 25.0

Fig. 4: The number of iterations required to execute by the CFD solver to achieve
the steady state with the AI accelerator.

Utilizing the FP32 precision is the most efficient approach for the CPU.
Despite FP32 requiring a longer inference time compared to BF16, when using
the trained model, it effectively reduces the number of CFD solver iterations.
This reduction in iterations contributes to faster convergence towards the steady
state, outweighing the slower inference speed.

When employing the GPU, BF16 and FP32 emerge as the preferred precision
choice. With BF16, the steady state can be reached within the same number
of iterations as FP32, making it a favorable option. On the contrary, FP16
for the GPU requires 95 iterations of the solver, making it the least efficient
configuration due to its extended computational time.

7 Conclusion

In this paper, we investigate the benefits of using modern server-class Intel CPU
and GPU architectures for AI-accelerated simulations. This study focuses on
unveiling the potential of using mixed-precision arithmetic based on FP32, FP16,
and BF16 data formats to accelerate CFD computations through AI techniques.
We aim to not only assess the impact of the mixed-precision approach on the
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performance of computations, but also on the simulation accuracy based on the
motorBike use-case scenario.

The performance results achieved in the paper show the performance ben-
efits of using mixed-precision on both Intel Xeon 8480 CPUs and Intel Data
Center Max 1550 GPUs for model training. The utilization of BF16 format al-
lows accelerating the training process about 1.5 and 1.7 times against pure FP32
computations for Intel CPUs and GPU, respectively. At the same time, the FP16
mixed-precision training workloads give even longer execution time than in the
case of FP32 data format. An additional conclusion resulting from the bench-
marks is that a single tile of Intel Data Center Max 1550 GPU outperforms two
Intel Xeon 8480 CPUs during the training of DNN models. In fact, Intel Max
GPU allows executing the training process 5.7 and 6.5 times faster against two
Intel Xeon CPUs, for FP32 and BF16 data formats, respectively.

The results achieved for the whole simulation underscore the nuanced bal-
ance between computational performance and model accuracy, as configurations
diverge across precision levels (FP16, BF16, and FP32 ) and platforms (CPU
and GPU). Specifically, for the CPU, the most efficient configuration emerges as
FP32 due to its ability to achieve convergence with fewer iterations of the CFD
solver compared to other precision types. For the GPU, the optimal configura-
tions are BF16 and BF32 that provide a comparable performance.

The presented analysis focuses on the convergence behavior of the CFD solver
accelerated with AI. The MSE error serves as a crucial indicator of convergence,
with each configuration aiming to meet a specific threshold determined by the
AI supervisor. This threshold is carefully selected to ensure the result accuracy
of about 97% and the Pearson correlation coefficient surpassing 0.98 compared
to the standalone CFD version.

In our future work, we plan to investigate the differences observed in the ex-
periments (see Figure 2 and Figure 4) when implementing the simulation on Intel
CPU and GPU. These differences occur for both the FP32 and BF16 data for-
mats, and are reflected in the increased number of iterations on CPU compared
to GPU. We guess that the reason is the aggressive performance optimizations
[22] performed by TensorFlow. This optimization is forced on the CPU by its
oneDNN option, which is set by default for Intel CPUs (and can be turned off).
This option is not used for Intel GPUs. The side effect of using TensorFlow
with oneDNN optimizations are changes in the execution order of operations
and greater sensitivity to floating-point round-off errors [22]. Consequently, this
improves the performance at the cost of the reduced accuracy, which leads to an
increased number of iterations during the inference stage.

Another direction of future work includes investigating the usage of mixed-
precision on the newest NVIDIA H100 and H200 GPUs as providing innovative
hardware features [13] compared to previous Volta and Ampere GPUs. We also
plan to incorporate more application examples to show the benefits of using the
mixed-precision approach for CFD simulations.
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