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Abstract. Single-layer shallow water models have been widely used for
simulating shallow water waves over both fixed and movable beds. How-
ever, these models can not capture some hydraulic features such as small
eddy currents and flow recirculations. This study presents a novel numer-
ical approach for coupling multi-layer shallow water models with elas-
tic deformations to accurately capture complex recirculation patterns in
wind-driven flows. This class of multi-layer equations avoids the com-
putationally demanding methods needed to solve the three-dimensional
Navier-Stokes equations for free-surface flows while it provides stratified
flow velocities since the pressure distribution is still assumed to be hydro-
static. In the current study, the free-surface flow problem is approximated
as a layered system made of multiple shallow water equations of different
water heights but coupled through mass-exchange terms between the em-
bedded layers. Deformations in the topography are accounted for using
linear elastostatic systems for which an internal force is applied. Transfer
conditions at the interface between the water surface and the topogra-
phy are also developed using frictional forces and hydrostatic pressures.
For the computational solver, we implement a fast and accurate hybrid
finite element/finite volume method solving the linear deformations on
unstructured meshes and the nonlinear flows using well-balanced dis-
cretizations. Numerical results are presented for various problems and
the computed solutions demonstrate the ability of the proposed model
in accurately resolving wind-driven flows over deformable topography.

Keywords: Multi-layer shallow water · Elasticity · Finite volume method
· Finite element method · Topography deformation · Wind-driven flows.

1 Introduction

Free-surface models in hydraulic applications have gained an increasing interest
during the last decades, see for example [13]. Ranging from flood forecasting
[20] to monitoring hydraulic infrastructures such as dams and rivers [22]. Water
free-surface flows under the influence of gravity can be modelled using the well-
established shallow water equations [3]. However, the main drawback of these
equations lies in the lack of capturing some crucial physical dynamics in the
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vertical motion of water flow [1]. Moreover, under the impact of topography and
wind forces, the hydrodynamics can be very complex and numerical modelling
of such problems would require the use of the full three-dimensional Navier-
Stokes equations [6]. Recently, multi-layer shallow water models have attracted
enormous attention and become an important tool to capture many hydraulic
problems such as the flow recirculations [4]. The multi-layer shallow water equa-
tions have also been subject of various research studies and have been used for
modelling a wide variety of free-surface flows where water flows interact with the
bed topography [21] and wind stresses [5]. For example, researchers in [12] have
implemented the multi-layer model to study nonlinear internal wave propagation
in shallow water flows, whereas in [10], authors have experimentally investigated
the multi-layer flow field mapping in a small scale shallow water reservoir by
coastal acoustic tomography. On the other hand, the incompressible smoothed
particle hydrodynamics approach has been implemented in [14] to model dam-
break flows over movable beds.

Different numerical methods were implemented in the literature to model
the multi-layer shallow water flows. In [22], the finite difference method is used
to solve a multi-layer model with non-flat bottom topography on both fixed
and adaptive moving meshes [8]. A well-balanced Runge-Kutta discontinuous
Galerkin method has also been proposed in [11] for the numerical solution of
multi-layer shallow water equations with mass exchange and non-flat bottom
topography. In recent years, a great amount of research effort has been devoted
to developing consistent mathematical models and efficient numerical solvers for
the interaction between topography deformation and water waves. In practice,
modelling of wave flows by static deformation is based on two components in-
cluding the description of topography deformation and the governing equations
of the water flow. In [18, 1], we have used the conventional single-layer shallow
water equations for modelling flows over deformable beds. These models per-
formed very well for simple flows such as dam-break and stream-flow problems
as well as water waves generated by deformations on the topography. However,
these models would fail to adequately represent flow circulations and do not
account for the influences of wind effect and water layer densities in their formu-
lations. Therefore, the present study is an improvement to our previous research
in [1, 18] using the multi-layer shallow water equations. In this work, the govern-
ing equations consist of the one-dimensional nonlinear multi-layer shallow water
equations for the water flow and a two-dimensional linear elastostatic model
for the deformation of topography. In addition to the internal stress applied
to the bed, deformations in the topography can also be caused as a result of
the hydrostatic pressure distribution and the frictional force obtained from the
shallow water flow. These equations are fully coupled and solved simultaneously
in time using transfer conditions at the interface between the water flow and
the topography. This allows for hydrostatic pressure and friction forces to be
implemented for the elastostatic equations whereas the deformed topography is
accounted for in the multi-layer shallow water equations through the bathymet-
ric forces. To solve the considered system we implement a well-balanced finite
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Wind-driven flows over deformable topography 3

Fig. 1: Illustration of a coupled system for wind-driven flows over deformable
topography.

volume method for the multi-layer shallow water system and a stabilized finite
element method for linear elasticity equations. This hybrid finite element/finite
volume solver uses unstructured/structured meshes, respectively. The interfacial
forces are sampled from the hydrostatic pressure and applied on the topogra-
phy to be used in the stress analysis. To demonstrate the performance of the
hybrid finite volume/finite element method, computational results obtained for
wind-driven flows over deformable topography are presented. The effects of wind
velocity, number of layers on the flow field and stress distributions are also inves-
tigated in this study. The rest of this paper is organized as follows: Formulation
of mathematical models for the coupled system is presented in section 2. Sec-
tion 3 is devoted to the implementation of the numerical methods used for the
solution procedure. Numerical results and examples for wind-driven flows over
deformable topography are presented in section 4. Concluding remarks are sum-
marized in section 5.

2 Governing equations for wind-driven flows over
deformable topography

Considering the system illustrated in Figure 1, the proposed coupled system
consists of the two-dimensional constitutive relations of an isotropic elastic bed
and the multi-layer shallow water equations. In elasticity theory [9], the bed
deformation equations can be written as a relationship between the stress and
strain in terms of the Lamé parameters as

∇ · σ = f , σ = λtr(ϵ)I + 2µϵ, (1)

where σ is the stress tensor, f the body force per unit area, λ the first Lamé
parameter (related to the bulk modulus), tr(ϵ) the trace of the strain tensor, I
the identity matrix, µ the second Lamé parameter (related to the shear modulus).
The displacement vector is denoted by u = (ux, uz)

⊤and ϵ the infinitesimal strain
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tensor defined by

ϵ =
1

2

(
∇u+ (∇u)⊤

)
. (2)

Combining equations (1) and (2), one obtains

σ = λ(∇ · u)I + µ
(
∇u+ (∇u)⊤

)
. (3)

The system is equipped with the following boundary conditions

σ = σc, u = 0, on ∂Ω, (4)

where ∂Ω is the fixed boundary of the topography domain Ω and σc is a pre-
scribed stress. In the current study, the constitutive relation is defined as

σ = D ϵ, (5)

where the stress vector σ and the constitutive matrix D for a plane-strain case
are given as

σ =

 σx

σz

τxz

 , D =
E

(1 + ν)(1− 2ν)


1− ν ν 0

ν 1− ν 0

0 0
1− 2ν

2

 ,

with E is the Young’s modulus characterising the bed material and ν the Pois-
son’s ratio, the two Lamé parameters are given as

λ =
E.ν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

For the wind-driven flows, we assume M layers of water bodies bounded at
the bottom by the deformable topography and a free-surface subjected to wind
stresses as illustrated in Figure 1. For simplicity in the presentation, the govern-
ing equations for the multi-layer shallow water model considered in the present
work read as

∂W

∂t
+

∂F(W)

∂x
= Q(W) +R(W), (6)

where W is the vector of conserved variables, F the vector of flux functions, Q
and R are the vectors of source terms defined by

W =



H

Hv1

Hv2

...

HvM



, F(W) =



M∑
α=1

lαHvα

Hv21 +
1

2
gH2

Hv22 +
1

2
gH2

...

Hv2M +
1

2
gH2



, Q(W) =



0

−gH
∂Z

∂x

−gH
∂Z

∂x

...

−gH
∂Z

∂x



,
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R(W) =



0

1

l1

(
S1 − gn2

b

v1 |v1|
H1/3

+ 2ξ
v2 − v1

(l2 + l1)H

)
1

l2

(
S2 + 2ξ

v3 − v2
(l3 + l2)H

− 2ξ
v2 − v1

(l2 + l1)H

)
...

1

lM−1

(
SM−1 + 2ξ

vM − vM−1

(lM + lM−1)H
− 2ξ

vM−1 − vM−2

(lM−1 + lM−2)H

)
1

lM

(
SM − σ2ρa

w |w|
H

− 2ξ
vM − vM−1

(lM + lM−1)H

)



. (7)

where, vα(t, x) is the local water velocity for the αth layer, Z(x) the bed to-
pography, g the gravitational acceleration, H(t, x) the water height of the whole
flow system, we refer the reader to [11] for the more details. In (7), the source
term Sα represents the momentum exchanges between the water layers defined
as

Sα = uα+ 1
2
Mα+ 1

2
− uα− 1

2
Mα− 1

2
, (8)

where the mass exchange terms Mα− 1
2
and Mα+ 1

2
are evaluated using

Mα− 1
2
=


0, α = 1,

α∑
i=1

∂ (hiui)

∂x
− li

N∑
j=1

∂ (hjuj)

∂x

 , α = 2, 3 . . . , N,
(9)

and

Mα+ 1
2
=


α∑

i=1

∂ (hiui)

∂x
− li

N∑
j=1

∂ (hjuj)

∂x

 , α = 1, 2, . . . , N − 1,

0, α = N,

(10)

respectively. Here, the interface velocities uα− 1
2
and uα+ 1

2
are computed accord-

ing to the sign of mass-exchange terms in (9) and (10) as

uα− 1
2
=


uα−1, Mα− 1

2
≥ 0,

uα, Mα− 1
2
< 0,

uα+1/2 =


uα, Mα+ 1

2
≥ 0,

uα+1, Mα+ 1
2
< 0.

(11)

Note that a zeroth-order approximation of the 2(M − 1) barotropic eigenvalues
associated with (M − 1) interfaces gives

λ
±,α+ 1

2
int = v±

√√√√1

2
g

M∑
α=1

hα+O (|vβ − v|)β=1,...,M , α = 1, 2, . . . ,M−1. (12)
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3 Hybrid finite element/finite volume solver

To solve the above system we consider a finite element method for the two-
dimensional elasticity equations. The starting point for the finite element method
is the domain discretization. In the present study, we adopt the finite element
method proposed in [1] using an unstructured mesh with quadratic triangular
elements. Hence, the variational formulation of (1)-(2) consists of forming the
inner product of equation (1) by a vector test function ϕ and integrate over the
domain Ω ∫

Ω

(∇ · σ) · ϕ dx =

∫
Ω

f · ϕ dx, (13)

where x = (x, z)⊤ and n = (nx, nz)
⊤ is the outward unit normal on ∂Ω. Inte-

grating the system by parts, since ∇ ·σ contains second-order derivatives of the
primary unknown u∫

Ω

(∇ · σ) · ϕ dx =

∫
Ω

σ : ∇ϕ dx−
∮
∂Ω

(σ · n · ϕ) ds, (14)

where the colon operator is the inner product between tensors (summed pairwise
product of all elements). Here, σ ·n is the traction or stress vector at the bound-
ary, and is often prescribed as a boundary condition. Using that the traction
stress vector T = σ · n, thus we obtain∫

Ω

σ · ∇ϕ dx =

∫
Ω

f · ϕ dx+

∮
∂Ω

T · ϕ dx, (15)

which can be reformulated in a vector form as∫
Ω

ϕ̂ · σ dx =

∮
Ω

ϕ⊤ · T dx+

∫
Ω

ϕ⊤ · f dx, (16)

where ϕ = (ϕx, ϕz)
⊤
, T = (T x,T z)

⊤
and ϕ̂ =

(
∂ϕx

∂x
,
∂ϕz

∂z
,
∂ϕx

∂z
+

∂ϕz

∂x

)⊤

.

To solve the weak form (16) with the finite element method, the domain Ω is
discretized into a set of elements where the solution is approximated in terms of
the nodal values Uj and the polynomial basis functions Ψj(x, z) as

u(x, z) =

N∑
j=1

UjΨj(x, z), (17)

where N is the number of nodes. To solve the fully discretized problem, the
elementary matrices are assembled into a global system of equations

Ku = f , (18)

where K is the global stiffness matrix, u is the nodal displacement vector and f
is the force vector.
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Next, the multi-layer shallow water system with mass exchange was imple-
mented for the water perturbations. For the spatial discretization of (6), we
discretise the spatial domain into control volumes [xi−1/2, xi+1/2] with uniform
size ∆x = xi+1/2 − xi−1/2, xi−1/2 = i∆x and xi = (i + 1/2)∆x is the center of
the control volume. Integrating the equation (6) with respect to space over the
control volume [xi−1/2, xi+1/2], we obtain the following semi-discrete equations

dWi

dt
+

Fi+1/2 −Fi−1/2

∆x
= Q(Wi) +R(Wi), (19)

where Wi(t) is the space-averaged approximation of the solution W in the con-
trol volume [xi−1/2, xi+1/2] at time t, i.e.,

Wi(t) =
1

∆x

∫ xi+1/2

xi−1/2

W(t, x) dx,

and Fi±1/2 = F(Wi±1/2) are the numerical fluxes at x = xi±1/2 and time t. Here,
the time integration of (19) is performed using a second-order splitting method
studied in [19]. Thus, to integrate the equations (6) in time we divide the time
interval into subintervals [tn, tn+1] with length ∆t = tn+1 − tn for n = 0, 1, . . . .
We also use the notation Wn to denote the value of a generic function W at time
tn. The considered operator splitting method consists of three stages as presented
in [2]. The spatial discretization (19) is complete when a reconstruction of the
numerical fluxes Fi±1/2 and source terms Q(Wi) and R(Wi) are chosen. In the
current work, the finite volume method of characteristics studied in [5] has been
implemented and it can be rearranged in a compact form as

∂Uα

∂t
+ Uα

∂Uα

∂x
= Sα (U) , α = 0, 1, . . . ,M, (20)

where qα = Hvα is the water discharge, U = (U0, U1, . . . , UM )
T
, S (U) =

(S0, S1, . . . , SM )
T
with

U =



H

q1

q2

...

qM


, S(U) =



−
M∑
α=1

lαH
∂vα
∂x

−Hv1
∂v1
∂x

− gH
∂

∂x
(H + Z)

−Hv2
∂v2
∂x

− gH
∂

∂x
(H + Z)

...

−HvM
∂vM
∂x

− gH
∂

∂x
(H + Z)


,

and the advection velocity Uα is defined as

Uα =


M∑
β=1

lβvβ , if α = 0,

vα, if α = 1, 2, . . . ,M.

(21)
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Fig. 2: Illustration of the finite element and finite volume nodes used for coupling
conditions at the interface.

The characteristic curves associated with the equation (20) are solutions of the
initial-value problems

dXα,i+1/2(τ)

dτ
= Uα,i+1/2

(
τ,Xα,i+1/2(τ)

)
, τ ∈ [tn, tn+1] ,

(22)
Xα,i+1/2(tn+1) = xi+1/2, α = 0, 1, . . . ,M.

where Xα,i+1/2(τ) are the departure points at time τ of a particle that will arrive
at the gridpoint xi+1/2 in time tn+1. In our simulations we used the third-order
Runge-Kutta method for the solution of the initial-value problems (22).

3.1 Coupling conditions at the interface

For the proposed model, coupling conditions are required to be transferred on
the interface Γ at each time step between both the multi-layer and elasticity
models. As illustrated in Figure 1, the finite element and finite volume nodes on
the interface do not coincide in general and therefore we employ a cubic spline
interpolation to interchange the solutions between the two classes of nodes. At
each time step, coupling conditions are required on the interface to transfer in-
formation between both models. In the present work, the deformed finite element
nodes on the interface are used to reconstruct the bed Z for the shallow water
equations (6). This bed profile is used in the finite volume solution of the flow
system to obtain the water depth hn+1 and the water velocity vn+1. On the
interface, the horizontal x-direction and vertical z-direction forces are sampled
from the water flow. Here, at each time step, the finite volume solutions of the
multi-layer model are used to calculate the hydrostatic pressure and the friction
distributions. These are then used to sample the horizontal and vertical forces
at the interface to be used in the finite element solutions of the elasticity model.
Thus, the horizontal force fx in the x-direction is calculated using the friction
term as

fx = −gn2
b

vn+1
∣∣vn+1

∣∣
(hn+1)

1
3

. (23)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_14

https://dx.doi.org/10.1007/978-3-031-63778-0_14
https://dx.doi.org/10.1007/978-3-031-63778-0_14


Wind-driven flows over deformable topography 9

Algorithm 1 Hybrid finite element/finite volume method.

Require: E, ν, ρw, nb, h, u, Cr, T .
1: Assemble the stiffness matrix K for the elastostatic system using the finite element

method (16).
2: Assemble the force vector f for the elastostatic system using the finite element

method (1)-(2).
3: Solve the linear system (16) for the displacement in the computational mesh.
4: Solve the linear system (2) for the elastic strain in the computational mesh.
5: Solve the linear system (5) for the stresses distributions in the computational mesh.
6: Update the displacement of the finite element nodes on the interface.
7: Solve the shallow water equations using:

8: for each control volume
[
xi, xi+ 1

2

]
do

9: Compute the numerical fluxes Fn
i± 1

2
.

10: Discretize the source term Qi using the well-balanced discretization.
11: Compute the solution in the first stage of the splitting Wn+1

i .
12: Compute the solution in the second and third stages of the splitting Wn+1

i .
13: end for
14: Compute the horizontal force fx using the bed friction according to (23).
15: Compute the vertical force fz using the hydrostatic pressure according to (24).
16: Update the time step ∆t according to the CFL condition (26).
17: Overwrite tn ←− tn +∆t and go to step 2.

Similarly, the vertical force fz in the z-direction is computed at each time step
using the variation in the hydrostatic pressure as

pn+1 = −ρg
hn+1 − hn

∆tn
. (24)

Therefore, the vertical force fz at each node on the interface Γ is reconstructed
using the integral form as [15]

f (1)
z =

∫ 1

−1

−1

2
ξ (1− ξ) pn+1 ℏ

2
dξ ≈ ℏ

6
pn+1,

f (2)
z =

∫ 1

−1

(
1− ξ2

)
pn+1 ℏ

2
dξ ≈ 2ℏ

3
pn+1, (25)

f (3)
z =

∫ 1

−1

1

2
ξ (1 + ξ) pn+1 ℏ

2
dξ ≈ ℏ

6
pn+1,

where ℏ is the length of the edge in the considered triangular element on the

interface. Hence, once the element forces f
(1)
z , f

(2)
z and f

(3)
z are calculated ac-

cording to (25), the global force fz to be applied in the z-direction is calculated
by accumulating the elemental forces on the overlapped nodes. Note that it is
easy to verify that the element forces (25) satisfy the relation

f (1)
z + f (2)

z + f (3)
z = ℏpn+1.
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In present work, we refer to our approach as fully coupled, because at each time
step the solution of the finite volume method depends on the solution of finite
element method and vice versa. While the discretized systems are not assembled
into a monolithic system, the coupling is achieved through mutual dependencies
between these separate solvers, these steps are described in Algorithm 1.

4 Computational results

The main goals of this section are to illustrate the numerical performance of
the techniques prescribed in the previous sections and verify numerically their
capability to capture the wind circulation and accurately calculate the stresses
induced in the deformable beds. In all the computations reported herein, the
Courant number is set to Cr = 0.7 and the timestep size ∆t is adjusted at each
time step according to the following CFL stability condition

∆t = Cr
∆x

max
α=1,...,M

(
|λn

α|
) , (26)

where M is the number of layers, and λn
α is the corresponding eigenvalues in

each layer given in (12).

4.1 Accuracy results

In this example, we investigate the accuracy of techniques proposed in the present
work. Firstly, we examine the performance of the considered multi-layer finite
volume method to the analytical solution of the wind flow problem over a flat bed
presented in [17]. To this end, the velocity of 5, 10, 20 and 50 layers free-surface
over a flat bed (i.e. Z = 0) with 3400 m length and 10 m height are compared
to the analytical solutions. The domain is divided into 100 control volumes and
the following parameters were implemented: the air density, ρa = 1.2 kg/m3,
water density ρ = 1025 kg/m3, friction coefficient k = 0.1 m/s, wind stress
coefficient σ2 = 0.0015, viscosity coefficient ξ = 0.1 m2/s and acceleration of
gravity g = 9.81 m/s2. Figure 3a exhibits the velocity profile obtained at time
t = 1000 s compared to the analytical solution. A good agreement between the
numerical and analytical solutions are shown in this figure. The convergence to
the analytical solution can be clearly seen as the number of layers increases.

For a numerical validation of the finite element method, the model presented
in [16] has been compared to our finite element numerical solution. In this model,
a squared plate foot is used in the test with a width of R = L = 150 mm and
thickness of 20 mm. A vertical stress of 47 KN/m2 is implemented at the cen-
ter of the squared domain. In this example, a finite element linear elastic model
with Young’s modulus E = 28000 KN/m2 and Poisson’s ratio ν = 0.20 is imple-
mented. A comparison between the numerical and experimental vertical stresses
at different points is shown in Figure 3b. It can be seen that experimental results
are in good agreement with numerical results. Under the considered elasticity
condition, it has been found that the difference between the analytical and nu-
merical results is only 6.5%.
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Fig. 3: Accuracy results for the finite volume method solving the multi-layer
flow problem (a) and accuracy results for the finite element method solving the
elastostatic bed problem (b).

4.2 Wind-driven circulation flow by pipe failure in the topography

The problem of pipe failures are among the common examples that received
attention from civil and geotechnical engineers, see for example [7]. In these
failures, the source of deformation comes from below the seabed surface. In this
example, we consider shallow water waves generated by failure of two pipes in
the bed topography. A rectangular domain 50 m long and 7 m high including
two circular pipes with radius R = 2.1 m each and the initial water height is
5 m above the bed. A compressive force of 200 N is applied only at the upper
half boundary of the pipes. Initially, the system is at rest and at time t = 50 s
the constant force is applied on the upper surface of the pipes. Consequently, a
deformation is expected on the pipes and therefore transmitted to the shallow
water bed which generates water waves on the free-surface. The finite volume
domain is discretized into 200 control volumes and the following parameters were
implemented: the air density, ρa = 1.2 kg/m3, water density ρ = 1000 kg/m3,
friction coefficient k = 1 × 10−1 m/s , wind stress coefficient σ2 = 0.0015,
viscosity coefficient ξ = 0.01 m2/s, wind speed 5 m/s, acceleration of gravity g =
9.81 m/s2, modulus of elasticity E = 10000 KN/m2 and Poisson’s ratio ν = 0.3.
A finite element mesh with 2471 elements and 5160 nodes is implemented in our
simulations. In Figure 4, the velocity fields obtained at time steps t = 50 s, 100 s
and 120 s using 50 layers are presented. In this figure, the wind flows toward the
right side of the domain leading to an initial water circulation with a vortex close
to the right side of the domain. At a later time t = 100 s, the bed deformation
occurred causing the water to perturb and so the water flow field is directed
toward the maximum deformation in the bed. This model accurately responds
to the sudden bed deformation and captures the water perturbation without
any oscillations on the surface. The finite element method represents the bed
deformation without any mesh distortion and without the need for a very refined
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Fig. 4: Bed deformations and water velocity fields at three different times.

Table 1: Effects of wind speed and number of layers on the circulation centers.
t = 1000 s, w = 5 m/s t = 1000 s, 50 layers

Number of layers Center of circulation Wind speed Center of circulation

M = 50 (38.75, 9.72) 5 m/s (38.75, 9.72)

M = 30 (42.25, 9.722) 10 m/s (43.25, 9.723)

M = 20 (43.25, 9.723) 15 m/s (45.25, 9.724)

M = 10 (43.55, 9.723) 20 m/s (47.25, 9.886)

mesh in the domain. An upward reflected wave is detected at time t = 120 s,
the waves remain perturbed till they reach stability at time t = 1000 s. As can
be seen in these results, a central circulation has been generated in the flow
channel due to these deformations in the bed. It is worth mentioning that these
circulations cannot be captured using the single-layer shallow water models,
we refer the reader to [1, 2] to compare the single-layer coupling results of this
problem. It is clear that the center of this vortex is affected by the number of
layers used in the computations and the wind speed. To further demonstrate
this effect, centers of these recirculations using different numbers of layers and
different wind speeds are summarised in Table 1. The center of the circulation
is shifted to the right when the wind speed increases and when the number of
layers decreases.

For further investigations, we presented in Figure 3 the velocity profiles at
the location x = 40 m obtained at time t = 1000 s. We also include in this
figure cross-sections results for the vertical stress σz, the horizontal stress σx

and the shear stress τxz at the location x = 40 m. Here, we considered 10, 20, 30
and 50 layers. For comparison, we also include a reference velocity field obtained
for the 50 layers model using a very fine mesh of 1200 control volumes. It can
be clearly shown from this figure, that an increase of the number of layers in
the model illustrate a perfect convergence to the reference solution. The model
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Fig. 5: Velocity profile at x = 40 m using different layers (left) and cross-sections
of the stresses at x = 40 m (right).

also accurately captures the velocity flow using a different number of layers and
without any spurious oscillations or excessive numerical diffusion.

Fig. 6: Distribution for the stresses σz (top) and σx (bottom) obtained for shallow
water waves generated by a pipe failure in the topography at time t = 50 s.

To investigate the distributed stresses resulting from the pipes failure un-
derground. The two main dialary stresses σz and σx are shown in Figure 6. It
is clear from this figure that high stresses are distributed around the highest
deformation in the bed. It is clear from these results that the stresses are dis-
tributed symmetrically around the vertical centerline of the mesh. The finite
element method performs well and it reproduces stable solutions without non-
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physical oscillations at stresses distributions. To examine the stress distributions
with the bed depth, plots of vertical cross-sections in the stresses at the point
x = 21 m for the vertical stresses σz, horizontal stresses σx and the shear stress
τxz are presented in Figure 3. It can be noted from this figure that the vertical
stresses have the highest values and the shear stresses are the lowest. It is also
clear that the stress values are decreasing far from the location of the applied
force and the maximum values are detected near the point of force effects.

5 Conclusions

A simple and accurate approach to couple free-surface multi-layer flows with bed
deformations has been presented. The governing equations consist of coupling
the nonlinear shallow water equations for water flow to the linear equations for
elasticity. The coupling conditions between the two models is achieved through
the interface between the two bodies and only the updated topography is re-
quired for the free-surface simulations. The hydrostatic pressure from water flow
is also accounted for in the bed deformation and it is applied as external force
on the elasticity model. As numerical solvers, we have considered a conservative
finite volume method for the free-surface flow and a robust finite element method
for the bed deformation. The new method has several advantages: First, it can
solve steady flows over irregular beds without large numerical errors. Second,
it can compute the numerical flux corresponding to the real state of water flow
without relying on Riemann problem solvers. Third, reasonable accuracy can
be obtained easily and no special treatment is needed to maintain a numerical
balance, because it is performed automatically in the integrated numerical flux
function. Furthermore, it has strong applicability to various problems in shallow
water flows over deformed beds as shown in the numerical results. The proposed
approach has been numerically examined for the test example of free-surface flow
problems. The results make it promising to be applicable also to real situations
where, beyond the many sources of complexity, there is a more severe demand
for accuracy in predicting free-surface waves induced by sudden bed deforma-
tions, which must be performed for a long time. Future research will focus on
the extension of these techniques to nonlinear plasticity in the bed deformation
to allow strong interactions of water flows on largely deformed soils.
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