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Abstract. The aim of this paper is to show that Goertzel and Reinsch
algorithms for computing trigonometric sums can be efficiently vector-
ized using Intel AVX-512 intrinsics in order to utilize SIMD extensions
of modern processors. Numerical experiments show that the new vec-
torized implementations of the algorithms using only one core achieve
very good speedup over their sequential versions. The new algorithms
have been parallelized using OpenMP in order to utilize multiple cores.
For sufficiently large problem sizes, the parallel implementations of the
algorithms achieve reasonable speedup against the vectorized ones.
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1 Introduction

For given real numbers b0, . . . , bn, and x, let us consider the problem of comput-
ing trigonometric sums of the following forms

C(x) =

n∑
k=0

bk cos kx and S(x) =

n∑
k=1

bk sin kx, (1)

which appear in many numerical applications. For example, finding (1) is the
central part of Talbot’s algorithm [13, 18, 31] for computing the numerical in-
verse of the Laplace Transform. The sums are also used to compute individual
terms of the Discrete Fourier Transform [32]. It is not recommended to use (1)
directly due to large number of arithmetic operations and poor numerical prop-
erties [23]. Instead, one can calculate the sums C(x) and S(x) using the Goertzel
algorithm [8,23], which is a special case of Clenshaw’s algorithm [4] used for the
summation of orthogonal polynomial series [2, 3]. Actually, the main computa-
tional parts of both Goertzel’s and Clenshaw’s algorithms are the same. The
Goertzel algorithm has also some other technical applications [29], especially in
signal processing [10, 12, 15, 20, 30], thus its efficient implementations is highly
desired [6, 19]. Unfortunately, it can be numerically unstable for |x| � 1 [7].
Then it is better to use the algorithm introduced by Reinsch [23], which is a
little bit more complicated but has better numerical properties.
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Although implementations of the Goertzel (Clenshaw) and Reinsch algo-
rithms seem to be simple, their direct parallelization is not possible due to their
recursive form. Papers [2,3] showed how to use Clenshaw’s algorithm in order to
develop a new method for the evaluation of the Chebyshev polynomials of the
first kind and how to parallelize it using special properties of the polynomials.
Numerical experiments performed on Cray T3D showed that the introduced ap-
proach allowed to achieve limited speedup and the efficiency up to 38%. Another
approach [25, 26] assumes that the Goertzel and Reinsch algorithms reduce to
the problem of solving special narrow-banded systems of linear equations and
introduces new divide and conquer parallel algorithms for solving such systems.
The implementations of these algorithms achieve rather limited speedup on Intel
processors: Pentium III, Pentium 4 and Itanium 2. Moreover, the new version of
the Reinsch algorithm applied for finding the numerical inverse of the Laplace
transform scales very well on Cray X1, but it cannot utilize vector extensions
of its processors. Therefore, the approaches to parallelizing these algorithms de-
scribed in the literature enable the use of parallel processors but do not allow
to utilize vector extensions of modern multicore processors, which is crucial for
achieving high performance [1, 5, 24,27,28,33].

In this paper we show how to modify and implement the divide and conquer
parallel Goertzel and Reinsch algorithms [25, 26] in order to develop almost
fully vectorized versions of both algorithms. The new implementations utilize
advantages of AVX-512 vector extensions [9] and can also be parallelized. The
rest of the paper is organized as follows. Section 2 presents the ordinary Goertzel
and Reinsch algorithms for computing (1). In Section 3 we briefly recall the divide
and conquer versions of the algorithms introduced in [25]. Section 4 discusses
the details of vectorized and parallel implementations of the algorithms based on
AVX-512 intrinsics [9] and OpenMP [14] constructs. Section 5 shows the results
of experiments performed on a machine with modern Intel multicore processors
that confirm the efficiency of our new implementations. Finally we present some
concluding remarks and plans for future studies.

2 Goertzel and Reinsch Algorithms

First let us observe that we can restrict our attention to the case where x 6= kπ.
If x = kπ then S(x) = 0 for all x and cos kx = ±1, thus C(x) can be computed
using a simple summation algorithm. In case of the Goertzel algorithm [8, 23]
for finding (1), we need to compute two last entries (namely S1 and S2) of the
solution of the following linear recurrence system with constant coefficients:

Sk =

{
0, k = n+ 1, n+ 2
bk + 2Sk+1 cosx− Sk+2, k = n, . . . , 1

(2)

and then we have

C(x) = b0 + S1 cosx− S2

S(x) = S1 sinx. (3)
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To avoid the influence of rounding errors on the final computed solution,
when x is closed to 0 [7], one can use the Reinsch algorithm [23]. In this case
we set Sn+2 = Dn+1 = 0 and if cosx > 0, then we solve the following linear
recurrence system {

Sk+1 = Dk+1 + Sk+2

Dk = bk + βSk+1 +Dk+1
(4)

for k = n, n− 1, . . . , 0, where β = −4 sin2 x
2 . If cosx ≤ 0, we solve{

Sk+1 = Dk+1 − Sk+2

Dk = bk + βSk+1 −Dk+1
(5)

where β = 4 cos2 x
2 . Finally, we compute

S(x) = S1 sinx and C(x) = D0 −
β

2
S1. (6)

3 Divide-and-conquer approach

Both algorithms presented in the previous section are very simple but it is clear
that loops corresponding to (2) and (4–5) have obvious data dependencies, thus
compilers cannot vectorize or parallelize them in order to utilize the underlying
hardware of modern multicore processors. Now let us consider the divide and
conquer approach [25] that forms the basis of new efficient implementations of
the algorithms that will be discussed in Section 4. In this paper we will use a
slightly different notation than that used in [25], but all given properties are
equivalent to it.

3.1 Goertzel Algorithm

Let us consider the following approach for parallelizing the Goertzel algorithm.
Equation (2) is equivalent to the following system of linear equations

1 −c 1
1 −c 1
. . .

. . . 1
1 −c

1




x1
x2
...
xn−1
xn

 =


b1
b2
...
bn−1
bn

 , (7)

where c = 2 cosx and xi = Si, i = 1, . . . , n. For the sake of simplicity let us
assume that n = m · r, where integers m, r ≥ 2. Then (7) can be rewritten as
the following block system

U L
U L
.. . L

U



x1

x2

...
xr

 =


b1

b2

...
br

 , (8)
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where xj = [x(j−1)m+1, . . . , xjm]T ∈ IRm, bj = [b(j−1)m+1, . . . , bjm]T ∈ IRm,

U ∈ IRm×m is of the same form as the matrix of the system (7), and

L =


0 · · · · · · 0
...
. . .

...

1 0
. . .

...
−c 1 · · · 0

 ∈ IRm×m. (9)

It is obvious that L can be rewritten as L = em−1e
T
1 − cemeT1 + emeT2 , where

ek is k-th unit vector from IRm. The solution to (7) can be expressed as{
xr = U−1br

xj = U−1bj − U−1Lxj+1, j = r − 1, . . . , 1,
(10)

Assuming that Uzj = bj , j = 1, . . . , r, and ym−1 = U−1em−1, ym = U−1em,
we get

xj = zj − xjm+1ym−1 + (cxjm+1 − xjm+2)ym. (11)

It can be proved [25] that for x 6= kπ, k ∈ Z, entries of ym = [y1, y2, . . . , ym−1, 1]T

satisfy

yj =
sin(m+ 1− j)x

sinx
, j = 1, . . . ,m− 1. (12)

Moreover, ym−1 = [y2, y3, . . . , ym−1, 1, 0]T , where all yj also satisfy (12). Let x′′j ,
z′′j , j = 1, . . . , r, denote first two entries of xj , zj , respectively, and

M =

[
−y1 cy1 − y2
−y2 cy2 − y3

]
∈ IR2×2. (13)

Then we get{
x′′r = z′′r
x′′j = z′′j +Mx′′j+1, j = r − 1, . . . , 1

and

[
S1

S2

]
= x′′1 . (14)

The presented approach makes it possible to formulate a parallel algorithm. First
we should find all vectors zj in parallel, solving Uzj = fj , and then we use (14)
to find S1, S2.

3.2 Reinsch Algorithm

Now let us observe that equations (4–5) are equivalent to the following system
of linear equations

1 −β δ
1 −1 δ

1 −β δ
. . .

. . .
. . .

1 −1 δ
1 −β

1





x1
x2
...
...
...
x2n


=



f1
f2
...
...
...
f2n


, (15)
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where

δ =

{
−1, cosx > 0

1, cosx ≤ 0
, xk =

{
Dbk/2c, k = 1, 3, . . . , 2n− 1
Sk/2, k = 2, 4, . . . , 2n

(16)

and

fk =


bbk/2c, k = 1, 3, . . . , 2n− 3
0, k = 2, 4, . . . , 2n− 2
bn−1 − δbn, k = 2n− 1
bn, k = 2n.

(17)

Similarly to the Goertzel algorithm, under the assumption that n = m · r, the
system (15) can be written in the following block form

U L
U L
.. . L

U



x1

x2

...
xr

 =


f1
f2
...
fr

 , (18)

where all xj , fj ∈ IR2m, and U ∈ IR2m×2m is of the same form as the matrix of
the system (15), and

L =


0 · · · · · · 0
...
. . .

...

δ 0
. . .

...
−1 δ · · · 0

 ∈ IR2m×2m. (19)

This yields {
Uxr = fr
Uxj = fj + Lxj+1, j = r − 1, . . . , 1,

(20)

so

xj = U−1fj − U−1Lxj+1 = zj − xjm+1y1 − xjm+2y2, (21)

where y1, y2 satisfy Uy1 = [0, . . . , 0, δ,−1]T and Uy2 = [0, . . . , 0, δ]T , respec-
tively. Let us define

M =

[
y
(1)
1 y

(2)
1

y
(1)
2 y

(2)
2

]
∈ IR2×2, (22)

where y
(1)
1 , y

(1)
2 , and y

(2)
1 , y

(2)
2 denote first two entries of y1, y2, respectively. It

can be proved [25] that the entries of M satisfy

y
(1)
1 = − cosmx+ (β/2)y

(1)
2

y
(1)
2 = − sinmx/ sinx

y
(2)
1 = δ cosmx+ cos(m− 1)x+ (β/2)y

(2)
2 (23)

y
(2)
2 = (δ sinmx+ sin(m− 1)x) / sinx
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Finally, we get{
x′′r = z′′r
x′′j = z′′j −Mx′′j+1, j = r − 1, . . . , 1

and

[
D0

S1

]
= x′′1 . (24)

Similarly to the Goertzel algorithm, the parallel Reinsch algorithm consists of
two parts: the parallel one, where we find all zj , and the sequential based on (24).
It should be noted that increasing the value of r, i.e. potentially more processors
operating in parallel, increases the number of operations in the sequential part.
In Section 4 we will also show how to omit the assumption that n = m · r.

It should be noted that good numerical properties of the parallel version
of the Reinsch algorithm were confirmed empirically. The algorithm was used
as the main part of the parallel version of Talbot’s method for computing the
numerical inverse of the Laplace transform [26]. No decrease in accuracy was
observed compared to the sequential version of the algorithm.

4 Implementation of the Algorithms

Although the algorithms presented in Section 3 have potential parallelism, they
do not explicitly utilize vector extensions of modern processors, like AVX-512 [9],
what is crucial to achieve high performance [1,5,24,27,28,33]. Simply, the parallel
(i.e. divide) parts of both algorithms are still based on recurrence computations.

In order to utilize advantages of AVX-512 vector extensions [9] and develop
vectorizable implementations of the considered algorithms we will use intrinsics
for SIMD instructions which allow to write constructs that look like C/C++
function calls corresponding to actual AVX-512 instructions. Such calls are auto-
matically replaced with assembly code inlined directly into programs. Moreover,
the use of intrinsics is a good choice to make sure that compilers do exactly
what we want, especially in the case of complex nested loops that may prevent
automatic vectorization.

Now let us consider the way how we can use these algorithms to obtain their
efficient implementations that would operate on 512-bit vector registers as basic
data structures. The m512d datatype defined in AVX-512 can be used to store
eight double precision floating point numbers. When we set r = 8 in (8), then
the first divide part of the Goertzel algorithm is equivalent to the problem of
solving the block system of linear equations UZ = B, where

B =


b1 bm+1 · · · b7m+1

b2 bm+2 · · · b7m+2

...
... · · ·

...
bm b2m · · · b8m

 ∈ IRm×8. (25)

Then, the solution Z can be found using the following sequence of vector oper-
ations

Zk,∗ ← Bk,∗ + cZk+1,∗ − Zk+2,∗ for k = m, . . . , 1, (26)
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b[0]

b[7]

b[m-1] b[n0-1]

b[n0]

b[n]

n0=64*((n+1)/64)

m =n0/8

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7

0

1

D0

S1

A

B C
D

E

F

Fig. 1. Stages of the vectorized Reinsch algorithm using AVX-512

where Zm+1,∗ and Zm+2,∗ are zero vectors. Moreover, in order to use the conquer
part of the algorithm (14), we only need to find the vectors Z1,∗ and Z2,∗, thus
all necessary calculations based on (26) can be carried out using 512-bit vector
registers filled with data loaded from memory.

In case of the Reinsch algorithm, we work similarly. We have to find Z1,∗ and
Z2,∗, i.e. first two rows of the matrix Z defined by UZ = F , where

F =



b0 bm · · · b7m
0 0 · · · 0
b1 bm+1 · · · b7m+1

...
... · · ·

...
bm−1 b2m−1 · · · bn−1 − δbn

0 0 · · · bn


∈ IR2m×8, (27)

using the following sequence of vector operations{
Zk,∗ ← Zk+1,∗ − δZk+2,∗, k = 2m, 2m− 2, . . . , 2
Zk,∗ ← Bk,∗ + βZk+1,∗ − δZk+2,∗, k = 2m− 1, 2m− 3, . . . , 1.

(28)

Note that the assumption n = m·r can be omitted. Then, for both algorithms,
it is necessary to perform a number of sequential steps defined by (2) or (4–5)
to initialize last entries of the vectors Zm+1,∗ and Zm+2,∗ (Goertzel), or Z2m+1,∗
and Z2m+2,∗ (Reinsch), respectively.

Stages of the Reinsch algorithm are shown in Figure 1. The sequence of
coefficients b0, . . . , bn stored in the array b of double precision numbers can be
divided into two parts. The first one can be treated as a collection of m/64 square
8×8 blocks. Thus it contains the coefficients b0, . . . , bn0−1, n0 = 64 ·b(n+1)/64c,
that should be processed using AVX-512 vector extensions. The second part, i.e.
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the numbers bn0
, . . . , bn, should be processed first (Stage A) using (4–5). Then

each column of the last block (i.e. eight consecutive numbers) is loaded into a
vector register using the intrinsic mm512 load pd() (Stage B). Then (Stage C),
such a block stored in eight registers is transposed so that each register contains
one row of the block. During Stage D, we use the intrinsic mm512 fmadd pd()

which performs a fused multiply–add, and depending on the sign of δ, the intrinsic
mm512 add pd(), or mm512 sub pd() to process all rows of the block according

to (28). Stages B–D are repeated for all blocks (Stage E). Finally (Stage F), we
use (24) on the first two rows of the first block in order to get D0 and S1.

The vectorized Goertzel algorithm can be implemented similarly but with
one difference. The intrinsic mm512 load pd() loads a 512-bits vector composed
of eight packed double-precision floating-point numbers from memory but on
condition that the memory address is aligned on a 64-byte boundary or a general-
protection exception may be generated. In case of the Goertzel algorithm, the
coefficient b0 is only used in (3). Thus, the vectorized part will operate on blocks
containing the coefficients b64, . . . , bn0−1, and the coefficients b1, . . . , b63 should
be processed sequentially using (2).

0 1 ←col02 3 4 5 6 7

8 9 ←col110 11 12 13 14 15

16 17 ←col218 19 20 21 22 23

24 25 ←col326 27 28 29 30 31

32 33 ←col434 35 36 37 38 39

40 41 ←col542 43 44 45 46 47

48 49 ←col650 51 52 53 54 55

56 57 ←col758 59 60 61 62 63

←tmp0

←tmp1

←tmp2

←tmp3

←tmp4

←tmp5

←tmp6

←tmp7

0 8 2 10 4 12 6 14

1 9 3 11 5 13 7 15

16 24 18 26 20 28 22 30

17 25 19 27 21 29 23 31

32 40 34 42 36 44 38 46

33 41 35 43 37 45 39 47

48 56 50 58 52 60 54 62

49 57 51 59 53 61 55 63

←shf0

←shf1

←shf2

←shf3

←shf4

←shf5

←shf6

←shf7

0 8 16 24 4 12 20 28

1 9 17 25 5 13 21 29

2 10 18 26 6 14 22 30

3 11 19 27 7 15 23 31

32 40 48 56 36 44 52 60

33 41 49 57 37 45 53 61

34 42 50 58 38 46 54 62

35 43 51 59 39 47 55 63

←col0

←col1

←col2

←col3

←col4

←col5

←col6

←col7

0 8 16 24 32 40 48 56

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

Fig. 2. Three steps and the final result of the transposition of 8×8 block stored in eight
m512d registers: red arrows indicate blue and green blocks that should be swapped
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It should be noticed that Stage C, i.e. transpositions of 8 × 8 blocks stored
columnwise in vector registers, can be performed in three steps using only AVX-
512 intrinsics. First, we have to swap single entries between two consecutive
vectors (Figure 2, top-left). Then, 2 × 2 blocks are swapped between pairs of
vectors (Figure 2, top-right). Finally, we swap 4 × 4 blocks stored in first and
second halves of quads of vectors (Figure 2, bottom-left) in order to get the
result (Figure 2, bottom-right). The details can be found in Figure 3.

_inline void vec8x8_transpose(__m512d *col0 ,__m512d *col1 ,__m512d *col2 ,__m512d *col3 ,

__m512d *col4 ,__m512d *col5 ,__m512d *col6 ,__m512d *col7)

{ __m512d tmp0 , tmp1 , tmp2 , tmp3 , tmp4 , tmp5 , tmp6 , tmp7;

__m512d shf0 , shf1 , shf2 , shf3 , shf4 , shf5 , shf6 , shf7;

// Step 1: Unpack and interleave double -precision floating -point elements

// from the low and high halves of each 128- bit lane of pairs of columns

tmp0 = _mm512_unpacklo_pd (*col0 ,*col1);

tmp1 = _mm512_unpackhi_pd (*col0 ,*col1);

tmp2 = _mm512_unpacklo_pd (*col2 ,*col3);

tmp3 = _mm512_unpackhi_pd (*col2 ,*col3);

tmp4 = _mm512_unpacklo_pd (*col4 ,*col5);

tmp5 = _mm512_unpackhi_pd (*col4 ,*col5);

tmp6 = _mm512_unpacklo_pd (*col6 ,*col7);

tmp7 = _mm512_unpackhi_pd (*col6 ,*col7);

// Step 2: Shuffle 128- bits (composed of 2 double -precision floating -point elements) selected from pairs ,

// store the results (elements are copied when the corresponding mask bit is not set)

shf0 = _mm512_mask_shuffle_f64x2(tmp0 ,0b11001100 ,tmp2 ,tmp2 ,0 b10100000);

shf1 = _mm512_mask_shuffle_f64x2(tmp1 ,0b11001100 ,tmp3 ,tmp3 ,0 b10100000);

shf2 = _mm512_mask_shuffle_f64x2(tmp2 ,0b00110011 ,tmp0 ,tmp0 ,0 b11110101);

shf3 = _mm512_mask_shuffle_f64x2(tmp3 ,0b00110011 ,tmp1 ,tmp1 ,0 b11110101);

shf4 = _mm512_mask_shuffle_f64x2(tmp4 ,0b11001100 ,tmp6 ,tmp6 ,0 b10100000);

shf5 = _mm512_mask_shuffle_f64x2(tmp5 ,0b11001100 ,tmp7 ,tmp7 ,0 b10100000);

shf6 = _mm512_mask_shuffle_f64x2(tmp6 ,0b00110011 ,tmp4 ,tmp4 ,0 b11110101);

shf7 = _mm512_mask_shuffle_f64x2(tmp7 ,0b00110011 ,tmp5 ,tmp5 ,0 b11110101);

// Step 3: Shuffle 128- bits (composed of 2 double -precision floating -point elements)

// selected from pairs , and store the results

*col0 = _mm512_shuffle_f64x2(shf0 ,shf4 ,0 b01000100);

*col1 = _mm512_shuffle_f64x2(shf1 ,shf5 ,0 b01000100);

*col2 = _mm512_shuffle_f64x2(shf2 ,shf6 ,0 b01000100);

*col3 = _mm512_shuffle_f64x2(shf3 ,shf7 ,0 b01000100);

*col4 = _mm512_shuffle_f64x2(shf0 ,shf4 ,0 b11101110);

*col5 = _mm512_shuffle_f64x2(shf1 ,shf5 ,0 b11101110);

*col6 = _mm512_shuffle_f64x2(shf2 ,shf6 ,0 b11101110);

*col7 = _mm512_shuffle_f64x2(shf3 ,shf7 ,0 b11101110);

}

Fig. 3. The source code corresponding to Figure 2

Both vectorized algorithms can easily be parallelized using OpenMP in order
to utilize multiple cores. The idea of the parallel vectorized Reinsch algorithm is
shown in Figure 4. First, the sequential part is responsible for processing the tail
of coefficients bn0 , . . . , bn, where n0 = 64·P ·b(n+1)/(64·P )c, and P is the number
of threads that will be assigned to cores. Then, each OpenMP thread performs
the vectorized Reinsch algorithm on one column of q = n0/(64 · P ) blocks and
stores first two rows of its processed top block to shared memory. Finally, again
during another sequential part, the numbers D0, S1 are evaluated using (24).
Note that in this case r = 8P . The parallel vectorized Goertzel algorithm works
similarly, but during its parallel part we process q · P blocks, where q is the
number of blocks processed by each thread. Finally, during another sequential
part, we use (14) and then process the coefficients b1, . . . , b63 using (2) in order
to evaluate S1 and S2.
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b[0]

b[7]

b[m-1] b[n0-1]

b[n]
0 1 2 3

tmp[0]

tmp[8*P]

tmp[8*P-1]

tmp[8*P]

D0

S1

n0=P*64*((n+1)/(64*P))
m =n0/(8*P)

Fig. 4. Stages of the parallel vectorized Reinsch algorithm using OpenMP

It is clear that the use of the vectorized Reinsch algorithm is possible only
for n ≥ 64. The vectorized Goertzel algorithm requires n ≥ 127, i.e. when
vectorization can be applied. Moreover, the use of the parallel implementations
is reasonable when a sufficient number of blocks can be processed in parallel.

All source codes of the discussed implementations have been made available
in our GitHub repository https://github.com/pstpicz/trigsums. It contains
sequential, vectorized, and parallel versions of both Goertzel and Reinsch algo-
rithms, as well as test programs that can be used to evaluate performance and
accuracy of the algorithms.

5 Results of Experiments

All considered implementations have been tested on a machine with two Intel
Xeon Platinum 8358 processors (totally 64 cores with hyperthreading, 2.6 GHz,
48 MB of cache memory), 256 GB RAM, running under Linux with Intel OneAPI
version 2023 containing the C/C++ compiler.

Table 1 shows the execution time of both sequential and vectorized implemen-
tations of our versions Goertzel and Reinsch algorithms, as well as the speedup
of the vectorized implementations compared to their sequential counterparts,
obtained for various problem sizes. It can be observed that both vectorized algo-
rithms’ implementations are faster than the sequential ones, even for very small
problem sizes, and the speedup increases as the problem size increases, up to 6.4
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Table 1. Execution time [s] and speedup of sequential and vectorized algorithms

Goertzel Reinsch
n sequential [s] vectorized [s] speedup sequential [s] vectorized [s] speedup

2 · 102 8.8215e-06 2.8610e-06 3.08 1.1921e-05 7.8678e-06 1.52
2 · 103 1.5020e-05 4.7684e-06 3.15 1.5974e-05 6.9141e-06 2.31
2 · 104 5.7220e-05 1.0967e-05 5.22 8.0109e-05 1.5974e-05 5.01
2 · 105 4.8995e-04 8.2970e-05 5.91 7.1883e-04 1.0204e-04 7.04
2 · 106 5.0120e-03 7.8297e-04 6.40 7.1170e-03 9.5701e-04 7.44
2 · 107 4.9497e-02 8.2841e-03 5.97 7.1515e-02 9.1901e-03 7.78
2 · 108 5.0171e-01 9.3292e-02 5.38 7.6957e-01 9.2379e-02 8.33
2 · 109 5.035e+00 9.5067e-01 5.30 7.882e+00 9.1985e-01 8.57

for Goertzel, and 8.57 for Reinsch. It is worth adding that the sequential im-
plementation of the Goertzel algorithm has also been implemented in the Boost
library1 as as a part of the function chebyshev clenshaw recurrence() and
its performance is comparable to the performance of our implementation of this
sequential algorithm based on (2–3).
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Fig. 5. Speedup of parallel Goertzel and Reinsch algorithms against vectorized ones

Figure 5 illustrates the speedup of the parallel vectorized algorithms over
their vectorized counterparts calculated using sp(n) = tv(n)/tp(n), where tp(n)
and tv(n) denote the execution time of the parallel vectorized and the vectorized
algorithms, respectively, and p is the number of cores. Timing results have been
collected using various numbers of sockets, cores, and threads per core, specified

1 https://www.boost.org/doc/libs/1_83_0/boost/math/special_functions/

chebyshev.hpp
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using the KMP HW SUBSET environment variable. We have also used KMP AFFINITY

to tell the OpenMP runtime how threads should be assigned to cores. The best
results for P = 2 ·X threads have been obtained for KMP HW SUBSET=2s,Xc,1t

and KMP AFFINITY=compact, what means that the best choice is to use one
thread per core, distributing threads evenly between cores of two processors.

It can be observed that the qualitative behavior of both algorithms is al-
most the same. The use of multiple cores is not reasonable for smaller problem
sizes. Then, most of cores remain idle during the parallel part of the execution.
Speedup over the vectorized versions can be observed for n > 105. However in
most cases, we can observe a peak for a number of cores for which the best per-
formance is achieved. When we use more cores, the speedup does not increase
or even becomes worse. The best speedup can be observed for n = 2 · 107. It
is approximately 20.4 for Goertzel and 24 for Reinsch, respectively. This means
that the largest observed speedups of the parallel vectorized implementations
achieved on 64 cores over the sequential implementations of the Goertzel and
Reinsch algorithms are 122 and 187, respectively.
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Fig. 6. Parallel efficiency of parallel Goertzel and Reinsch algorithms

Figure 6 shows the parallel efficiency of both parallel implementations cal-
culated as ep(n) = sp(n)/p. For sufficiently large problem sizes, the parallel
efficiency is very good but decreases as the number of cores increases. For the
Goertzel algorithm, when a small number of cores is used (i.e. p = 2, 4) one can
observe ep(n) > 1, what is a fine example of the cache effect [21], when the use
of multiple cores speeds up memory transfers over the sequential algorithm [17].

6 Conclusions and Future Works

We have demonstrated that both Goertzel and Reinsch algorithms, examples of
recurrence computations, can be efficiently vectorized and parallelized when we
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apply vectorization and parallelization techniques to the algorithmic approach
based on divide and conquer methods for solving narrow banded linear systems
that arise for linear recurrences. It is clear that such approach can also be applied
to develop fast implementations of other problems that reduce to narrow banded
systems of equations. It should be noted that although the use of intrinsics sig-
nificantly limits portability, the places where they are used are crucial for the
performance and can easily be ported to other ISA extensions such as scalable
vector extensions on ARM [22]. In the future we plan to develop portable imple-
mentations of the algorithms in SYCL [16] and study its performance portability
on various CPU and GPU platforms [11].
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