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Abstract. In this paper we present a numerical feed-forward strategy
for the Augmented Kalman Filter and show its application to a diffusion-
dominated inverse problem: heat source reconstruction from boundary
measurements. The method is applicable in general to forcing term es-
timation in lumped and distributed parameters models and gives a sig-
nificant contribution where, in industry and science, probing signals are
used through a diffusive material-body to estimate its localized internal
properties in a non-destructive test, like in ultrasound or thermographic
inspection.
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1 Introduction

There is an increasing interest, in applications, at estimating forcing terms of
various nature (e.g. mechanical, thermal, etc.) from a relatively small set of data
obtained by measurements of physical quantities (e.g. displacements, tempera-
tures, etc.) that are assumed to be sufficiently informative of the effect of these
forcing terms on the considered real system. This estimate represents a virtual
measurement of the (physically) unmeasurable forcing term, performed by an
algorithm which is usually called a soft sensor [4].

If the real system can be represented by a physico-mathematical model, then
the inverse problem of estimating the (input) forcing term from output mea-
surements must be solved by taking into account the model, the ill-posedness
of the problem, and the uncertainty about both the data measured and the
model’s parameters. These aspects call for an interdisciplinary approach and for
methods that are able to tackle with both the deterministic and the stochastic
aspects of the problem. For this reason, in this field of applications, Bayesian
methods have emerged as a main approach and a well known achievement in
this direction, widely used in applications, is the Kalman Filter (KF) [11] [13].

To solve the problem of estimating the input forcing term, the reference
model for the KF is often configured by augmenting the state vector to include
the dynamics of the forcing term (input), and suppose the system be driven by
white noise. In this way, the forcing term estimation problem becomes a state
estimation problem, where the reference model represents the dynamics of two
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subsystems, i.e. the forcing term generator and the real system, and also of their
interaction. This is usually uni-directional, i.e. the system’s state does not affect
the forcing term. This case is paradigmatic for the so-called Augmented Kalman
Filter (AKF): the outputs are taken from the original state variables, i.e. the
augmented state variables are unmeasurable, and the original variables does not
affect the augmented variables.

In this paper we will consider this precise setting, where the reference model
of the AKF represents explicitly the forward dependence between the forcing
term and the system’s state, while the AKF gain tries to estimate implicitly
the backward dependence between them, in its effort to estimate the forcing
term from the output prediction error. Our aim is to introduce an explicit rep-
resentation of this backward dependence and feed it forward into the AKF state
predictor. To do so, we compute a simulation of the inverse model and we will
show and compare two possible strategies for using it to add a feed-forward
term to the proportional control of the estimation error made by the standard
AKF formulation. In this paper we will face diffusion dominated problems with
distributed forcing terms, a difficult case for existing methods, as we will see.

In the literature, for source estimation in mechanical applications see e.g.
Lourens [16] where the Augmented Kalman Filter (AKF) has been introduced
for the purpose of mechanical load estimation, and the introduced covariance
model that describes the forcing term modelling error is used as a regularizer
in the force estimation problem, and precisely the diagonal elements of the co-
variance matrix are tuned as regularization parameters. Indeed, this covariance
matrix can be seen also as the weighting matrix of a least-squares problem [13]
and this is actually one way we formulate our feed-forward action in the KF,
although not the best, as we will see. In [16] there is also an experimental compar-
ison with other combined deterministic-stochastic techniques to force estimation
problems. In Neats [17] there is an analysis of the stability of the AKF, which
shows that there are common measurement configurations that exhibit a drift in
the state estimates, due to unobservability issues and propose to add dummy-
measurements; in [19] the sparse constraint is used to solve the drift problem in
AKF with more generality. See [15] for a recent, general survey on mechanical
load estimation techniques in both frequency and time domains.

For thermal applications, like the one here considered as a model problem, the
application of the Kalman Filter is more problematic. The Augmented Kalman
Filter is used e.g. in Qi et al [18], where there is also a comparison and references
with another approach: KF-RLSE, i.e. the combination of a Kalman Filter and
a Recursive Least-Squares Estimator of the residuals obtained from the KF. In
[18] the heat flux (forcing term) is simply a scalar term, not a distributed field
like is set in this paper. Another approach is the Optimal two-stage Kalman
filter (OTSKF) and is preferred to the AKF because of its poor ability for the
simultaneous estimation of spatio-temporal heat flux and temperature field. In
this paper we show that a feed-forward scheme improves dramatically this ability.
Actually, some years ago the two-stage Kalman filter had been proposed in [14]
as an efficient implementation of the Augmented Kalman Filter and, in principle,
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the feed-forward scheme could be applied also for this formulation, if preferred.
Finally, we mention a fundamental work by Gillijns e De Moor [9], that is not
applicable here, anyway, since it requires that the number of measurement points
be greater or equal to the forcing term nodes/variables.

In this paper we assume that the input generator and the real system are
modeled adequately, since our scope is on finding a correct and efficient formula-
tion for the feed-forward action. First of all, we must legitimate this choice: note
that the standard AKF operates a proportional control over the state estimation
error and it is well known that in problems where the input-state dynamics are
slow this results in poor performances. There are variants where a proportional-
integral actions [3] [2] [8] is performed, at the cost of doubling the number of
state variables, or a smoothing is done through post-processing [1]. Actually, a
feed-forward [12] approach is a consolidated good practice in control theory in
general and a combination of feed-forward with feedback to eliminate steady-
state errors is mostly used: feed-forward is used for tracking capabilities, and
feedback for steady-state accuracy.

The paper is organized as follows: in Sec. 2 we set model problem and AKF
formulation; in sec. 3 the feed-forward strategy is presented; in sec. 4 we show
some numerical results and a Discussion and Conclusions section ends the paper.

2 Problem settings and Kalman Filter estimation of the
forcing term

As a model problem of a diffusive process, let us consider the heat equation
ρC ∂tT(fϑ) = κ ∆T(fϑ) + fϑ, in D

(0)
c × [0, tf ]

κ∇T(fϑ) · nS = q(t), on S × [0, tf ]

κ∇T(fϑ) · n = 0, on δD
(0)
c /S × [0, tf ]

T(fϑ)(0, ·) = T0(·), in D
(0)
c .

(1)

and suppose that the heat source term fϑ is an unknown function, in general,
except that it is assumed different from zero only in a few disconnected regions
of compact support. This is a common situation in many applications.

The aim of this paper is to estimate fϑ from a limited number of temperature
measurements T̃(fϑ), typically taken at the boundary. The restriction to a 2D
problem is only for simplicity, the method we devise can be used in higher di-
mensions. The estimate of fϑ can be seen as an indirect measurement of fϑ from
physical temperature measurements and we do this by exploiting the combina-
tion of the physico-mathematical model 1 and an abstract, data-driven model
to describe fϑ. Therefore, the resulting method may be called a physics-aware
soft-sensor [4].

Let us consider problem (1), discretized in space using the Finite Element
Method (FEM) with Lagrangian elements P1, i.e. first-degree piecewise polyno-
mials, and in time with the implicit Euler method, obtaining at iteration k:

M
T̃k − T̃k−1

dt
= KT̃k + fk ⇒ (I − dt M

−1K)T̃k = T̃k−1 + dt M
−1fk
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where M ∈ Rn×n and K ∈ Rn×n are the mass and stiffness matrices of the
FEM discretization, dt is the time step chosen in the time discretization and
fk is the heat source at time tk. If we knew all the values of T(fϑ) then the
computation of the unknowns fϑ would be a simple algebraic reconstruction.
Since we can measure only a few components of T(fϑ), we can reformulate this
model as a state-space dynamical system with the aim of estimating its state
from output measurements. Let us consider the following state-space discrete
model in physical coordinates:

xm(k + 1) = Amxm(k) +Bmum(k) + vm(k)
ym(k) = Cmxm(k) + w(k)

(2)

where xm(k) = T̃k, um(k) = fk, Am = (I − dtM
−1K)−1, Bm = AmdtM

−1 =
(I − dtM

−1K)−1dtM
−1, Cm is a matrix built with the rows of the identity

matrix corresponding to measured nodes, vm(k) is a stochastic term for model
error and w(k) for measurement error, both supposed Gaussian noise [11]. Now,
we augment the state of (2) by adding a model for the forcing term fk:

x(t) =

[
xf

xm

]
, u(t) =

[
0
0

]
(3)

where x(t) is the augmented state vector, xf = fk, u(t) the new input vector,
which can be now omitted, y(t) the output vector and:

A =

[
Af 0
Z Am

]
, B =

[
0
0

]
, C =

[
0 Cm

]
, (4)

where Af = I, Z = BmCu, Cu = I and the augmented state-space model is:

x(k + 1) = Ax(k) +Bu(k) + v(k)
y(k) = Cx(k) + w(k)

(5)

Now, to estimate the state vector it is a common choice to adopt a Kalman
Filter, that we recall here in its one-step version [13]:

P (k) =
[(
Q(k − 1) +A(k − 1)P (k − 1)A(k − 1)T

)−1
+ CTR−1C

]−1

(6)

eoutpred = [C (A(k − 1) x̂(k − 1) +B u(k − 1))− ȳ(k)] (7)

δx̂(k) = −P (k) CTR−1eoutpred (8)

x̂(k) = A(k − 1) x̂(k − 1) +B u(k − 1) + δx̂(k) (9)

where the state vector x(k) is the concatenation of the temperatures T(fϑ) com-
puted at the mesh nodes and the source term fϑ at the same nodes

x(k) =

[
fϑ(k)

T(fϑ)(k)

]
, (10)
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while the vector y(k) contains the measured temperatures. In the problem at
hand, the reference model for the Kalman Filter is the union of a constant
model for the heating source (this is the usual choice made in the literature for
this kind of problem) and the FE discretization of (1), and we set the covariance
matrix of the model error as

Q(k) =

[
Qf (k) QT

mf (k)

Qmf (k) Qm(k)

]
(11)

where Qf (k) = σ2
Qf

I , Qm(k) = σ2
Qm

I and Qmf (k) = σ2
Qmf

I in general, since
we don’t know the location of the forcing term. Then, set the initial covariance
matrix of the state-estimation error as

P (0) =

[
Pf (0) Pmf (0)

T

Pmf (0) Pm(0)

]
(12)

where Pf (0) = σ2
Pf

I and Pm(0) = σ2
Pm

I.
From equation (8) it is evident that the KF operates a proportional feedback

action on the (scaled) output prediction error, with a gain

GKF (k) = −P (k) CT =

[
Pmf (k)

TCT
m

Pm(k)CT
m

]
(13)

and, since the product Pmf (k)
TCT

m here simply corresponds to a selection of
columns of the matrix Pmf (k)

T , the proportional action made on the xf variables
can be understood better if we compute the recursive relation for Pmf (k). At
the limit R = ∞, from (6) we would have

PT
mf (k) =

(
σ2
Pf

Z +AmPmf (k − 1)
)T

+QT
mf (k)

=
(
σ2
Pf

dtAmM−1 +AmPmf (k − 1)
)T

+QT
mf (k)

(14)

Note that this would bring to δx̂(k) = 0 since CTR−1 = 0. Anyway, with
realistic values of R, there is a rank-ny modification of the inverse of P (k) whose
influence on PT

mf (k) is secondary in this analysis.Then, since Am is the dis-
cretization of a diffusive operator, it will simply diffuse the output prediction
error eoutpred (7) to compute the state estimate update δx̂(k) (8), the matrix
Qmf cannot help, since we don’t know the location of the sourcing term, and
the poor result is depicted in sec. 4.1, Figure 2.

In general, it is well known that this proportional feedback may have strong
limitations, e.g. for systems with a substantial inertia like thermal systems have,
and for this reason a few algorithmic extensions have been developed in the liter-
ature, like e.g. a proportional-integral formulation [2], which requires a doubling
of the state-variables, or like some additional post-processing (precisely, smooth-
ing [1]) of the KF predictions. These are yet general improvements, that do not
exploit the reference model as it could be done in the model problem here con-
sidered. For this reason we add instead a feed-forward action, described in the
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next section. At our knowledge, there is no contribution in the literature about
introducing a feed-forward action into the Kalman Filter algorithm. In this pa-
per, we do this for the Augmented Kalman Filter, with the assumption that the
variable augmentation is done to describe the dynamics of an input forcing term.
Therefore, there is a precise modelling assumption underlying this feed-forward
scheme. In principle, the numerical scheme we propose may be used in general
Kalman filtering, but a more general supporting assumption is not clear, at this
moment, so we omit to discuss it.

3 A Feed-Forward strategy for the Augmented Kalman
Filter

The unknown forcing term can be interpreted as a deterministic load distur-
bance, whose behaviour can be at least partially known. This would call for a
feed-forward mechanism added to the proportional feedback activity performed
by the Kalman Filter but, since we cannot measure the forcing term, a standard
feed-forward would be a trial-and-error with no value added, since it should as-
sume to know the quantity that we are estimating. Indeed, our idea is to exploit
the maximum principle: if the output prediction error has a mean value different
from zero we attribute this fact to an internal heat source and use it to drive
the feed-forward action, as it is described in the following subsections.

3.1 Modeling the feed-forward action

Since we should obtain the feed-forward reference signal from the output predic-
tion error (7), the most straightforward approach is to embed the feed-forward
action into the Kalman gain (13). The idea is to include the relation between the
output prediction error and the load disturbance (i.e. the inverse model) inside
the covariance matrix Q(k), as a deterministic least-squares weighting, following
the interpretation of [13] of the KF. note that Qmf (k) in (14) translates the ef-
fect of a temperature error to an error in the forcing term, through the Kalman
gain computation (13). Depending on how be build Qmf (k), this can be inter-
preted in different ways. Here we set each i-th row of Qmf (k) as the response
of the model at a unit forcing term concentrated at the node i, after a num-
ber of time-steps that depends on the distance of the node from the measured
boundary segment. Therefore, when the KF inverts the covariance matrix, this
will translate a variation of the temperatures at the border into a variation of
the forcing term additional to that operated by the standard Kalman Filter with
Qmf (k) = 0 (this would be a typical choice, since Qmf (k) classically expresses
the mutual covariance between the model error of forcing term variables and
temperature field variables, which can be assumed to be zero).

The action created by Qmf (k) is called feed-forward because it depends on
the model between the load disturbance and the process output, and precisely
on the inversion of that model; in this way, the apriori estimate of the forcing
term is substituted by the output prediction error, under the assumption that a
disturbance load is the main cause of it, as it is the case for the model problem
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here considered. Now the question becomes how to tune this feed-forward action.
Note that Qf (k), Qm(k), Pf (0), Pm(0) and Pmf (0) are tuned independently,
e.g. following a best practice in Kalman filtering (see e.g. [11]). Let us consider
equations (8)-(9) and the augmented system’s matrices (5). We have

 x̂(k) − x̂(k − 1)

...

 =

−Pmf (k)
TCT

mR−1 [CmAmx̂m(k − 1) + CmZx̂f (k − 1) − ȳ(k)]

...

 (15)

Now, let us do nf simulations where x̂m(0) = xm(0), x̂f (0) = 0 and xf (0) is
zero everywhere except a single value which is equal to L = 100 (i.e. a pointwise
forcing term), corresponding to a different mesh node at each experiment. In this
way, from the first nu equations of (15), we obtain a linear system with multiple
right-hand side Msl = MPCMope where each column of Msl ∈ Rnu×nf has only
one nonzero (the pointwise forcing term), MPC ∈ Rnu×ny is supposed to be
unknown and each column of Mope ∈ Rny×nf is the prediction error resulting
from the pointwise forcing term represented at the corresponding column of
Msl. Noteworthy, for each experiment we take the relation (15) at only one time
instant, which depends on the distance between the node and the measurement
points; putting more equations in the system from the same experiment gives
a final Mope strongly ill-conditioned and we see no advantage, at the moment.
Assume we transpose both sides and solve the resulting system, we will have a
well-determined system if nf = ny, an over-determined system if nf > ny and
an underdetermined system if nf < ny:

MT
opeM

T
PC = MT

sl (16)

Finally, the feed-forward formula is: recalling expression (14) at the limit R = ∞,
we want PT

mf (k) = P̄T
mf (k), where the latter is computed from the solution of

(16), i.e. MT
PC = P̄T

mf (k + 1) CT
m. Therefore, we could set

Qmf (k)
TCT

m = σ2
Qmf

MT
PC −

(
σ2
Pf

Z +AmPmf (k)
)T

CT
m (17)

where Qmf (k)C
T
m is simply a selection of columns of Qmf (k). The choice of the

nodes where to apply the pointwise forcing term is crucial and depends on the
application. In the model problem here considered, there is an interesting fact:
pointwise forcing terms applied to nodes aligned on the same line orthogonal
to the measurements boundary, give proportional responses, thus making Mope

singular and no unique solution of (16). To avoid it, let us consider to subdivide
the nodes in unaligned grids of points, e.g. in Figure 1: let us consider a two-
dimensional domain with a regular discretization of points and group them as
depicted, i.e. each i-th group of nodes has a different symbol, where only one
node of the same group lies on each vertical line; assuming that the bottom
horizontal line is the measurements boundary, we have that there aren’t two
nodes of the same group and aligned orthogonally to that boundary. Then, let
us group accordingly the experiments and represent the i-th group of pointwise
forcing terms as the columns of Msl,i; in this way, we get a set {Mope,i} of much
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better conditioned matrices. Then, for each Mope,i build the linear system like
(16) and solve it to get the solution MPC,i. Then, formula (17) is implemented
for each filter of a one-step filter bank, i.e. the feed-forward action Qmf (k) is
computed as in (17) for each MPC,i and so the corresponding δx̂(k) from (8),
that we call δx̂i(k). At the end of this filter-bank computation, the applied δx̂(k)
is the average of the δx̂i(k) and so P (k) is the average of the updated covariance
matrices of each filter in the bank.

Fig. 1. Unaligned grids of points in the interval (x, y) ∈ [0.16, 0.34]× [0.03, 0.06].

Unfortunately, this strategy has some pitfalls and shows in practice a funda-
mental weakness: to be effective, the covariance matrix of (19), that should be
inverted to obtain P (k), becomes very ill-conditioned. However, it suggests an
alternative strategy that, as we will, see, gives nice results. Therefore, keeping
in mind the linear relation (16), in the next section we see how to extract a ref-
erence signal for the feed-forward action and then how to implement this action
in addition to the state-update due to the proportional KF gain (13), as usual,
indeed, in feedback control theory [12].

3.2 Feed-forward reference extraction

We must obtain a feed-forward reference from the output prediction error, that
actually contains also modelling and measurement errors, other than the effect
of forcing term estimation error. For this reason, the scheme (15), that uses
directly the output prediction error to drive the feed-forward action, is not ac-
curate if entirely used to compute the feed-forward action, as actually done in
(17) through the MPC matrix. Here, instead, in order to extract a feed-forward
reference signal from the output prediction error, and use it to drive the feed-
forward action, we compute the coefficients cmq of a linear combination of Mope

columns that approximates the output prediction error, i.e.:

Mopecmq = eoutpred (18)
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We must remember that Mope columns should represent all the nodes where a
forcing term should be estimated, and in this way it becomes singular. Note,
however, that the columns of Mope are output responses to point-wise loads;
hence, each component of cmq is the intensity of a point-wise load located in
a mesh node. This suggests an easy regularization scheme on (18) that gives a
solution cmq corresponding to a forcing term with some spatial properties, like
smoothness, sparsity, etc. In this way the regularization can be tuned accordingly
with the specific application, e.g. by exploiting the physical insight. In sec. 3.4 we
will propose a general solution. The solution cregmq of the regularized problem (21)
is then multiplied by a gain GFF and becomes the feed-forward contribution to
the state estimate x̂(k − 1) in (23), which is then used in the usual kalman Fil-
ter update (24)-(26). Therefore, the one-step Feed-Forward Augmented Kalman
Filter (FF-AKF) algorithm, extended from (6)-(9), becomes:

P (k) =
[(
Q(k − 1) +A(k − 1)P (k − 1)A(k − 1)T

)−1
+ CTR−1C

]−1

(19)

eoutpred = [C (A(k − 1) x̂(k − 1) +B u(k − 1))− ȳ(k)] (20)

Mreg
ope cregmq = eoutpred (21)

δx̂FF (k − 1) = GFF cregmq (22)

x̂FF (k) = A(k − 1) (x̂(k − 1) + δx̂FF (k)) +B u(k − 1) (23)

eFFoutpred = [Cx̂FF (k)− ȳ(k)] (24)

δx̂(k) = −P (k) CTR−1eFFoutpred (25)

x̂(k) = A(k − 1) x̂(k − 1) +B u(k − 1) + δx̂(k) (26)

Note that the feed-forward reference extraction made through the solution
of system (18) is blind, i.e. purely algebraic. This means that components of the
output prediction error which are due to modelling and/or measurement errors
may be confused with pointwise forcing term responses and represented, at least
partially, into the coefficients cmq. This would lead to an overestimate of the
overall forcing term and create an additional error diffused over the next output
prediction errors. For this reason, a safe tuning of the gain GFF is required and
seems a practical way to prevent the feed-forward action to create additional
noise. This will be confirmed also in the numerical experiments. The tuning of
GFF will be explained in the next sec. 3.3 making use of the maximum principle
for the heat equation.

3.3 Tuning the Feed-Forward gain GFF

It is easy to see that, according to the well known maximum principle for the
heat equation, the effect of an underestimated internal heat source (which is
a forcing term in the heat equation) of positive sign is a lower temperature
predicted at the boundary with respect to the real, measured, one. Then, to
tune conservatively the Feed-Forward gain GFF it may be chosen in such a way
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that the integral of the output prediction error be positive and above a (safety)
threshold. For negative heat sources it works the same way, symmetrically.

Moreover, an hysteresis mechanism is conveniently adopted to get a non-zero
GFF only if the output prediction error is significantly outside an interval of
oscillation where, inside, it may be reasonably dictated by only modeling and
measurement errors.

3.4 Regularization issues

We already said that the matrix Mope in (18) is singular and this is due to the
fact that it has groups of columns strictly proportional to each other and, im-
portant, corresponding to nodes aligned orthogonally to the measured boundary.
Therefore, any column in the same group can be picked up in the solution of
(18), obtaining the same residual. This means that it will be difficult to estimate
accurately the depth of the internal forcing term location, if the regularization
is blind. Also, no column selection method (sparse recovery or NLLS, see [6], for
a recent comparison, and references therein) can give us a good solution without
regularization. Then, in this problem, regularization is necessary. Actually, with
regularization we then gained a significant improvement from using NNLS, in
particular when the heat source is very localized, the regularization parameter
should be kept very small and column selection is useful also to solve the required
QR factorizations [7], see sec. 4.2.

For this reason, we adopt the subdivision of the nodes in unaligned sets, done
in sec. 3.1 (see Figure 1) and consider to solve a system like (18) for each set. It
means that each node in the same orthogonal line wrto the border is considered
alone in the approximation of the output prediction error, i.e. each depth is
considered independently from the others, and then the regularization optimize
the shape of the forcing term according to a general criterion.

To do this, we do not solve the (18)-like systems independently, but build a
block-diagonal matrix with the Mope,i matrices and regularize it. In this paper
we aim at estimating smooth forcing terms, so the regularization is made with
a discretization of the laplacian. Actually, we have tried also the TV regulariza-
tion with quite worse results, as expected for the forcing terms adopted in these
experiments, but not true in general. In section 4.2 it will be shown the contri-
bution of this block-diagonal formulation to the correct estimate of the depth of
the internal heat source (forcing term). We show also that without regulariza-
tion the solution concentrates in a greatly overestimated peak, not well centered
with the true forcing term, and then wildly oscillates. Indeed, there is a variety
of distributed forcing terms that can describe a generic output prediction error,
in the problem here considered.

Finally, a consideration must be made about the λ coefficient which weights
the regularization term: even knowing the true value of the forcing term, the
optimization of λ is not trivial; in particular, optimizing λ at each iteration to
minimize the estimation error of the forcing term brings to poor results. This
will be future work.
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4 Numerical experiments

In this section, some numerical experiments are described to give a practical evi-
dence of the algorithmic ideas previously presented. In all the following examples,
experimental temperatures are simulated numerically, while intensive tests have
been done in our previous work [5] to validate the model settings. A note about
“inverse crimes": here we are solving the inverse problem using the same model
that has generated the data, which is considered an inverse crime. Actually, we
are interested in exact reconstructions which are non trivial, and the simplified
setting we use is adequate to make significant comparisons, see the interesting
discussion in the white-paper of Wirgin [20]. In a real, specific application one
should then compare with data containing also model and measurement errors,
to validate the practical accuracy of his method in the specific application.

Let us describe the model settings, where the following values of constants
are used: tf = 1.51 s, L = 0.1 m; ρC = 3.2 · 106 J

m3 ◦C , k = 3.77 · 103 W
m◦C . The

initial condition is set to T0(·) = 20◦C. In this section an Implicit Euler method is
adopted for the time discretization, using a temporal step ∆t = 0.0005 in (0, 0.1]
and ∆t = 0.05 in (0.1, tf ]. A P1-FE method is used for space discretization,
whose step length along y is hy = 0.01 m, hx = hy. The sensors are supposed
to be in the middle of each mesh edge in the instrumented boundary segment.
Numerical experiments have been carried out using Matlab. As a general forcing
term we have used a gaussian forcing term fϑ with unknown variance and point
of application. In the following subsections we see some relevant experiments.

4.1 Inadequacy of the KF proportional action with a diffusive gain

Fig. 2. The true forcing term fϑ (left) and its estimate by the standard Augmented
Kalman Filter (right) on a rectangular domain (x, y) ∈ [0, 1]× [0, 0.1].

The ability of the proposed feed-forward scheme to adequately estimate the
intensity and location, and in particular the depth, of localized internal forcing
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12 F. Marcuzzi

terms, is exemplified in Figure 2. We see on the right that, without the con-
tribution of the inverse model of the propagation between pointwise load and
output prediction error, described from matrix Mope in sec. 3.1 and used in the
FF-AKF algorithm (19)-(26), the estimate of the forcing term is concentrated
close to the measured boundary, i.e. in completely wrong position, even if the
output prediction error is converging (not shown). On the contrary, in the next
section we will show the effectiveness of the feed-forward action, in the same
experiment settings.

4.2 The effect of regularization and block-diagonal reference
extraction

Fig. 3. Zoom in the interval (x, y) ∈ [0.2, 0.3] × [0.01, 0.09] of the true heat source fϑ
(Top-left), its estimate with no regularization (Top-right), the estimate with a regu-
larized NNLS solution (Bottom-left) and the estimate with a regularized OLS solution
(Bottom-right).

In Figure 3 we see a zoom of the small portion of the domain where is located
the unknown heat source (the whole domain is shown in Figure 2) and the
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corresponding estimates with the FF-AKF algorithm (19)-(26) using/not-using
regularization and column selection algorithms. The best result is obtained with
regularization and a NonNegative Least Squares (NNLS) solution (Bottom-left).
Note that without regularization (Top-right) the magnitude and the support
of the estimated forcing term are quite wrong, and with an Ordinary Least
Squares solution (Bottom-right) the estimate leaks out from the support of the
true forcing term; this is bad also for a correct reconstruction of the temperature
field inside the body.

Fig. 4. Top-left: estimate of fϑ with a regularized OLS solution with the block-diagonal
augmented scheme after a few time-steps (same as Figure 3 Bottom-right); Bottom-left:
the same estimate after 40 time-steps; Top/Bottom-right: same as Top/Bottom-left but
without the block-diagonal augmented scheme.

In Figure 4 we see the effectiveness of the block-diagonal augmented scheme
for feed-forward action determination. On the left, we see the estimated forcing
term with a feed-forward action adopting the block-diagonal formulation de-
scribed in sec. 3.4, after 5 step (Top) and after 40 time-steps (Bottom), showing
a good accuracy and stability of the estimate. On the right, we see the esti-
mated forcing term without the block-diagonal formulation after 5 time-steps
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14 F. Marcuzzi

(Top): here it is evident that the nodes closer to the boundary are preferred,
thus creating a strong bias on the values and location of the estimated forc-
ing term. On the Bottom-right, we see the estimated forcing term without the
block-diagonal formulation after 40 time-steps: here the effect of this bias is am-
plified by the fact that it has created a too big perturbation in the internal field
temperature, that then induces an artifact in the forcing field estimation, in the
process of minimizing the output prediction error.

5 Discussion and Conclusions

In this paper we have seen a class of models where many state-variables are not
measured and many different combinations of them have quite similar effects
on the measured ones. This is often the case with augmented state variables.
These observability issues [11], cause a non-unique state estimate and the loss
of physical interpretability for the computed one. For example, in Figure 2 the
standard AKF misses completely the right location and shape of the physical
forcing term. The feed-forward technique here proposed, drives the correct es-
timate through additional information about the physical model. Observability,
on the other side, is an algebraic property of the discrete dynamical system and
a future direction could be to see if something rigorous can be said about the
increase of observability given by this feed-forward technique.

Moreover, this feed-forward technique opens-up a broad range of applications,
where the distributed forcing term to be estimated is virtual but equivalent
to other kind of unknown perturbations of the system, that are so indirectly
estimated, see e.g. [10] [5]; the computational advantage of this analogy is to
solve an original nonlinear (e.g. geometric) inverse problem through an equivalent
linear inverse problem.
The code of the FF_AKF algorithm is available upon request to the author.
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