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Abstract. Recent rapid advancements in high-throughput sequencing
technologies have made it possible for researchers to explore the micro-
bial universe in high degrees of depth that were not possible even few
years ago. Microbial communities occupy numerous environments ev-
erywhere and significantly impact the health of the living organisms in
their environments. With the availability of microbiome data, advanced
computational tools are critical to conduct the needed analysis and al-
low researchers to extract meaningful knowledge leading to actionable
decisions. However, despite many attempts to develop tools to analyze
the heterogeneous datasets associated with various microbiomes, such
attempts lack the sophistication and robustness needed to efficiently an-
alyze these complex heterogeneous datasets and produce accurate results.
In addition, almost all current methods employ heuristic concepts that do
not guarantee the robustness and reproducibility needed to provide the
biomedical community with trusted analysis that lead to precise data-
driven decisions. In this study, we present a network model that attempts
to overcome these challenges by utilizing graph-theoretic concepts and
employing multiple computational methods with the goal of conduct-
ing robust analysis and produce accurate results. To test the proposed
model, we performed the analysis on plant microbiome datasets to obtain
distinctive functional modules based on key microbial interrelationships
in a given host environment. Our findings establish a framework for a
new understanding of the association between functional modules based
on microbial community structure.

Keywords: Precision agriculture, plant microbiomes, robust analysis,
network models, graph algorithms

1 Introduction

Numerous studies have shown that the health of all living organism is under-
pinned by the many roles of microbiome in their environments. New technologies
have revolutionized the way we understand these little microbes, encompassing
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interactions between the microbes, that perform vital functions, both individu-
ally and as a group. For the human host, many clinical conditions interact with
microbes that impact developmental conditions for early childhood, quality of
life in aging, and everything in between. Besides human microbiome research,
understanding the impact of plant microbiomes on plant growth, health, and
productivity have also gained significant attention recently. This is again due to
the advancement in high-throughput technologies and the consequent availabil-
ity of the data required to study such impact. Studying the impact of microbial
composition and their properties in plants represent an opportunity to develop
and improve proposed methodologies, considering that plant environments are
relatively more accessible and easier to manage, as compared to those associ-
ated with humans. All living organisms in our ecosystems continue to evolve
together. Such co-evolution is influenced by the intra-relationship among mi-
crobes and inter-relationship with their surrounding environment. Plants also
host their own microbial communities, and they are influenced by a wide range
of ecological interactions such as symbiotic, competitive, neutral, and mutualistic
relationships [6], [17].

Several previous studies have identified microbial interactions that form im-
portant microbiomes and are essential for promoting plant growth and mod-
ulating disease outbreak [3], [4]. Considering the complexity of the nature of
microbiome data, researchers have attempted to model and study the relation-
ship of plant phenotype with their microbiome using various computational and
statistical methods [15]. In accordance with a rapid advancement in technologi-
cal capabilities, machine learning-based and deep learning-based methods have
been applied in recent studies to study the impact of the microbiome on plant
growth [7], [11].

Co-occurrence network-based analysis represents one of the powerful analy-
ses. This approach explores these significant co-occurrence patterns of microor-
ganisms. It has become a widely adopted method in ecological studies [2]. Such
co-occurrence patterns are significant in the understanding of microbial com-
munity structure and are utilized for the potential prediction of species inter-
actions in associated environments [5]. To measure these patterns, correlation
coefficients or mutual information measures are often used to identify significant
microbial abundance relationships. For example, an association network infer-
ence tool (CoNet) provides multiple types of network inference methods, and the
ensemble approaches to network inference were proposed to increase the network
accuracy [8]. Current computational and bioinformatics tools, including CoNet,
are required to have their own parameters and, in many cases, specific thresholds
to solve an each computational biology problem. However, it is a major challenge
in Biomedical Informatics to find the optimal parameters for each case study. In
order to minimize the accuracy concerns of the obtained results, it is critical to
have a robust approach that limits the impact of the imperfections associated
with heuristic steps and/or randomly selected thresholds.

In this study, we focus on addressing two research questions: 1) How to
capture the distinctive and impactful microbial interactions in the co-expression
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networks from raw microbial abundance data in a given environment. 2) How to
develop a precise and robust approach for mining accurate microbial associations
with relation to functional modules. To address these two issues, we present
a new computational pipeline as the central component of a robust analysis
in order to have a better understanding of the significant associations among
functional modules and host plants based on microbial community structure.
In addition, multiple computational methods or algorithms will be employed to
model and solve such complex problems to avoid or limit the impact of selecting
a computational approach on the outcome of the study. We argue that this
will potentially lead to more trustworthy results that are less influenced by the
characteristics as well as limitations associated with each computational tool.

2 Methods

2.1 Overview of Workflow

This pipeline takes in microbial abundance data together with phenotypical
properties and returns 1) Highly associated bacteria in a given environment;
2) Operational taxonomic unit pairs (OTUs-pairs hereafter) specific to samples
from higher and lower percentile of a phenotypic property (in this study ‘total
biomass’); and 3) Functional modules enriched in these groupings. The entire
workflow of the proposed method is shown in Figure 1. It consists of four compo-
nents: Identification of microbial association networks using multiple statistical
methods, discovery of bacteria of interest based on phenotypical characteristics,
functional enrichment analysis, and comparative analysis.

2.2 Data Description

In this study, we employed bacterial abundance data and associated metadata
obtained from collaborators at the University of Nantes. The dataset comprised
relative abundance of bacterial OTUs at the genus level across Medicago trun-
catula plant samples, along with metadata detailing 16 phenotypical parame-
ters related to plant growth, such as estimated quantity of nitrogen and total
biomass. Genus names were standardized using the NCBI taxonomy database
[9]. Additionally, we acquired two sets of functional reference information for en-
richment analysis based on the genus list derived from the abundance data. The
first reference was generated using Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) bioinformatics software, pro-
viding counts of KEGG Orthologs (KOs) for referenced taxa [13]. The second
reference contained information on pathway modules, representing functional
units of gene sets in metabolic pathways, retrieved using KEGG REST API in
a Unix environment. This experimental dataset was employed as a case study
to test the proposed methodology. All steps of the computational approach are
designed and implemented to address similar scenarios in various applications.
Hence, we suggest that our approach can be extended by incorporating addi-
tional datasets from diverse domains.
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Fig. 1. Overview of the pipeline. The pipeline consists of four main components: 1)
Construction of co-expression OTUs networks in a given environment; 2) Identifica-
tion bacteria of interest; 3) Functional modules enrichment analysis; 4) Comparison
analysis.

Fig. 2. Detection of distinctive OTUs pairs through Approaches A and B.

2.3 Biological Feature Grouping

Given that the input attributes of each plant included the total biomass, we ob-
served differences in the total biomass across plant samples, presuming it reflects
plant health. Also, assuming that each percentile point of the total biomass may
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indicate the host phenotypical conditions, the microbial abundance data were
grouped into 49 percentile points of the total biomass. Six percentile points were
selected for data subset, ensuring statistical robustness. Therefore, samples above
the 74th, 80th, and 86th percentiles were categorized as high biomass, while those
below 14th, 20th, and 26th percentiles were categorized as low biomass.

2.4 Co-expression Network Analysis

Microbial co-expression networks were constructed from the OTUs abundance
data, considering the association between each pair of OTUs within both sample
groups. We employed two established co-expression measures: rank correlation
coefficients and mutual information. These analyses were conducted using R.

Spearman Rank Correlation-Based Network
The Spearman rank correlation matrices were computed from the OTUs abun-
dance data within each sample group, utilizing the ‘corr.test’ function in the
psych package with Bonferroni correction applied. The correlation coefficient
rank values, ranging from -1 to 1, were sorted from positive to negative for
subsequent analysis.

Mutual Information-Based Network
For the Mutual Information-based network, the shared information between
OTUs was estimated using mutual information (MI). Prior to MI calculation, the
relative abundance data of OTUs were discretized using the ‘discretize’ function.
MI was then computed using the ‘mutinformation()’ function. These analyses
relied on the infotheo package. Following computation, all co-expression pairs in
each analysis were filtered based on Top-N-ranking (Top 50, 70, and 100). This
resulted in dataframes of 50, 70, and 100 bacterial pairs, respectively, prepared
for further analysis.

2.5 Characterizing Robust Biological Functions

The proposed pipeline consists of two component workflows designed to charac-
terize the biological functions of Top-N-ranking OTUs pairs using KEGG mod-
ules (see Figure 2).

In the first component (shown in Approach A), for each of the Top-N-ranking
OTUs pairs, we identify an intersection of microbial associations across high
biomass groups (74%, 80%, and 86%) and low biomass groups (14%, 20%, and
26%), respectively. The microbial communities based on these common microbial
associations were considered bacteria of interest for functional enrichment anal-
ysis. The union of functional modules enriched in all Top-N-ranking defined as
the high and low biomass functional features. In the second component (shown
in Approach B), beginning with each Top-N-ranking OTUs pairs, we analyzed
each of the OTUs pairs in the individual percentile group of the high and low
biomass. Subsequently, the high and low biomass functional features sets at each
Top-N ranking were obtained by the union of functional modules enriched in all
three percentiles of the high and low biomass groups.
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2.6 Comparison of OTUs Pairs Underlying KEGG modules

For each co-expression method, we compared the union modules from the high
and low biomass groups and identified distinctive functional modules in each
group. The intersection of these unique functional modules derived from two
co-expression methods are used for further analysis. The OTUs annotated with
these common distinctive functional modules are labeled as driver OTUs. OTUs
associated with the driver OTUs were captured from both high and low biomass
groups and were represented as networks. To visualize the networks, R package
igraph was used. Next, we compared the dynamic change of relationships between
driver OTUs in the high and low biomass group networks.

2.7 Bacterial Functional Enrichment Analysis

To identify functional pathways that are over-represented in any given OTUs list
of interest, we performed an enrichment analysis. A fisher’s exact test (‘phyper’
function in R environment) was used to identify pathways enriched in the OTUs
list of interest from Top-N-ranking OTUs pairs. Table 1 illustrates a contingency
table with a KEGG module (M00001 Glycolysis) as an example. In this case, the
40 OTUs of interest have been analyzed. A total count of known KEGG modules
and the total count of background OTUs are also required for this comparison.

Table 1. An example contingency table for enrichment analysis.

Present Absent Total

Present in KEGG module 40 0 40 (OTUs of interest)

Absent in KEGG module 320 1 321

Total OTUs in KEGG module 360 1 361 (Total OTUs)

For all enriched functional modules in high and low biomass groups, we identi-
fied the overlapping of these modules using a Venn diagram. The ‘venn.diagram()’
function in R was implemented for this analysis.

3 Results and Discussion

3.1 A Comparison of Networks in High and Low Biomass Groups

We collected the Jaccard similarity index (J.I) for comparing Top-N-rank analysis-
ready OTUs pairs at each percentile point (see Table 2). The Jaccard similarity
index was computed based on the edges, and Table 2 presents a summary of the
similarity between networks within and between high and low biomass groups.
Notably, within high biomass (74th, 80th, and 86th percentiles) and low biomass
groups (14th, 20th, and 26th percentiles), we observed high degrees of similarity.
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Despite the relatively homogeneous microbial abundance data, distinct similar-
ity patterns emerged between high and low biomass groups of OTU pairs in
the Top-N rankings. These findings suggest that the thresholds for high or low
biomass groups minimally affect the overall results, indicating a high level of
robustness in our approach.

Table 2. Jaccard similarity index (J.I ) for comparison of network in high and low
biomass groups.

Network comparison within high biomass group

Range of high (H) biomass groups J.I in Top50 J.I in Top70 J.I in Top100

74th and 80th percentile 0.79 0.75 0.83

80th and 86th percentile 0.56 0.59 0.60

74th and 86th percentile 0.52 0.51 0.57

Network comparison within low biomass group

Range of low (L) biomass groups J.I in Top50 J.I in Top70 J.I in Top100

14th and 20th percentile 0.75 0.73 0.74

20th and 26th percentile 0.61 0.63 0.60

14th and 26th percentile 0.64 0.71 0.67

Network comparison between groups

Range of H and L biomass group J.I in Top50 J.I in Top70 J.I in Top100

74th and 26th percentile 0.45 0.41 0.38

80th and 20th percentile 0.47 0.41 0.42

86th and 14th percentile 0.39 0.33 0.29

3.2 Co-expression Networks Analysis

Table 3 provides an overview of the obtained networks, including their size pa-
rameters and densities. It reports the total count of vertices and edges present in
our co-expression networks. The edges in these networks are undirected and rep-
resent associations between vertices, which signify bacterial communities. Edge
density reflects the ratio of actual edges in the network to the total possible edges,
calculated as n(n-1)/2. Here, we present the network descriptions of Spearman
rank correlation-based networks in Top 50, 70, and 100.

3.3 Characterization of Distinctive KEGG Modules in High and
Low Biomass Groups

We begin with each of the Top-N-ranking OTUs pairs derived from co-expression
networks to implement our proposed methods (Approach A and B). The two
approaches are independent of one another, each having its own benefits and
limitations. The Approach A consists of common OTUs pairs from different
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Table 3. Summary of the spearman correlation-based networks at different percentile
of the total biomass (V= Vertices, E= Edges, D= Edge density).

Top50 Top70 Top100

Percentile V E D V E D V E D

74th 54 50 0.03 63 70 0.04 76 100 0.04

80th 52 50 0.04 64 70 0.03 75 100 0.04

86th 55 50 0.03 72 70 0.03 79 100 0.03

14th 53 50 0.04 69 70 0.03 88 100 0.03

20th 51 50 0.04 65 70 0.03 80 100 0.03

26th 53 50 0.04 61 70 0.04 78 100 0.03

percentiles followed by the union of functional modules enriched in Top-N-ranks.
On the other hand, the Approach B includes functional modules enriched in all
percentiles with Top-N-ranks.

Through each approach, we first compared the number of distinctive signif-
icant functional modules underlying both high and low biomass groups shown
in a Venn diagram (see Figure 3). Figure 3 effectively illustrates the number of
unique functional modules for both high (blue) and low (pink) biomass groups
obtained from the usage of two approaches (Approach A and B) and two co-
expression analyses. The first row of Figure 3 is the result of the comparison
between Spearman analysis (left) and mutual information (right) through the
Approach A. In a similar manner, the second row depicts the comparison result
from the Approach B.

Fig. 3. KEGG modules are identified in high (H) and low (L) biomass groups. First row
is the Venn diagram results in Spearman analysis on the left and mutual information
on the right from Approach A. Second row has the same order of information as the
first row, but from Approach B.
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Table 4. List of distinctive KEGG functional modules in High (H) and Low (L)
Biomass groups.

Approach A

M00159 V-type ATPase, prokaryotes
M00529 Denitrification, nitrate ⇒ nitrogen

High M00567 Methanogenesis, CO2 ⇒ methane
M00736 Nocardicin A biosynthesis, L-pHPG + arginine + serine ⇒
nocardicin A
M00804 Complete nitrification, comammox, ammonia ⇒ nitrite ⇒ ni-
trate

M00091 Phosphatidylcholine (PC) biosynthesis, PE ⇒ PC
Low M00745 Imipenem resistance, repression of porin OprD

Approach B

High M00754 Nisin resistance, phage shock protein homolog LiaH

M00152 Cytochrome bc1 complex
M00555 Betaine biosynthesis, choline ⇒ betaine

Low M00564 Helicobacter pylori pathogenicity signature, cagA pathogenic-
ity island
M00721 Cationic antimicrobial peptide (CAMP) resistance, arn-
BCADTEF operon

Incorporating both approaches serves the dual purpose of ensuring highly
confident results and retaining significant information. Approach A reveals five
distinctive functional modules in the high biomass group, whereas only two dis-
tinctive modules are observed in the low biomass group. Likewise, in Approach
B, only one functional module was identified in the high biomass group, whereas
four exclusive functional modules were represented in the low biomass group (re-
fer to Table 4). Notably, upon comparing these two approaches, no overlapping
distinctive functional modules were observed.

In Table 4, the denitrification process (M00529), an exclusive functional mod-
ule of high biomass group, is a known primary pathway for nitrogen (NO) pro-
duction by bacteria, which promotes energy to the cell under low oxygen con-
ditions [19],[12]. On the other hand, Phosphatidylcholine (PC) biosynthesis is a
pathway exclusive to the low biomass group. The significance of phosphatidyl-
choline (PC) in bacteria with an emphasis on multiple ecological microbe-host
plant interactions have been revealed in a number of studies [1].

This evidence suggests that distinctive functional modules are associated
with specific plant health groups. However, this work presents preliminary re-
sults characterizing functional modules of high and low biomass groups. The
biological association between these groups may be more complex than initially
observed. It’s possible that these functional modules may occasionally contribute
to opposite health conditions.
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10 Kim et. al

Fig. 4. Comparison of dynamics of OTUs pairs underlying the denitrification process
(M00529) in high (H) and low (L) biomass networks. Driver OTUs nodes are red and
their neighbor nodes are yellow. Edges are colored by percentile of samples: 74th and
14th percentile (red), 80th and 20th percentile(green), and 86th and 26th percentile
(turquoise).
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Fig. 5. Comparison of dynamics of OTUs pairs underlying the dhosphatidyl-
choline(PC) biosynthesis (M00091) in high biomass (H) and low biomass (L) networks.

3.4 Comparison of Dynamics of OTUs Pairs Underlying KEGG
Modules

To comprehend the biological significance of identifying distinctive functional
modules in OTU pairs, we examined how the dynamics of association between

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_5

https://dx.doi.org/10.1007/978-3-031-63778-0_5
https://dx.doi.org/10.1007/978-3-031-63778-0_5


12 Kim et. al

driver OTUs, derived from functional modules, varied in high and low biomass
networks. Specifically, we compared the representation of association dynamics
between driver OTUs involved in the denitrification process (M00529) across
Top-N-ranking high and low biomass groups (see Figure 4). We hypothesized
that these driver OTUs’ relationships might serve as key OTU pairs within
functional modules related to host environmental conditions. The differing rep-
resentation of association dynamics between driver OTUs across Top-N-ranking
networks in high and low biomass groups is illustrated in different rows of Figure
4. We posited that the relationship between driver OTUs could serve as crucial
pairs within functional modules associated with host environmental conditions.
The representation of this relationship differs across Top-N-ranking networks
between high and low biomass group networks, as depicted in different rows of
Figure 5.

In addition, the microbiome community among Flexibacter, Flavisolibacter,
Opitutus, and Terrimonas are commonly represented in both high and low
biomass networks across Top-N-ranks. However, these microbes are consistently
associated with Niastella only in a high biomass group network. Moreover, each
of following pairs, the group of Longilinea and Nitrosococcus, the group of Aci-
dovorax and Anaerolinea, the group of Desulfobulbus and Nitrospira, have shown
strong correlations in high biomass group networks whereas the relationship of
these pairs are not represented in low biomass group networks. In particular, the
Dyadobacter has shown exclusive associations with Rhizobium in high biomass
group networks. Rhizobium is one kind of rhizosphere bacteria, which is also
known as plant beneficial microbes, and can establish a symbiotic relationship
with legumes species [10]. It can fix atmospheric nitrogen to help plant growth
and improve soil fertility. The Dyadobacter is also known as core rhizosphere
bacteria [18]. Therefore, it could be inferred that these driver OTUs pairs may
have the potential to facilitate plant health and disease suppression.

Figure 5 illustrates the network comparisons of the association between driver
OTUs derived from phosphatidylcholine (PC) biosynthesis (M00091) in high
and low biomass groups. The M00091 module was commonly enriched in both
Spearman analysis and mutual information and was distinctive to low biomass
groups. The relationship between Bosea and Nocardioides is depicted differently
in high and low biomass group networks. This OTUs pair constantly appears in
low biomass group networks, while this pair has shown an indirect relationship
through Solirubrobacter in the high biomass group (See Figure 5). The Bosea
belongs to non-rhizobial endophytes (NRE), which were also detected in nodules
of legume species, although it does not have a similar function like the rhizo-
sphere bacteria group [14]. This suggests that they might cause the rhizobial
infection when co-inoculated with rhizosphere microbial communities [14], [16].

4 Conclusion

In this study, we introduced a new approach for modeling and analyzing het-
erogeneous datasets associated with microbiome. Our proposed pipeline aims to
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mine microbial associations in relation to functional modules in a given envi-
ronment. The pipeline is designed with robustness in mind in order to achieve a
high degree of accuracy and trustworthiness. Our proposed approach facilitated
the identification of distinct functional modules based on key OTUs pairs in a
given health condition. The result produced by this pipeline highlighted the as-
sociation between distinctive functional modules and legume species on the basis
of key OTUs pairs in both high and low biomass samples. The obtained findings
are consistent with previous relevant results reported in the literature. There is a
great potential to further develop the proposed approach to analyze microbiome
in different environments in future studies. The model presented in the reported
study can serve as a framework within which future modifications, in line with
choosing percentiles based on given phenotypical factors with different types of
microbiome data, can be easily incorporated.
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