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Abstract. Graph embeddings have emerged as a powerful tool for repre-
senting complex network structures in a low-dimensional space, enabling
efficient methods that employ the metric structure in the embedding
space as a proxy for the topological structure of the data. In this paper,
we explore several aspects that affect the quality of a vertex embedding of
graph-structured data. To this effect, we first present a family of flexible
distance functions that faithfully capture the topological distance between
different vertices. Secondly, we analyze vertex embeddings as resulting
from a fitted transformation of the distance matrix rather than as a di-
rect result of optimization. Finally, we evaluate the effectiveness of our
proposed embedding constructions by performing community detection
on a host of benchmark datasets. The reported results are competitive
with classical algorithms that operate on the entire graph while benefit-
ting from a substantially reduced computational complexity due to the
reduced dimensionality of the representations.

Keywords: Graphs · Embeddings · Graph drawing · Community detec-
tion.

1 Introduction

Low-dimensional metric embeddings of non-metric data play a crucial role in var-
ious domains of computer science, e.g.: a) machine learning, where probabilistic
generative models are constructed to capture variability through low dimensional
factors [53,26]; b) natural language processing, where symbolic/text data is rep-
resented vectorially in order to facilitate learning of statistical dependencies [50];
c) information retrieval, where embeddings allow for efficient search [6]; d) data
visualization, where complex, high-dimensional data is represented in a two-
or three-dimensional space [8]. Crucially, low-dimensional embeddings of data
mitigate the computational and statistical challenges collectively referred to as
the curse of dimensionality.

Graph embeddings present a particularly interesting potential application
since the data is inherently non-metric and high-dimensional while simultaneously
being of tremendous practical interest, due to the ubiquity of graphs in various
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domains, e.g.: social networks, biological networks, energy grids, and knowledge
graphs [24,38]. Addressing the challenges posed by ‘graph problems’ requires
faithful and compact representations of the data, i.e. they should retain informa-
tion about important structural properties and allow flexible, computationally
efficient use for downstream processing/tasks.

Graph embeddings have been widely studied; past approaches include spec-
tral embeddings, graph kernels, multi-dimensional scaling (MDS), locally linear
embedding (LLE), and Laplacian eigenmaps (LE)[56,2]. Recently, graph neural
networks (GNNs) have emerged as an empirically successful model class, which
offers improved scalability and more flexible processing of the embeddings [56].

In this work, we introduce a novel method for representing graph-structured
data in low-dimensional metric spaces, which combines the efficiency of optimizati-
on-based embeddings and the expressiveness of neural network-based approximate
to accurately reflect the topological distances within the graph. By framing
the embedding of vertices as an optimization problem, we parametrize the
embedding using a small neural network, to regularize the resulting representation.
Furthermore, our formulation can accommodate various distance functions, which
allows us to adapt the geometry of the embedding space to better reflect the
structure of the original graph. The resulting embeddings offer a compact yet
faithful representation, which combined with off-the-shelf clustering algorithms
allow us to effectively identify communities within the graph. Our approach not
only ensures a more favorable computational and statistical scaling, comparable
to that of Graph Neural Networks (GNNs) but also provides a highly expressive
representation of the graph structure, capturing the intricate relationships and
distances within the data.

2 Related work

The body of research on embeddings is extensive and has a long history. Con-
sequently, we begin by recalling foundational results before providing a concise
overview of the methodologies presently in use. For a comprehensive review
see [56,60].

Historically, the graph embedding problem has been initially studied in the
context of dimensionality reduction and data visualization, while preserving
important structural properties of the data. Seminal examples of such methods
include PCA, graph kernels [9], Laplacian eigenmaps [4], Isomap [49], LLE [43],
maximum variance unfolding [55], t-SNE [32], LargeVis [48], UMAP [34], and
the latent variable models (LVM).

[2] introduced minimum distortion embeddings as a unifying framework that
subsumes all of the previously mentioned methods, except t-SNE and LVM. In
their formulation, low-dimensional embeddings are constructed by minimizing
the distortion of pairwise distances between data points in the original and the
embedded spaces. Independently, [23,10,31,21] have shown that an m-dimensional
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embedding of graph with n vertices incurs a distortion of order O (log n), where
m is O

(
log2 n

)
. Remarkably, the landmark results of Johnson, Lindenstrauss, and

Bourgain [31] not only provide the mathematical foundation of low-dimensional
representations of data but also have led to the development of fast, randomized
algorithms.

Currently prevalent algorithmic approaches present a variety of design op-
tions. An initial consideration requires the specification of a geometry for the
embedding space; potential choices include hyperbolic [40,28,44], spherical [2],
and vector embeddings. The latter are compatible with a wide range of machine-
learning algorithms and have proven versatile in disparate domains [35,30], and
model classes, e.g.: Node2vec [19]; graph neural networks [51,17]; Isomap [49];
M-NMF [54]. Among these, we distinguish graph neural networks (GNNs)

[51,17,36] due to their wide-spread adoption, and ability to directly learn em-
beddings from graph-structured data. GNNs are predominantly trained in a
supervised or semi-supervised fashion [27]; optimizing a node classification loss,
potentially augmented by auxiliary terms, e.g. reconstruction error or noise con-
trastive estimate [52,11,13]. The resulting algorithms have proven to be efficient,
and empirically successful when applied to tasks such as graph regression, node
classification, and link prediction [15].

Comparatively, the use of GNNs for community detection has been relatively
underexplored [46], despite the pivotal role that communities play in understand-
ing the structure of biology, social, and economic networks [57]. In this context,
the applicability of GNNs is curtailed by their reliance on labeled data, which is
often unavailable or requires cost-intensive curation.

Classically, clustering algorithms have been used to address the community
detection problem, e.g.: Girvan-Newman [18], Louvain [7], and spectral cluster-
ing [41] algorithms. More recent approaches, e.g. [46,22], use GNN’s to construct
an embedding of the data, which is then post-processed using an off-the-shelf
clustering algorithm, such as mean shift [29], DBSCAN [16], HDBSCAN [33],
Birch [59], OPTICS [3], AffinityPropagation [47], AgglomerativeClustering [39].
Our proposed approach improves on GNN approaches by offering a lightweight
neural network model, that can be optimized efficiently without label supervision.

Recent studies citing Agrawal’s work underscore its relevance across diverse
biological research areas. For example, research highlighting the pitfalls of extreme
dimensionality reduction in single-cell genomics– [12] leverages Agrawal’s insights
to critique conventional visualization techniques, advocating for targeted embed-
ding strategies for more meaningful biological analysis. Similarly, an integrated
single-cell dataset study of the hypothalamic paraventricular nucleus (PVN)
[5] applies Agrawal’s principles to achieve a nuanced molecular and functional
classification, revealing the complexity of neuroendocrine regulation. Additionally,
advancements in brain-wide neuronal activity recording through blazed oblique
plane microscopy, as detailed in a study from Nature [20], demonstrate the
utility of Agrawal’s work in bridging cellular and macroscale understanding. This
particular study challenges the prevailing view that higher resolution is invariably
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superior, illustrating the impact of Agrawal’s contributions to enhancing our
understanding of complex biological systems.

3 Problem statement

We consider a graph given by a set of vertices, V = {v1, . . . , vn}, where |V | = n
is the order of the graph. Given a fixed, we represent the shortest path length
between pairs of vertices as the matrix D ∈ Rn×n

+ . These shortest distances may
be based on unitary distances between adjacent vertices but also on any positive
distances between adjacent vertices. In the present study, we focus exclusively on
undirected graphs; therefore, D is symmetric. In the case of disconnected graphs,
we assume the topological distance between vertices in different subgraphs is
equal to the maximum distance between vertices in the same subgraph plus one.

The problem is to assign an embedding, ei ∈ Rm, to each vertex vi ∈ V , in
such a way that the approximate equality

d(ei, ej) ∼= Di,j (1)

holds for each i, j ∈ {1, . . . , n}, where d(·, ·) is a certain distance in Rm , e.g., the
Euclidean distance.

4 Method

4.1 Embeddings as solution to optimization problem

Following [2], we obtain the embeddings ei (1) as a solution to an optimization
problem which minimizes the average discrepancy between d(ei, ej) and Di,j :

[e1, . . . , en] = argmin[e1,...,en]

2

n(n− 1)

n∑
i=1

i−1∑
j=1

L(d(ei, ej), Di,j). (2)

These discrepancies, denoted above by L(·, ·), may be absolute

L(d(ei, ej), Di,j) = (d(ei, ej) −Di,j)
2 (3)

or relative
L(d(ei, ej), Di,j) = (d(ei, ej)/Di,j − 1)2. (4)

4.2 Regularized embeddings

We notice that we can identify a vertex by a vector of distances to all vertices
in the graph, i.e., a row or column in the D matrix. This is because such a
vector contains only one 0, and its position identifies the vertex of the question.
Moreover, if two columns in the D matrix are similar, their respective vertices
are in similar distance to other vertices and are usually close. Therefore, their
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respective embeddings should also be close. Therefore, we consider the embeddings
as results of continuous transformations of the columns in the D matrix. This
continuity is a form of regularization that prevents the optimization process (2)
from getting stuck in a poor local minimum.

We consider the above transformation in the form of the deep neural network,

ej = f(D·,j ; θ), (5)

where f denotes the network and θ represents its weights. Then, to compute the
embeddings, we need to optimize the weights θ of the network:

θ = argminθ

2

n(n− 1)

n∑
i=1

i−1∑
j=1

L(d(f(D·,i; θ), f(D·,j ; θ)), Di,j). (6)

4.3 Distance functions

A

B C

D

Fig. 1. Simple square graph

Let us consider the graph in Fig. 1 to motivate the need for flexible distance
functions in the embedding space. The topological distance for adjacent vertices
equals 1, and for diagonally-opposite vertices equals 2. Under an ℓ2 distance,
there is no possible arrangement of the embeddings ei in Rm that preserves Di,j .
If the distance between the adjacent vertex embeddings equals 1, the distances
between both pairs of opposite vertex embeddings cannot equal 2 at the same
time.

Let us consider a generalized distance formula

d(ei, ej) = ∥ei − ej∥κ, (7)

where κ ∈ [0, 2]. For κ = 1, (7) represents the Euclidean distance. Treating κ as
a parameter, we optimize it jointly, along with the vertex embeddings of each
graph.

Coming back to the graph in Fig. 1, let us consider m = 2 and the most
natural embeddings for the vertices: eA = [0, 0]T , eB = [0, 1]T , eC = [1, 1]T ,
eD = [1, 0]T . It is seen that for κ = 2, we have d(ei, ej) = 1 for each pair of
adjacent vertices and d(ei, ej) = 2 for each pair of the opposite vertices. This
exactly reflects the topological distances.

For an arbitrary graph, variable κ may improve the fitness of embeddings
measured by (3) and by (4). Additionally, optimizing κ to minimize the discrep-
ancy allows the model to adapt to the specific structure of the graph, which may
be beneficial for the quality of the embeddings.
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5 Experiments

Our experiments are centered on three key areas, which we have identified as
particularly compelling during the development of our method. These encompass
evaluating the quality of graph embeddings determined by the loss function,
generating graphs with embeddings produced by our method, and identifying
communities within graphs using our approach. The challenge of community
detection can be assessed through the modularity of the detected communities
and by comparing them to ground truth communities. Since we did not restrict
our benchmarks to sets of graphs exclusively comprised of community structures,
most of our measurements are based on the modularity metric.

To verify the neural netowrk approach, we used a multilayer perceptron
composed of four hidden layers with: 2048, 1024, 512, 256 neurons. Each hidden
layer uses the ReLU activation function.

5.1 Datasets

For graph analysis and modularity measurement, we employed TUDataset [37],
specifically opting for one graph set from each thematic category within the
dataset. The selected graph sets are as follows: MUTAG (small molecules),
ENZYMES (Bioinformatics), Cuneiform (Computer vision), IMDB-BINARY
(Social networks), and SYNTHETIC (Synthetic). These sets comprise graphs of
relatively small size and similar characteristics.

Additionally, we utilized the CORA dataset [45], which features a single,
large graph. For evaluating the community detection task, we employed two
specific graphs representing real-world communities: the Zachary Karate Club
[58] and American Football [18]. To visualize how different parameters affect final
embeddings, we employed American Revolution graph [1].

5.2 Graph analysis

This section is dedicated to presenting the results regarding the performance of
each analyzed method in preserving the actual topological distances between
graph nodes within the embedding space. We introduce two metrics, RMSE and
RMRSE (depending on the utilized loss function for generating embeddings),
defined for a single graph as follows:

RMSE =

√√√√ 2

n(n− 1)

n∑
i=1

i−1∑
j=1

(d(ei, ej) −Di,j)2 (8)

RMRSE =

√√√√ 2

n(n− 1)

n∑
i=1

i−1∑
j=1

(d(ei, ej)/Di,j − 1)2. (9)

To analyze both the RMSE and RMRSE measures, we compared two ap-
proaches: a predefined κ = 1 with a value of 1.0 (Table 1) and an automatically
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learned κ (Table 2). From both tables, we observe that the loss generally decreases
as the dimensionality of embeddings increases. This observation is expected, as
embeddings in higher-dimensional vector spaces can compress a graph’s nodes
to preserve topological distances for more complex graphs. However, for each
dataset, there is a specific limit embedding dimension above which its further
increase does not lead to any loss gain.

As seen in Table 1, the embeddings optimized directly provide us with worse
results than those produced by the fitted neural network. This is especially
visible for small embedding dimensions. The regularization introduced by the
neural network prevents the optimization of the embeddings from getting stuck
in local minima. For larger dimensions, the neural network does not introduce
any improvement. The only exception is the CORE graph, for which the network
could not learn a well-fitting transformation.

Comparing Table 1 with Table 2, we note that the automatically learned κ
parameter yields better results, usually by a large margin.

In the Table 3 we present values of the automatically learned κ parameter.
We see the κ usually increases with m. This relation reflects the increasing
difficulty in preserving the topological distances of vertices in embedding space
of a decreasing dimension. Notably, for large m, the optimal κ is usually well
above 1.

Method Dataset m=2 m=3 m=5 m=10 m=15 m=30 m=50

R
M

S
E

D
ir
e
c
t

MUTAG 0.38 ± 0.23 0.24 ± 0.04 0.24 ± 0.03 0.24 ± 0.03 0.24 ± 0.03 0.24 ± 0.03 0.24 ± 0.03
Cuneiform 0.58 ± 0.16 0.33 ± 0.13 0.17 ± 0.07 0.11 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.11 ± 0.02

SYNTHETIC 1.32 ± 0.04 0.94 ± 0.03 0.60 ± 0.01 0.44 ± 0.00 0.43 ± 0.00 0.43 ± 0.00 0.43 ± 0.00
ENZYMES 0.53 ± 0.71 0.30 ± 0.44 0.22 ± 0.28 0.20 ± 0.15 0.20 ± 0.11 0.20 ± 0.10 0.19 ± 0.10

IMDB-BINARY 0.38 ± 0.09 0.25 ± 0.06 0.15 ± 0.04 0.09 ± 0.03 0.07 ± 0.03 0.07 ± 0.04 0.07 ± 0.04
CORA 3.30 2.47 1.80 1.17 0.90 0.57 0.45

R
M

S
E

N
e
u
r
a
l MUTAG 0.29 ± 0.05 0.25 ± 0.04 0.25 ± 0.03 0.25 ± 0.04 0.25 ± 0.04 0.25 ± 0.03 0.25 ± 0.03

Cuneiform 0.55 ± 0.14 0.33 ± 0.12 0.18 ± 0.07 0.12 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 0.11 ± 0.02
SYNTHETIC 1.20 ± 0.05 0.88 ± 0.03 0.60 ± 0.00 0.44 ± 0.00 0.44 ± 0.00 0.44 ± 0.00 0.44 ± 0.00
ENZYMES 0.34 ± 0.22 0.26 ± 0.14 0.24 ± 0.11 0.23 ± 0.10 0.23 ± 0.10 0.23 ± 0.10 0.24 ± 0.12

IMDB-BINARY 0.38 ± 0.09 0.26 ± 0.06 0.16 ± 0.04 0.09 ± 0.03 0.08 ± 0.04 0.08 ± 0.04 0.08 ± 0.04
CORA 2.28 1.82 1.53 1.35 1.40 1.45 1.45

R
M

R
S
E

D
ir
e
c
t MUTAG 0.12 ± 0.03 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01

Cuneiform 0.24 ± 0.04 0.14 ± 0.05 0.09 ± 0.03 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01
SYNTHETIC 0.38 ± 0.01 0.29 ± 0.01 0.21 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.17 ± 0.00
ENZYMES 0.15 ± 0.05 0.10 ± 0.04 0.09 ± 0.03 0.09 ± 0.03 0.09 ± 0.03 0.09 ± 0.03 0.09 ± 0.03

IMDB-BINARY 0.29 ± 0.04 0.20 ± 0.04 0.12 ± 0.03 0.08 ± 0.02 0.06 ± 0.03 0.06 ± 0.03 0.06 ± 0.03
CORA 0.44 0.34 0.23 0.12 0.09 0.08 0.08

R
M

R
S
E

N
e
u
r
a
l MUTAG 0.11 ± 0.01 0.10 ± 0.00 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01

Cuneiform 0.24 ± 0.04 0.14 ± 0.05 0.09 ± 0.03 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.01
SYNTHETIC 0.37 ± 0.02 0.28 ± 0.02 0.21 ± 0.01 0.18 ± 0.00 0.18 ± 0.00 0.18 ± 0.00 0.18 ± 0.00
ENZYMES 0.13 ± 0.04 0.10 ± 0.04 0.09 ± 0.03 0.09 ± 0.03 0.09 ± 0.03 0.09 ± 0.03 0.09 ± 0.04

IMDB-BINARY 0.29 ± 0.04 0.20 ± 0.04 0.13 ± 0.03 0.08 ± 0.03 0.07 ± 0.03 0.07 ± 0.03 0.07 ± 0.03
CORA 0.30 0.23 0.17 0.13 0.13 0.13 0.12

Table 1. Mean loss function results for κ = 1.0. Methods: RMSE=absolute loss,
RMRSE=relative loss, Direct=embeddings optimized directly, Neural=embeddings
regularized with a neural network
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Method Dataset m=2 m=3 m=5 m=10 m=15 m=30 m=50

R
M

S
E

D
ir
e
c
t

MUTAG 0.35 ± 0.19 0.21 ± 0.04 0.15 ± 0.03 0.04 ± 0.03 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.00
Cuneiform 0.50 ± 0.13 0.30 ± 0.11 0.16 ± 0.08 0.05 ± 0.02 0.03 ± 0.02 0.01 ± 0.00 0.01 ± 0.00

SYNTHETIC 1.13 ± 0.04 0.87 ± 0.03 0.60 ± 0.01 0.39 ± 0.00 0.29 ± 0.00 0.24 ± 0.00 0.24 ± 0.00
ENZYMES 0.39 ± 0.33 0.25 ± 0.18 0.17 ± 0.10 0.10 ± 0.07 0.08 ± 0.05 0.06 ± 0.04 0.06 ± 0.04

IMDB-BINARY 0.23 ± 0.10 0.17 ± 0.07 0.12 ± 0.05 0.06 ± 0.04 0.03 ± 0.03 0.01 ± 0.02 0.02 ± 0.02
CORA 3.25 2.56 1.76 0.93 0.69 0.48 0.39

R
M

S
E

N
e
u
r
a
l MUTAG 0.30 ± 0.06 0.22 ± 0.04 0.20 ± 0.03 0.20 ± 0.04 0.20 ± 0.04 0.20 ± 0.04 0.20 ± 0.04

Cuneiform 0.42 ± 0.08 0.29 ± 0.10 0.17 ± 0.07 0.09 ± 0.02 0.08 ± 0.01 0.08 ± 0.02 0.08 ± 0.02
SYNTHETIC 0.79 ± 0.01 0.71 ± 0.01 0.58 ± 0.00 0.40 ± 0.01 0.37 ± 0.01 0.36 ± 0.01 0.36 ± 0.01
ENZYMES 0.32 ± 0.17 0.26 ± 0.12 0.23 ± 0.10 0.22 ± 0.10 0.22 ± 0.09 0.22 ± 0.10 0.22 ± 0.10

IMDB-BINARY 0.20 ± 0.07 0.17 ± 0.06 0.12 ± 0.05 0.08 ± 0.04 0.07 ± 0.04 0.06 ± 0.03 0.06 ± 0.03
CORA 1.10 1.02 1.01 0.98 0.92 1.95 0.96

R
M

R
S
E

D
ir
e
c
t MUTAG 0.10 ± 0.03 0.07 ± 0.01 0.05 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

Cuneiform 0.22 ± 0.03 0.14 ± 0.05 0.07 ± 0.04 0.02 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00
SYNTHETIC 0.36 ± 0.01 0.28 ± 0.01 0.21 ± 0.00 0.12 ± 0.00 0.09 ± 0.00 0.08 ± 0.00 0.08 ± 0.00
ENZYMES 0.14 ± 0.05 0.09 ± 0.04 0.06 ± 0.03 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02

IMDB-BINARY 0.16 ± 0.06 0.14 ± 0.05 0.10 ± 0.04 0.04 ± 0.03 0.02 ± 0.02 0.01 ± 0.01 0.01 ± 0.02
CORA 0.42 0.29 0.19 0.11 0.09 0.07 0.06

R
M

R
S
E

N
e
u
r
a
l MUTAG 0.09 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01

Cuneiform 0.22 ± 0.03 0.14 ± 0.05 0.07 ± 0.03 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
SYNTHETIC 0.32 ± 0.01 0.27 ± 0.01 0.21 ± 0.01 0.13 ± 0.01 0.11 ± 0.00 0.10 ± 0.00 0.10 ± 0.00
ENZYMES 0.13 ± 0.04 0.09 ± 0.03 0.07 ± 0.02 0.06 ± 0.02 0.07 ± 0.02 0.07 ± 0.03 0.07 ± 0.03

IMDB-BINARY 0.17 ± 0.05 0.14 ± 0.05 0.10 ± 0.04 0.05 ± 0.03 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02
CORA 0.20 0.17 0.15 0.14 0.14 0.14 0.12

Table 2. Mean loss function results for κ optimized along with embeddings. Method:
see Table 1

5.3 Graph drawing

Figure 2 illustrates vertex embeddings for different κ and loss types (absolute
or relative). We selected the American Revolution [1] graph for visualization
purposes, as the graph perfectly shows local node communities being represented
in the embeddings’ space. It is seen that minimization of the relative loss puts
more emphasis on the local graph structure, while minimization of the absolute
loss focuses more on its global structure. Also, with higher κ comes a tendency
to compress local clusters of vertices.

5.4 Community detection in graphs

Methodology. Our study aimed to identify communities within graphs using a
diverse array of unsupervised clustering algorithms applied to the embeddings of
graph nodes generated through our methods. The clustering algorithms employed
encompassed MeanShift [29], DBSCAN [16], HDBSCAN [33], Birch [59], OPTICS
[3], AffinityPropagation [47] and AgglomerativeClustering [39]

We assessed the modularity score for all graphs, as this metric does not
necessitate a graph with defined communities. For the Zachary Karate Club and
American Football graphs, we additionally examined the ARS (adjusted rand
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Graph Vertex Embeddings 9

Fig. 2. American Revolution [1] graph visual representation (m = 2). Left: absolute
error minimized. Right: relative error minimized. Top: κ = auto ∼= 0.4, Middle: κ = 1,
Bottom: κ = 1.5.
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Method Dataset m=2 m=3 m=5 m=10 m=15 m=30 m=50

R
M

S
E

D
ir
e
c
t

MUTAG 1.02 ± 0.06 1.13 ± 0.04 1.33 ± 0.09 1.81 ± 0.16 1.89 ± 0.07 1.88 ± 0.07 1.85 ± 0.08
Cuneiform 0.62 ± 0.11 0.81 ± 0.14 1.06 ± 0.11 1.25 ± 0.02 1.34 ± 0.04 1.45 ± 0.11 1.46 ± 0.11

SYNTHETIC 0.70 ± 0.01 0.72 ± 0.01 0.84 ± 0.01 1.41 ± 0.00 1.81 ± 0.01 1.95 ± 0.02 1.95 ± 0.02
ENZYMES 1.02 ± 0.12 1.08 ± 0.07 1.19 ± 0.11 1.47 ± 0.22 1.66 ± 0.22 1.74 ± 0.19 1.70 ± 0.19

IMDB-BINARY 0.39 ± 0.16 0.54 ± 0.24 0.75 ± 0.32 1.06 ± 0.45 1.32 ± 0.41 1.50 ± 0.29 1.48 ± 0.24
CORA 1.24 1.22 1.20 1.18 1.16 1.24 1.27

R
M

S
E

N
e
u
r
a
l MUTAG 1.03 ± 0.03 1.11 ± 0.04 1.16 ± 0.06 1.14 ± 0.06 1.16 ± 0.06 1.16 ± 0.06 1.17 ± 0.05

Cuneiform 0.57 ± 0.16 0.81 ± 0.14 1.05 ± 0.11 1.18 ± 0.03 1.19 ± 0.04 1.20 ± 0.04 1.21 ± 0.04
SYNTHETIC 0.38 ± 0.01 0.55 ± 0.01 0.84 ± 0.00 1.24 ± 0.01 1.31 ± 0.02 1.35 ± 0.01 1.35 ± 0.01
ENZYMES 0.95 ± 0.10 1.01 ± 0.08 1.06 ± 0.10 1.07 ± 0.10 1.07 ± 0.10 1.07 ± 0.10 1.07 ± 0.10

IMDB-BINARY 0.38 ± 0.16 0.54 ± 0.23 0.75 ± 0.29 0.99 ± 0.35 1.05 ± 0.33 1.09 ± 0.30 1.10 ± 0.29
CORA 1.10 1.02 1.01 0.98 0.92 1.95 0.96

R
M

R
S
E

D
ir
e
c
t MUTAG 1.10 ± 0.03 1.19 ± 0.03 1.40 ± 0.07 1.87 ± 0.12 1.94 ± 0.06 1.91 ± 0.05 1.84 ± 0.05

Cuneiform 0.76 ± 0.08 0.97 ± 0.08 1.13 ± 0.06 1.26 ± 0.03 1.35 ± 0.05 1.45 ± 0.11 1.46 ± 0.11
SYNTHETIC 0.69 ± 0.01 0.81 ± 0.01 1.11 ± 0.00 1.59 ± 0.00 1.90 ± 0.01 1.96 ± 0.00 1.91 ± 0.01
ENZYMES 1.00 ± 0.08 1.09 ± 0.05 1.26 ± 0.11 1.63 ± 0.20 1.80 ± 0.18 1.83 ± 0.15 1.76 ± 0.13

IMDB-BINARY 0.39 ± 0.16 0.56 ± 0.24 0.82 ± 0.35 1.15 ± 0.48 1.37 ± 0.43 1.52 ± 0.29 1.49 ± 0.25
CORA 1.01 1.06 1.11 1.11 1.14 1.31 1.50

R
M

R
S
E

N
e
u
r
a
l MUTAG 1.11 ± 0.02 1.19 ± 0.03 1.31 ± 0.05 1.33 ± 0.04 1.33 ± 0.05 1.33 ± 0.04 1.35 ± 0.04

Cuneiform 0.76 ± 0.09 0.97 ± 0.08 1.12 ± 0.06 1.22 ± 0.04 1.22 ± 0.04 1.23 ± 0.04 1.23 ± 0.04
SYNTHETIC 0.58 ± 0.01 0.81 ± 0.02 1.11 ± 0.01 1.50 ± 0.01 1.58 ± 0.02 1.62 ± 0.01 1.61 ± 0.02
ENZYMES 0.97 ± 0.09 1.08 ± 0.08 1.19 ± 0.12 1.22 ± 0.14 1.22 ± 0.13 1.22 ± 0.12 1.24 ± 0.13

IMDB-BINARY 0.39 ± 0.15 0.57 ± 0.23 0.82 ± 0.32 1.12 ± 0.41 1.19 ± 0.38 1.22 ± 0.36 1.23 ± 0.36
CORA 0.46 0.58 0.71 0.79 0.79 0.86 0.91

Table 3. Mean learned κ

index) and NMI (normalized mutual information) scores, which are valuable
metrics for assessing how effectively an algorithm detects known communities.

We compared the results of our method with five widely used community
detection algorithms: greedy modularity communities [14], Louvain communities
[7], Kernighan Lin bisection [25], Girvan Newman [18], and asynchronous label
propagation algorithm (asyn LPA)[42].

Results. Table 4 presents the Zachary Karate Club graph results. Our method
outperforms other community detection algorithms in terms of ARS and NMI
scores. Interestingly, the modularity score in this case does not align with the
performance of the best method. Table 5 exhibits similar results but for the
American Football graph. Our method also performs admirably, although slightly
worse than the Girvan Newman method.

The modularity results for the TUDataset are detailed in Table 7. We com-
pared these results with other algorithms, as shown in Table 6. Our method
achieves competitive modularity scores, but not the highest ones. Notably, the
method of designating the embedding does not impact the achieved modularity.

6 Conclusions

In this paper, we introduced a regularization method for graph vertex embeddings
that preserves distances in the graph. This method uses a neural network to
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Embed. method Error κ m Clustering algorithm ARS NMI Modularity

- - - - Greedy Modularity Communities 0.57 0.56 0.38
- - - - Louvain communities 0.51 0.60 0.42
- - - - Kernighan Lin Bisection 0.77 0.68 0.37
- - - - Girvan Newman 0.77 0.73 0.36
- - - - Asyn Lpa Communities 0.66 0.65 0.38

Direct RMSE 0.45 0.72 2 MeanShift 0.88 0.84 0.37
Direct RMRSE 0.19 0.73 5 MeanShift 0.88 0.84 0.37
Direct RMSE 0.54 1.00 2 MeanShift 0.88 0.84 0.37
Direct RMRSE 0.26 1.00 2 AffinityPropagation 0.88 0.84 0.37
Direct RMSE 0.76 1.50 2 MeanShift 0.88 0.84 0.37
Direct RMRSE 0.37 1.50 2 MeanShift 0.88 0.84 0.37

Neural RMSE 0.37 0.81 3 MeanShift 0.88 0.84 0.37
Neural RMRSE 0.19 0.93 3 MeanShift 0.88 0.84 0.37
Neural RMSE 0.23 1.00 50 AffinityPropagation 1.00 1.00 0.36
Neural RMRSE 0.20 1.00 3 MeanShift 0.88 0.84 0.37
Neural RMSE 0.74 1.50 2 MeanShift 0.88 0.84 0.37
Neural RMRSE 0.08 1.50 50 AffinityPropagation 0.88 0.84 0.37

Table 4. Community detection in Zachary Karate Club

Embed. method Error κ m Clustering algorithm ARS NMI Modularity

- - - - Greedy Modularity Communities 0.47 0.70 0.55
- - - - Louvain Communities 0.81 0.89 0.60
- - - - Kernighan Lin Bisection 0.14 0.38 0.35
- - - - Girvan Newman 0.92 0.94 0.36
- - - - Asyn Lpa Communities 0.75 0.87 0.58

Direct RMSE 0.46 0.54 10 AffinityPropagation 0.78 0.86 0.58
Direct RMRSE 0.24 0.51 5 HDBSCAN 0.89 0.92 0.58
Direct RMSE 0.36 1.00 15 AffinityPropagation 0.86 0.92 0.58
Direct RMRSE 0.18 1.00 15 AffinityPropagation 0.86 0.92 0.58
Direct RMSE 0.51 1.50 5 MeanShift 0.83 0.89 0.51
Direct RMRSE 0.13 1.50 50 AffinityPropagation 0.78 0.87 0.54

Neural RMSE 0.32 1.38 15 AffinityPropagation 0.83 0.90 0.57
Neural RMRSE 0.14 1.49 15 AffinityPropagation 0.80 0.88 0.54
Neural RMSE 0.36 1.00 15 AffinityPropagation 0.86 0.91 0.58
Neural RMRSE 0.18 1.00 15 AffinityPropagation 0.87 0.92 0.60
Neural RMSE 0.33 1.50 10 AffinityPropagation 0.81 0.90 0.55
Neural RMRSE 0.14 1.50 15 HDBSCAN 0.79 0.87 0.50

Table 5. Community detection in American Football
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Dataset GMC LC GN KLB ALC

MUTAG 0.46 ± 0.06 0.46 ± 0.06 0.46 ± 0.06 0.34 ± 0.05 0.41 ± 0.05
Cuneiform 0.53 ± 0.03 0.53 ± 0.03 0.47 ± 0.07 0.30 ± 0.07 0.47 ± 0.10

SYNTHETIC 0.48 ± 0.00 0.47 ± 0.01 0.44 ± 0.00 0.31 ± 0.01 0.35 ± 0.03
ENZYMES 0.57 ± 0.11 0.58 ± 0.12 0.58 ± 0.13 0.40 ± 0.08 0.54 ± 0.12

IMDB-BINARY 0.30 ± 0.16 0.30 ± 0.16 0.27 ± 0.16 0.20 ± 0.12 0.25 ± 0.17
CORA 0.81 0.82 0.81 0.41 0.5

Table 6. Mean modularity – graph community detection algorithms

κ = 1 κ=auto

Method Dataset Clustering algorithm m Modularity Dataset Clustering algorithm m Modularity

R
M

S
E

D
ir
e
c
t

MUTAG AffinityPropagation 50 0.43 ± 0.05 MUTAG AffinityPropagation 5 0.44 ± 0.05
Cuneiform AffinityPropagation 2 0.44 ± 0.12 Cuneiform AffinityPropagation 10 0.52 ± 0.07

SYNTHETIC AffinityPropagation 5 0.39 ± 0.02 SYNTHETIC AffinityPropagation 5 0.39 ± 0.01
ENZYMES AffinityPropagation 10 0.54 ± 0.13 ENZYMES AffinityPropagation 2 0.54 ± 0.13

IMDB-BINARY MeanShift 2 0.26 ± 0.16 IMDB-BINARY HDBSCAN 3 0.25 ± 0.17
CORA AffinityPropagation 30 0.54 CORA AffinityPropagation 50 0.57

R
M

S
E

N
e
u
r
a
l MUTAG AffinityPropagation 2 0.44 ± 0.05 MUTAG AffinityPropagation 3 0.44 ± 0.05

Cuneiform AffinityPropagation 2 0.52 ± 0.07 Cuneiform AffinityPropagation 50 0.52 ± 0.05
SYNTHETIC AffinityPropagation 5 0.40 ± 0.01 SYNTHETIC AffinityPropagation 5 0.41 ± 0.00
ENZYMES AffinityPropagation 2 0.55 ± 0.12 ENZYMES AffinityPropagation 2 0.55 ± 0.12

IMDB-BINARY MeanShift 2 0.26 ± 0.16 IMDB-BINARY AffinityPropagation 2 0.26 ± 0.17
CORA AffinityPropagation 50 0.49 CORA AffinityPropagation 15 0.58

R
M

R
S
E

D
ir
e
c
t MUTAG AffinityPropagation 5 0.44 ± 0.05 MUTAG AffinityPropagation 3 0.44 ± 0.05

Cuneiform AffinityPropagation 10 0.53 ± 0.03 Cuneiform AffinityPropagation 5 0.51 ± 0.09
SYNTHETIC AffinityPropagation 10 0.41 ± 0.00 SYNTHETIC AffinityPropagation 5 0.40 ± 0.02
ENZYMES AffinityPropagation 5 0.55 ± 0.13 ENZYMES AffinityPropagation 2 0.55 ± 0.12

IMDB-BINARY HDBSCAN 3 0.25 ± 0.17 IMDB-BINARY AffinityPropagation 2 0.26 ± 0.18
CORA AffinityPropagation 30 0.64 CORA AffinityPropagation 30 0.64

R
M

R
S
E

N
e
u
r
a
l MUTAG AffinityPropagation 15 0.44 ± 0.05 MUTAG AffinityPropagation 3 0.44 ± 0.05

Cuneiform AffinityPropagation 30 0.53 ± 0.04 Cuneiform AffinityPropagation 5 0.52 ± 0.06
SYNTHETIC AffinityPropagation 50 0.41 ± 0.01 SYNTHETIC AffinityPropagation 5 0.40 ± 0.01
ENZYMES AffinityPropagation 10 0.55 ± 0.13 ENZYMES AffinityPropagation 2 0.55 ± 0.12

IMDB-BINARY AffinityPropagation 5 0.24 ± 0.18 IMDB-BINARY AffinityPropagation 2 0.26 ± 0.18
CORA AffinityPropagation 15 0.58 CORA AffinityPropagation 50 0.59

Table 7. Best mean modularity in different datasets

transform a column of the distance matrix into the embedding. In our experimental
study, this regularization significantly improved the embeddings, especially when
their dimension was low.

We also introduced a generalized measure of distance between the embeddings.
With our proposed measure, the error of distance preservation by the embeddings
was reduced by a large margin.

Finally, we performed a study on community detection in graphs, in which
we compared results obtained by combining graph embeddings and clustering
methods for numerical data with community detection algorithms dedicated
to graphs. The analyzed combination achieved competitive results, although it
yielded the best results only in the case of Zachary Karate Club.
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