
Data augmentation to improve molecular subtype
prognosis prediction in breast cancer

Francisco J. Moreno-Barea1* , José M. Jerez1 , Nuria Ribelles2 , Emilio
Alba2 , and Leonardo Franco1

1 Departamento de Lenguajes y Ciencias de la Computación, Escuela Técnica
Superior de Ingeniería Informática, Universidad de Málaga, Málaga, Spain.

2 Unidad de Gestión Clínica Intercentros de Oncología, Hospitales Universitarios
Regional y Virgen de la Victoria, Málaga, Spain.

*{fjmoreno}@lcc.uma.es

Abstract. Breast cancer is a major public health problem, with 2.3M
new cases diagnosed each year. Immunotherapy is an effective treatment
for breast cancer depending on several factors like subtype of tumours or
associated prognosis. However, the immune system’s efficiency depends
on the local microenvironment and requires region-specific trials with
a reduced number of samples. To minimise this drawback and improve
the accuracy of patient prognosis predictions, we explore several data
augmentation methods, i.e. noise injection, oversampling techniques and
generative adversarial networks. The experiment was conducted through
a set of immune system gene expression samples donated by 165 breast
cancer patients from the Málaga region. Results showed a 5% increase
in AUC and a 23-36% increase in F1 score for subtype prediction.

Keywords: Data augmentation · Breast Cancer · Cancer Prognosis ·
Data Mining · E-Health.

1 Introduction

Despite several advances, cancer remains a serious medical problem. Cancer is
currently the second leading cause of death in developed countries, after major
cardiovascular diseases. Breast cancer in particular is one of the world’s major
health problems, with a high number of cases diagnosed each year. It is the most
common tumour in women, with an estimated 2.3 million cases worldwide in 2022
(11.7% of all diagnosed cancers). Fortunately, breast cancer has a lower mortality
rate due to improvements in early detection and less aggressive therapies.

In recent decades, immunotherapy has emerged as a potent and less aggres-
sive strategy for treating cancer, and countless studies have clearly provided a
boost to understanding the effects of the immune system on tumour development
and establishment [9]. One way to monitor the immune response of patients is to
analyse the molecular variables encoded by the major histocompatibility com-
plex (MHC). The MHC is a system of interrelated genes whose main role is to
control the expression of cell surface molecules acting as markers of the immune
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response. This paper examines a cohort of breast cancer patients from the region
of Málaga, Spain. The dataset represents the MHC gene expression of patients
associated with the molecular subtype of breast cancer [15] considered as the
labelled class in a supervised learning analysis.

The disadvantage of applying machine learning (ML) methods to these re-
gional bioinformatics datasets is the scarcity of data. The application of data
augmentation (DA) methods, which allow the addition of synthetically gener-
ated samples, has become a relevant topic. DA has proven to be very effective
for improving the performance of ML models, and recent results from generative
artificial intelligence are demonstrating the potential of these models, even in
the medicine and healthcare field [7,17]. But applying DA techniques to non-
structured datasets is far more complex. DA techniques available to deal with
this type of dataset include noise injection techniques [13], oversampling tech-
niques [3], and recently the Generative Adversarial Networks (GAN) [5]. GAN
models have shown an impressive level of success in generating synthetic samples,
and recently they have shown good results as a DA method for datasets without
spatial or temporal structure [11], also in the biomedical domain [8,4,12,6].

Considering all the above aspects, the main objective of this work is to apply
state-of-the-art DA methods to a small MHC gene expression data set expecting
an increase in the prediction performance of the prognosis associated with the
molecular subtype of breast cancer patients.

2 Related Works

Works on the application of DA to bioinformatics problems have mainly focused
on the treatment of medical images and tasks involving time series. However,
DA with -omic data is recent and challenging, but recently works shows that DA
methods can be beneficial to improve prediction performance. Among the DA
studies using classical methods, Beinecke and Heider [2] applied Gaussian noise,
SMOTE and ADASYN methods to clinical data from the UCI ML repository
covering different medical fields. Related to the application of deep learning-
based models to unstructured data, the work of Marouf et al. [8] used a GAN
for realistic generation of single cell RNA-Seq data and detection of marker
genes. García-Ordás et al. [4] built a variational autoencoder to predict diabetes
in pima indians. Barile et al. [1] employed a Generative Adversarial Autoencoder
for the generation of synthetic structural brain network with sclerosis.

To the best of our knowledge, this paper is the first work that proposes the
application of DA to improve the predictive performance of prognosis associated
with molecular subtypes of breast cancer using genomic data. Only a few papers
applied DA to genomic cancer samples. Moreno-Barea et al. [12] used DA to
improve the prediction of fixed-time events in cancer given 18 different cancer
types from The TCGA database; Wei et al. [16] developed a GAN-based model
to expand 12 cancer datasets, improving the accuracy of cancer diagnosis; and
Gutta et al. [6] used a GAN model and image processing to improve survival
prediction in breast cancer patients.
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3 Breast cancer cohort

According to studies of gene expression patterns associated with prognosis or
metastatic risk [15], breast cancer can be divided into two main groups based
on estrogen receptor positivity. A first group are low-grade neoplasms or es-
trogen receptor-positive tumours, also called luminal subtypes; and a second
group are high-grade neoplasms or estrogen receptor-negative tumours, called
non-luminal subtypes. The luminal subtypes are associated with low/medium
grade and good/intermediate prognosis, whereas the non-luminal are associated
with higher grade and poorer prognosis.

The cohort used to test the prognosis associated with molecular subtype of
cancer was provided by the Carlos Haya Regional and the Virgen de la Victoria
University Hospitals in Málaga, Spain. The data are part of a clinical study of
a group of 165 breast cancer patients diagnosed between 2008 and 2013. The
data set consists of patient gene expression (molecular variables encoded by the
MHC) and cancer subtype. The division between the two groups according to
estrogen receptor positivity was taken into account as classes. The most common
molecular subtype in the dataset was luminal with 135 samples (82%), whereas
30 samples were non-luminal (18%).

4 Data augmentation methods

A simple but effective method to start testing DA is noise addition, technique
based on a random modification of the original instances. To apply it, we did a
random selection of samples and modified a maximum of 25% of the features [13].
Eq. 1 mathematically describes the process of obtaining a new feature value x̃
from the original one x, where min_V and max_V are the actual limits of each
feature. An oversampling noise addition method (“Noise bal”) is also applied,
differing from the previous method in that it performs the random selection
only on the training samples belonging to the minority class.

x̃ = min(max_V,max(min_V, x+ RND(−0.2, 0.2))) (1)

SMOTE is a classic technique specifically designed for unbalanced data sets
[3]. To generate synthetic minority class data and balance the classes, SMOTE
uses a k-nearest neighbour algorithm on the minority class instead of random
sampling with replacement. SMOTE performs an interpolation of the selected
instance and its nearest neighbours, creating new instances for the minority class
that are located in the region between the sample and its neighbours.

Currently, the generation of images has shown impressive success through the
application of GAN models [5]. GANs attempt to learn the distribution of the
original dataset in order to generate new samples from the learned distribution.
The standard GAN model has a structure divided into two networks (Generator
and Discriminator) trained simultaneously, so that they can learn from each
other. In this context, the goal of the discriminator (D) is to distinguish whether
a sample comes from the set of real data or is a generated sample. On the other
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hand, the generator (G) produces as output a distribution assigned to the space
of real samples with the purpose of presenting similar features.

Variations in network architecture, loss function or the inclusion of additional
information have been proposed from the basic GAN model. Specifically, since
a supervised task is performed in the study, the models considered are the Con-
ditional GAN (CGAN) [10], the Auxiliary Classifier GAN (ACGAN) [14] and
the Generative-Classifier GAN (ModCGAN) [11]. The CGAN model is a simple
variant of the vanilla GAN model in which the information about the label of
samples y is taken into account in D and G networks. The CGAN cost function
(Eq. 2) contains two parts identified with the two networks involved in the com-
petitive process. One related to the detection of samples which are in the real
distribution, and the other involved in detecting those samples generated by G.

min
G

max
D

Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (2)

The ACGAN model was also applied [14]. Like CGAN, ACGAN takes both
the latent space and the class label as input to G. The main difference is that
D receives only the sample as input, without the class label. The discriminator
process still predicts whether the given sample is real or false, but also the class
label of the sample. The architecture of D includes a single neural network model
with two outputs: one output to distinguish the origin of the sample (real/false)
and another to obtain the probability that the sample belongs to each class.

Finally, ModCGAN model was also considered [11]. This method is similar
to ACGAN, but instead of integrating the classifier within the discriminator,
uses externally a so-called generative classifier (GC). This GC is used to la-
bel the synthetic samples produced by the generator and discard them if they
are of insufficient quality. A ModCGAN with ‘Balanced Multiclass’ (_BM) was
also considered due to the unbalanced nature of the problem. This GAN-based
modification uses two independent models, where each model is trained with an
unbalanced set corresponding to each class. The purpose is to allow each gener-
ator to focus on one of the classes of the problem, always taking into account its
differences from samples from the other class.

5 Experiments and Results

In the experimental procedure followed, a Principal Component Analysis (PCA)
was first performed on the original dataset to obtain the component score vectors
and transform the dataset from binary to continuous variables.After the PCA
transformation, a stratified cross-validation procedure was performed. Due to
the small number of non-luminal samples in the dataset, a 60% split was used
for training and 40% for testing.The data generation process used the training
set to generate the desired number of synthetic samples, except for SMOTE.The
main generative models were tested with different levels of DA percentages.
The synthetic samples generated were added to the training data.Prediction was
performed on the test set to obtain the evaluation metrics, which were averaged
on a cross-validation scheme that was repeated 10 times with different seeds.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63778-0_2

https://dx.doi.org/10.1007/978-3-031-63778-0_2
https://dx.doi.org/10.1007/978-3-031-63778-0_2


DA to improve molecular subtype prognosis prediction in breast cancer 5

Table 1. Test results obtained for the binary problem with the different DA methods
using a RF and a SVM system as classifiers.

Method Perc. Accuracy Sensitivity Specificity F1 score AUC
RF
Original None .8121 ±.002 .3083 ±.012 .9241 ±.004 .3652 ±.009 .7643 ±.005
CGAN 750 .8341 ±.003 .4133 ±.019 .9276 ±.004 .4624 ±.015 .7930 ±.005
ACGAN 500 .8335 ±.003 .3917 ±.014 .9317 ±.004 .4465 ±.012 .7851 ±.006
ModCGAN 750 .8364 ±.002 .4117 ±.016 .9307 ±.003 .4672 ±.011 .7857 ±.005
ModCGAN_BM 750 .8370 ±.003 .4500 ±.016 .9230 ±.004 .4903 ±.012 .8015 ±.006
NOISE 50 .8302 ±.003 .3250 ±.014 .9424 ±.003 .3978 ±.014 .7674 ±.005
NOISE Bal 1000 .8433 ±.002 .6500 ±.014 .8863 ±.003 .5988 ±.007 .8107 ±.005
SMOTE None .8380 ±.002 .5825 ±.016 .8948 ±.003 .5597 ±.009 .8040 ±.004
SVM
Original None .8177 ±.002 .2358 ±.021 .9470 ±.004 .2723 ±.019 .7920 ±.005
CGAN 500 .8423 ±.002 .5092 ±.019 .9163 ±.004 .5291 ±.012 .8225 ±.005
ACGAN 500 .8452 ±.002 .4767 ±.017 .9270 ±.003 .5125 ±.012 .8301 ±.004
ModCGAN 200 .8427 ±.003 .4917 ±.012 .9207 ±.005 .5204 ±.009 .8296 ±.004
ModCGAN_BM 750 .8488 ±.002 .5383 ±.013 .9180 ±.003 .5535 ±.010 .8358 ±.005
NOISE 1000 .8188 ±.003 .2483 ±.013 .9456 ±.003 .3187 ±.014 .7592 ±.006
NOISE Bal 750 .8490 ±.002 .7262 ±.015 .8763 ±.003 .6360 ±.008 .8405 ±.006
SMOTE None .8321 ±.003 .6600 ±.015 .8704 ±.005 .5877 ±.008 .7978 ±.007

Table 1 shows the test results obtained for the different methods and DA
models applied, using Random Forest (RF) and Support Vector Machines (SVM)
as classifier models. In the table, “Original” indicates that no DA method is
applied, serving as a reference level. The second column (‘Perc.’) refers to the
DA percentage applied, noting that SMOTE only produces balanced classes.
The remaining columns show the values (± ‘between-validation performance’
SE) obtained for each of the test metrics: accuracy, sensitivity, specificity, F1

score and Area Under Curve ROC (AUC). The good/interm. prognosis subtype
(majority) is considered the negative class to measure sensitivity and specificity.

The results show an improvement in prediction performance for most evalu-
ation metrics with the Noise Bal method for both classifier models, compared to
the performance obtained with the non-augmented data set. Specifically, for the
RF system, augmentation using the Noise Bal strategy with 1000% DA achieves
an improvement of 3.0% in accuracy, 4.6% in AUC and 23.4% in F1 score with
respect to the reference levels with the original set with no DA. On the other
hand, using the Noise Bal method with 750% and the SVM classifier, similar
values are obtained. With regard to the GAN-based deep generative models,
the evaluation metrics also indicate an improvement in the performance of the
classifiers compared to the reference set. Among them, the ModCGAN model
with the sample balancing modification stands out, obtaining the highest values
for the different metrics, except specificity. Accuracy and AUC values obtained
with ModCGAN_BM are similar to those obtained with Noise Bal, although
the latter obtains a better value for sensitivity, resulting in higher values for the
rest of the metrics, especially F1 score.

The influence of the size of the generated dataset on the prediction results
can be seen in Fig. 1. This presents values for accuracy, specificity and sensi-
tivity obtained with CGAN, ModCGAN_BM, Noise and Noise Bal, against the
number of instances on a logarithmic scale on the abscissa axis. The CGAN and
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Fig. 1. Comparison of the accuracy, specificity and sensitivity obtained using different
DA methods, in terms of the logarithm of the number of instances generated. Code
lines: blue solid, CGAN; orange dots, ModCGAN with balancing; green dashes and
dots, noise; red dashes, Noise Bal.

ModCGAN_BM results show stability in the values as the number of generated
samples increases, with a slightly gain in sensitivity. On the other hand, the
Noise Bal strategy shows a significant negative correlation for the gain in speci-
ficity and a positive correlation for sensitivity and accuracy. This fact explains
the higher performance achieved by the Noise Bal technique in F1 score.

After analysing the performance obtained by applying DA, it is necessary
to analyse the quality of the synthetic generated data. A PCA was carried out
to visualise the configuration of the samples in a two-dimensional space (PC1
vs. PC2). This enables comparison of the distribution of synthetic samples and
original samples, analysis of the performance of DA methods, and explanation
of the obtained classification performance. Figure 2 shows the distribution of
synthetic samples created using the Noise Bal method and ModCGAN (with
BM modification) model. These analyses reflect the inner workings of each DA
method and model in sample generation. The Noise Bal method generates sam-
ples only for the minority (non-luminal) class, so it can be seen how the samples
generated are around the original samples modified with noise, although since
these are generated from component scores transformed data, the noise in this
case generates more variability, i.e. samples further away.

As representative of the deep generative models, ModCGAN_BM has also
generated majority class samples. It is important to note that the synthetic
samples are adapted to the real distribution of the samples. When there are
samples that can be considered as outliers, the Noise Bal method generates
samples around them. However, the deep generative models, due to their inter-
nal discriminative operation, consider these outliers as data generated by the
generator, which prevents the model from generating samples close to, or simply
influenced by, these samples.
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Fig. 2. PCA plot with the original samples and the samples generated by the Noise
Bal and ModCGAN_BM methods. Colour codes: green circle, luminal; red triangle,
non-luminal; blue square, synthetic luminal; purple triangle, synthetic non-luminal.

6 Conclusion and Future Work

This paper presents the application of DA techniques as a way to improve the
prognosis prediction for breast cancer associated with molecular subtype using
a dataset of MHC gene expression profiles. A binary problem is addressed by
performing a classification according to whether the subtype is associated with
a good/intermediate prognosis (luminal) or a poor prognosis (non-luminal). The
overall results obtained suggest and confirm that DA is quite effective when
small and unbalanced data are used, leading to a high increase in predictive
performance. Among the DA methods applied in the study, the Noise Bal method
showed the best performance, leading to an increase in accuracy of 3.0%, with
particular attention to the increase in sensitivity, resulting in an improvement
of 4.5 − 5% in AUC and 23 − 36% in F1 score. This resulted in an F1 score of
64%, compared to 30% reference level for the original data, representing a major
advance in the ability to predict early treatments in patients who may have a
poor prognosis and require more aggressive therapies.

In future works, we would like to extend the present approach to a multiclass
problem (prediction of each subtype) and we aim to utilise generative AI and
Transformer-based GAN models to enhance the quality of generated data.
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