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Abstract. Understanding how emissions from point sources affect the
atmospheric concentrations of Greenhouse Gases (GHGs) locally and on
a wider scale is crucial to quantify their impact on climate change. To this
end, different ways of performing global monitoring of GHGs concentra-
tion using remote sensing data have been explored. The main difficulty
remains to find the right balance between high resolution monitoring,
which is often incomplete, and global monitoring, but at a coarser reso-
lution. This study proposes the application of Super Resolution (SR), a
Deep Learning (DL) technique commonly employed in Computer Vision,
to increase the resolution of atmospheric CO2 L3 satellite data. The re-
sulting maps are achieving an approximate resolution of 1km*1km and
are then compared with a benchmark of existing methods, before being
used for emissions monitoring.
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1 Introduction and motivations

The latest Intergovernmental Panel on Climate Change (IPCC) report [4] asserts
that GHGs, particularly CO2 and CH4, have contributed to the rise of the global
surface temperature by over one degree since the late 19th century. Effective
policies and measures to curb global warming are therefore conditioned by our
understanding of GHG emissions. Remote sensing (RS) satellite imagery is used
to generate estimations of concentration and can be improved for two reasons:
it is either sparse following the satellite swath, or at a coarse resolution when
processed. Machine learning approaches have helped to alleviate some of these
data challenges. The present study concentrates on column-averaged dry air
mole fraction of atmospheric CO2 (XCO2) monitoring and offers the following
contributions:

• We generate SR maps of XCO2 with a spatial resolution of 0.03°*0.04°,
16-times higher than the original datasets from the Orbiting Carbon Obser-
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vatory 2 (OCO-2) Level 3 (L3) data. The model is not gas-specific and can
therefore be adapted for monitoring other GHGs beyond CO2.

• We demonstrate that our model doesn’t add noise to the original OCO-2
data and quantitatively improves compared to alternative methods.

• We propose an application of our dataset to the evaluation of CO2 point
sources’ impact on their environment.

2 Related works

2.1 XCO2 modelling methods

Different forms of interpolations often following the model of Kriging have been
implemented to build on sparse observations [8,22]. However, the quality of the
generated products is variable following the density of the observations, leading
to high uncertainty in some areas if no additional data is considered [14]. Data
fusion approaches aim to reduce these uncertainties by combining data from
multiple satellites [18]. Machine Learning (ML) and DL publications also often
consider more variables as inputs [7]. For example, [11] combines XCO2 observa-
tions and environmental features such as meteorological and vegetation indica-
tors before using Extra Randomised Trees. Chemical Transport Models (CTMs)
generate simulations based on atmospheric dynamics and are good to predict
fluxes [9,13]. It is however difficult to produce high resolution maps with these
models due to their computational complexity.

2.2 Super Resolution

SR is a technique initially used in Computer Vision (CV) or image processing
and aims to increase the resolution of an image by inferring high frequency
details that were not available on the original image. It therefore creates a high
resolution (HR) version of the input [15]. In the case of a single Low Resolution
(LR) input, it is referred to as Single Image Super Resolution (SISR) [21]. If
multiple LR inputs are used to generate the SR output, it becomes Multiple-
Image SR.

3 Methods

3.1 Our model

In this study, input data consists of satellite-derived XCO2 L3 data (see Table
1). Transforming it from matrix form into RGB images requires additional data
preprocessing steps and could potentially bias the SR output based on the colour
scheme selection. Consequently, even though we approach the problem as a CV
task, we treat the XCO2 maps as single-channel images and our model’s design is
a customized 1-channel implementation of the DL framework by Haris et al.[6]
to deal with our data. The SR framework relies on iterative up- and down-
sampling modules using convolutional and deconvolutional layers to learn the
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relationship between LR and HR pairs. To manage memory usage efficiently
and improve training speed, we reconfigured the layers to minimize the number
of parameters and utilized PyTorch’s Distributed Data Parallel framework [12].
Originally designed to increase the resolution 8-fold, we adjusted the layers kernel
size, padding, and stride for our purpose and have adapted the model for 16-
fold upsampling, achieving an approximate resolution of 1km*1km, which is
necessary for identifying individual emission sources.

Table 1: Data processing level definitions. Other levels are out of scope and therefore
not included in this table.

Processing level definition Definition

Level 2 Derived geophysical variables at the same
resolution and location as Level 1 data

Level 3 Variables mapped on uniform space-time
grids, usually with some completeness and
consistency

4 Datasets

4.1 Training

Due to the absence of HR XCO2 data to train our model, the Land Surface
Temperature (LST) dataset from MODIS [17] was used for training. We consider
that temperature and XCO2, both being physical variables observed by satellites,
exhibit similar variability as opposed to the natural images datasets typically
used for training SR models. As shown in Table 2, LST data is first downsampled,
using bicubic interpolation, before being reconstructed to its original resolution,
which is in the same range as our target resolution for XCO2.

Table 2: Comparison of spatial resolution between data from OCO-2 and MODIS
XCO2 L3 (OCO-2) LST L3 (MODIS)

LR data (in degree) 0.5°*0.625° 0.8°*0.8°
HR data (in degree) 0.031°*0.039°(target) 0.05°*0.05°
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4.2 Low resolution and validation datasets

The OCO-2 and its successor OCO-3 are CO2 monitoring missions from NASA [5]
with a radiometric resolution of the order of 1ppm. The L3 dataset generated
from this mission [19] is used as our input data and consists of global maps of
XCO2 at a resolution of 0.5°*0.625°. It is accessible at daily or monthly tem-
poral granularity and is being generated through NASA’s modeling and data
assimilation framework.

The Total Column Carbon Network (TCCON) [20] is a network of fixed
spectrometers located at various sites monitoring column concentrations from
CO2,CH4, CO, and N2O. We consider it as our groundtruth and compare the
XCO2 values output by our model with the latest version of TCCON data [10].
The TCCON data was obtained from the TCCON Data Archive hosted by
CaltechDATA at https://tccondata.org.

5 Results and Discussion

5.1 Benchmark

We benchmark our model against different approaches where the main criteria
of selection were the temporal and spatial resolution of available data as well as
metrics performance.

Table 3: Evaluation of our dataset against the benchmark

The best value for each metrics is in bolt. LR is the dataset from NASA, BIC is
produced from bicubic interpolation, and Fusion is the fusion dataset [18]. The metrics
are averaged over the TCCON network between 2015 and 2020

SR (ours) LR BIC Fusion

RMSE 0.9180 0.9441 0.9436 1.1196
R2 0.9673 0.9654 0.9655 0.9514
MAE 0.7027 0.7182 0.7190 0.8505

The results in Table 3 show that our SR model is able to generate a HR ver-
sion, enhanced 16-times, of the original dataset while improving on all metrics.
This also holds true when comparing our maps with other methods. The fusion
dataset has an average Root Mean Square Error (RMSE) of over 1ppm and a
Mean Absolute Error (MAE) of 0.85ppm. These values are 20% higher relatively
than the values of our model. Bicubic interpolation ranks second on most met-
rics. To further distinguish the performance of SR using our model versus using
bicubic interpolation, we define an Improvement Ratio (IR) as follows:

IRsite =
Nsite

improved

Nsite
samples

(1)
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For each site, Nsite
improved represents the number of instances where SR reduces the

error compared to the ground truth, while Nsite
samples denotes the total number of

samples for that site. A ratio of 1 (or 100%) indicates that the model consistently
produces better results, while a ratio of 0 demonstrates that using this specific
SR model always produces worse estimations.

Fig. 1: IR comparison between our model (blue) and bicubic (green) with available
ground sensors data. An orange circle indicates that the IR ratio is over 50% for ours.

Figure 1 shows how the two SR models performs across different locations
based on the IR. On 19 sites out of 24, our model improves on the LR input more
frequently than the bicubic SR, which reflects that our model is more consistent.

5.2 Application: Impact of emissions on atmospheric CO2

Finally, we combine the information provided by our SR maps with the emissions
dataset from ClimateTrace [3]. This is a first attempt to visualise how XCO2
can be influenced by point sources using HR global XCO2 maps. The dataset
from ClimateTrace that we used is an inventory of CO2 emissions point sources
for the year 2021.

On Figure 2, the additional high-frequency details observable on the SR
maps reveal that the locations of point sources do not necessarily coincide with
the highest concentration in CO2 in the area. This underscores the impacts
point sources can have not only on their direct surroundings but also on areas
seemingly far away or isolated from human activity. Furthermore, the influence
of land topography on XCO2 is clearly pronounced and particularly visible on
the Venezuelan area. High altitude areas serve as a natural obstacle and seem to
direct the flow of CO2. We must also note that other factors such as urbanisation
may also influence XCO2 and are not visualised in our analysis.
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(a) Venezuela (b) South Africa

Fig. 2: Impact of point sources on XCO2 for the year 2021. For each subfigure from top
left to bottom right: (1) is the LR map of the area studied, (2) is the super-resolved
map, (3) is a map of CO2 point sources extracted from the ClimateTrace emissions
API.

5.3 Discussion

Based on the metrics selected for our benchmark, we showed that our model
is better at estimating XCO2 while offering a higher resolution. However, we
believe that we can improve its performance if we train the model on a physi-
cal variable closer to CO2 than temperature. Furthermore, with existing Data
Assimilation (DA) frameworks [2] and sparse satellite L2 data, our model could
learn to further reduce misfits in speific areas. Another direction that could also
be explored is the processing of multiple daily LR inputs to generate a single
SR output, effectively reducing the temporal resolution of our dataset but also
its uncerainty. Lastly, the application of SR maps in the context of point source
monitoring needs to be expanded for a more comprehensive analysis.

6 Conclusion

This study has shown the potential of SR for upsampling the resolution of global
L3 maps and generate HR XCO2 data. Although results are promising and im-
prove on other methods listed in this paper, areas of improvement for our model
have been identified and will be investigated in future works. We also proposed
a visual analysis of CO2 emission point sources and their impact on their envi-
ronment, using the SR maps generated, which will be further explored. Finally,
new XCH4 L3 maps based on TROPOMI [16] should be released shortly [1]. The
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work presented in this study could therefore be applied to another GHG, which
supports our implementation of a gas-agnostic framework.

Acronyms

CTM Chemical Transport Model
CV Computer Vision
DA Data Assimilation
DL Deep Learning
GHG Greenhouse Gas
HR high resolution
IR Improvement Ratio
LR Low Resolution
LST Land Surface Temperature
MAE Mean Absolute Error
ML Machine Learning
OCO-2 Orbiting Carbon Observatory 2
RMSE Root Mean Square Error
SISR Single Image Super Resolution
SR Super Resolution
TCCON Total Column Carbon Network
XCO2 column-averaged dry air mole fraction of atmospheric CO2
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