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Abstract. The detection and explanation of anomalies within the in-
dustrial context remains a difficult task, which requires the use of well-
designed methods. In this study, we focus on evaluating the performance
of Explainable Anomaly Detection (XAD) algorithms in the context of
a complex industrial process, specifically cold rolling. We train several
state-of-the-art anomaly detection algorithms on the synthetic data from
the cold rolling process and optimize their hyperparameters to maximize
its predictive capabilities. Then we employ various model-agnostic Ex-
plainable AI (XAI) methods to generate explanations for the abnormal
observations. The explanations are evaluated using a set of XAI metrics
specifically selected for the anomaly detection task in industrial setting.
The results provide insights into the impact of the selection of both ma-
chine learning and XAI methods on the overall performance of the model,
emphasizing the importance of interpretability in industrial applications.
For the detection of anomalies in cold rolling, we found that autoencoder-
based approaches outperformed other methods, with the SHAP method
providing the best explanations according to the evaluation metrics used.

Keywords: machine learning · explainable artificial intelligence · pre-
dictive maintenance.

1 Introduction

In the era of Artificial Intelligence and Industry 4.0, manufacturing companies
gain new opportunities for development and improvement of their processes. One
of the fields that can greatly benefit from these trends is the monitoring and
maintenance of the equipment in the manufacturing facilities. The digitalization
of production allows companies to collect and store large amounts of data from
sensors. This data can be utilized using Machine Learning (ML) methods to
detect anomalies, diagnose faults, and perform root cause analysis in an online
manner. All these tasks belong to a broader concept of predictive maintenance,
which aims to estimate the current condition of the equipment or predict its
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useful life to optimize maintenance schedules and help avoid dramatic failures,
which can lead to significant losses to the company.

Our study focuses on the application of anomaly detection in the steel indus-
try, particularly in the cold rolling process. The primary objectives of cold rolling
are reducing the thickness of steel strip, improving surface finish, flatness, and in-
creasing hardness. A typical cold rolling mill is composed of rolling stands which
are placed in tandem. At each stand, the steel strip is gradually reduced to reach
a target thickness at the exit of the mill. Figure 1 presents a schematic diagram of
the cold-rolling process. The prediction of failures and anomalies in cold rolling

Fig. 1. Schematic diagram of 4-stand cold rolling mill

processes is challanging task, due to low frequency and high diversity of the ab-
normalities. These issues can be addressed by anomaly detection methods, which
learn the normal behavior of the process, and measure the direcptancy between
the observed variables and normal working conditions. However, state-of-the-art
anomaly detection methods are black-boxes, which means that predictions of
these models are difficult to interpret by humans, which hinders the applicabil-
ity of these methods in practice. Understanding the model’s decision is vital to
ensure the applicability of the method because adequate corrective actions must
be taken by the crew upon detection of anomaly.

To address interpretability of black-boxes, Explainable Artificial Intelligence
(XAI) has emerged, which aims to clarify the decisions of ML models for human
understanding. Model-agnostic XAI methods provide explanations without prior
knowledge of the model architecture, making them suitable for all types of ML
models. While assessing performance of ML models is a well-established task,
validating XAI methods remains a challenge. Currently, researchers often rely on
human-based assessments or anecdotal examples, which do not provide a global
perspective. A more robust approach involves applying metrics for quantitative
comparison across different methods [24]. The selection of these metrics depends
on the specific problem, allowing an assessment of the quality of the explanation.

In this paper, we assess how the selection of ML model and XAI method,
can impact both the predictive performance and explanatory capabilities. To the
best of our knowledge, this is the first paper that aims to quantitatively evaluate
multiple XAI methods on the anomaly detection task in an industrial use-case.
We propose a recipe on how to build Explainable Anomaly Detecion (XAD)
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models, which account for quality of predictions and explanations. We selected
several anomaly detection and XAI methods and applied them to the data from
the cold rolling process. To ensure that our results are not biased by the manual
labeling of the process data, we created a synthetic dataset, which simulates cold
rolling of steel and generates anomalies within a fraction of observations.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of anomaly detection techniques, model-agnostic XAI methods, and
evaluation metrics. Section 3 presents the proposed assessment methodology,
including details on selected ML models and XAI methods. Section 4 contains
the results of our simulations and their discussion. Section 5 concludes the work
and proposes the directions for future research.

2 Related works
2.1 Anomaly Detection

Anomaly detection in industry involves identifying deviations from normal op-
erations, which can lead to equipment failures, quality defects, or reduced per-
formance. Early detection of anomalous behavior can bring significant benefits
to manufacturing facilities. However, correctly identifying anomalies is problem-
atic due to subjective biases. Chandola et al. [11] highlight challenges such as
defining a normal region, evolving normal behavior, differences in anomaly per-
ception across domains, availability of labeled data, and noise in the data. All
of these challenges are applicable to industrial process monitoring, emphasiz-
ing the complexity of the task. The detection of anomalies in an unsupervised
manner has been an extensive area of research. Wang et al. [35] groups the
anomaly detection methods into density-based, statistics-based, distance-based,
clustering-based, ensemble-based, and learning-based. The examples of anomaly
detection methods that fall into each category are given in Table 1.

Category Methods

Statisics-based Mahalanobis Distance [23],HBOS [14]
Density-based LOF [9]
Distance-based kNN [19]
Clustering-based DBSCAN[13]
Ensemble-based IForest [21], HST [32], LODA [26]
Learning-based AE [28], GAN [29]

Table 1. Examples of anomaly detection methods

The performance assessment of the anomaly detection methods is similar to
the imbalanced classification, given the substantial difference between the num-
ber of normal and anomalous observations. An effective method is characterized
by high precision and recall. Typically, there is a trade-off between precision
and recall – enhancing one tends to reduce the other. Aggregating these metrics
using the PRAUC or the F-score establishes a comprehensive value, considering
both aspects.
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2.2 Explainable Artificial Intelligence

Explainable Artificial Intelligence focuses on understanding the decision-making
processes of AI systems. Historically, AI research prioritized peak performance,
leading to the development of complex ML models often labeled "black-boxes" [1].
These models lack interpretability, which poses challenges for human observers
in tracking their decision path. The opacity of black-box models creates trust is-
sues, as stakeholders may hesitate to rely on decisions they cannot comprehend,
rendering the ML model impractical, especially for unforeseen decisions [2]. XAI
not only addresses interpretability concerns, but also aids in model control and
improvement by revealing decision processes and identifying potential flaws or
errors in data or pre-processing [12]. In the context of anomaly detection, un-
derstanding the underlying causes of predicted anomalies is a crucial task. In
complex industrial systems, relying solely on a single anomaly score while rele-
gating its interpretation to users can be impractical.

LIME [27], SHAP [22], and Counterfactual Explanations [34] (CFE) are three
prominent model-agnostic XAI methods. LIME generates explanations by ap-
proximating the behavior of a black-box model in a specific region of the in-
put space with an interpretable model. SHAP uses a game-theoretic approach
to quantify the contribution of each feature to a prediction by considering all
feature combinations and their Shapeley values to determine how each feature
influences the model outcome. CFE perturbs an observation with the objective
of changing the model’s decision, while ensuring that the generated CFE lies
close to the original observation. It is defined as an optimization problem, which
allows including additional constraints, e.g. the likelihood of the CFE or the
number of manipulated features. The choice of the optimal XAI method may
depend on the type of problem, data format, or end-user requirements.

Several studies explored the use of XAD in industrial settings. We found that
many of these works rely on autoencoder architecture [15, 5, 17]. Some notewor-
thy works utilize Isolation Forest [4, 18], OCSVM [16, 6] and LOF [16]. In terms
of explainability, we find that SHAP is widely adopted for this task [5, 15, 18, 16].
Other applied methods include rules [6, 31], CFE [17] and AcME [4]. However,
of all the articles referenced, only [6] quantitatively evaluated the performance
of the proposed XAI method. Moreover, none of these works compared explana-
tions generated with different methods.

2.3 Metrics for evaluating XAI methods

Although quantifying the performance of ML models is straightforward, evaluat-
ing XAI methods remains challenging due to the subjective nature of explainabil-
ity, varying stakeholder expectations, and context dependence. The absence of
a clear ground truth, especially when human judgment is involved, makes defin-
ing a "correct" explanation vague. Numerous metrics attempt to quantitatively
measure explanation quality, but selecting appropriate metrics is challenging,
as their importance varies based on data type, use case, or stakeholders. Sev-
eral studies sought to synthesize knowledge about explanation requirements [10,
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24, 25]. Drawing on these works, we propose a set of metrics for evaluating the
performance of XAD methods in industrial applications.

– Faithfulness – the primary requirement of every XAI method is to give the
plausible explanation in the meaning that they are aligned with the actual
model decision and expert knowledge.

– Stability (or robustness, continuity) – similar observations should yield sim-
ilar explanations. This property ensures that a small change in the input or
output of the model will not cause significant change in the explanation.

– Compactness (or complexity) – determines the size of the explanation mea-
sured by e.g. number of features used in the explanation. The low size of the
explanation facilitates its understanding by humans.

– Computational complexity – it measures the time to produce explana-
tions. It assesses the usability of the method in industrial applications rather
than the quality of the explanation itself, since the explanations should be
generated within a limited time.

We note that there is no coherence in terms of terminology used and similar
metrics may have a different name depending on the author, e.g., stability in [10]
is equivalent to continuity in [24]. We believe that this list is a good starting point
to evaluate XAD methods in industrial applications.

3 Methodology

In this study, we evaluated the performance of several anomaly detection meth-
ods combined with model-agnostic XAI methods to understand how their selec-
tion affects the overall performance of the model. ML models were trained on
the data from cold rolling, with the aim of predicting the anomalies within these
data and generating explanations of models’ decisions. The primary focus is to
evaluate and compare the effectiveness of various ML and XAI methods in the
context of cold rolling. We evaluate XAI methods using metrics described in Sec-
tion 2.3 and identify the optimal combination of methods to build a robust and
interpretable XAD model. Additionally, we analyze the influence of individual
setting of XAI methods on the quality of explanations. The complete workflow
is illustrated in Figure 2, with further details provided below.

3.1 Anomaly Detection and Explanation

We selected various anomaly detection algorithms for assessment. Each algo-
rithm had its hyperparameters adjusted using Bayesian optimization [30] to
maximize overall performance (measured by the PRAUC metric). Table 2 details
the selected algorithms and their tuned hyperparameters.

Once the optimal architecture for each algorithm was determined, we gener-
ated explanations for all anomalous cases in the validation dataset. Explanations
were not generated for normal cases as they would lack practical implications.
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Fig. 2. Proposed methodology for evaluating Explainable Anomaly Detection models

Three model-agnostic XAI methods – SHAP, LIME, and CFE – were used for
each algorithm. We applied each XAI method with different set of attributes, to
observe if manipulating the method itself leads to changes in obtained results.
The SHAP and LIME were used to explain the value of anomaly score, while
CFE was defined as an optimization task in which we simultaniously minimize
distance to the original instance, anomaly score, and sparsity penalty:

min
x

(λd∥x0 − x∥1 + λaf(x) + λs∥x0 − x∥0) (1)

where x0 is the explained instance, x is a counterfcatual candidate, f(x) is the
anomaly score of x computed by a given ML method, and λ are the weights
associated with each term. To enable comparison of CFE with other methods,
we convert it into feature attributions by determining the difference between the
explained sample and the CFE.

3.2 Evaluation of explanations

To determine the quality of the explanations, we used various XAI metrics, which
assess different aspects of the explanations. The goal of the XAI metrics is to
determine quality of explanation of ML model f for observation x using the XAI
method g. Firstly, we evaluate the correctness of explanations with respect to
the reasoning of the model using faithfulness as proposed by Bhatt et al. [7]:

µF (f, g;x) = corr
S∈

(
[d]
[S]

)∑
i∈S

(g(f, x)i, f(x)− f(xs)) (2)

A subset d of features is randomly replaced i times with a baseline that
produces perturbed samples xs. For each sample, the difference in model output
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ML method Hyperparameters

Half-Space Trees depth, no. trees, random state, window size
OCSVM gamma, kernel type, nu
LODA no. bins, no. cuts, random state
LOF no. neighbors, algorithm type, distance metric
Isolation Forest no. features, max. no samples, no. trees, random state
KMeans no. clusters, random state
Autoencoder dropout rate, hidden layers, latent layers, learning rate, no. epochs,

random state
Sparse
Autoencoder

dropout rate, hidden layers, latent layers, learning rate, no. epochs,
beta, sparsity target, random state

Table 2. Assessed models and optimized hyperparameters

between original and perturbed observations is determined. Finally, a correlation
coefficient is calculated between the attribution of the features g(f, x) and these
differences. Faithfulness depends on factors such as the selected baseline values,
number of perturbations, number of perturbed features, and the randomness of
perturbation process itself.

To evaluate the robustness of the XAI methods, we use the stability metric,
based on the Lipschitz continuity, as proposed by Alvarez-Melis and Jaakkola [3]:

µS(f, g;x) = max
xj∈N∈(xi)≤ϵ

∥g(f, xi)− g(f, xj)∥2
∥xi − xj∥2

(3)

Stability takes samples xj lying in the neighborhood of observation xi, mea-
sured with Euclidean distance and constrained by ϵ. For each sample, the dis-
tance between this sample and the explained observation is determined, along
with the distance between the corresponding feature attributions g(f, x). Then
a ratio between these values is calculated, and the maximum obtained value is
the final result. Lower values of µS imply that explanations are more robust, as
small changes in the input do not effect in drastically different explanation.

The compactness of the explanation is calculated using the entropy measure,
as proposed by Bhatt et al. [7]:

µC(f, g, x) = −
d∑

i=1

Pg(i)ln(Pg(i)) (4)

Pg(i) is scaled feature attribution vector g(f, xi), in a way that the sum of
absolute values is equal to 1.0. Lower values of µC indicate a more compact ex-
planation (using fewer features), thus enhancing its understanding by humans.
Although the authors use term complexity, we decided to refer to it as compact-
ness, so it is not confused with computational complexity.

The computational complexity of the algorithm is evaluated by measuring the
time required to generate the explanations. It depends on the machine used, the
ML model itself, the XAI method, and the quality of the implementation. Despite
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limitations, it provides valuable insight, particularly in a streaming scenario,
where it is critical to ensure fast computation of explanations.

3.3 TCM dataset

All experiments are made on a synthetic dataset, which simulates the cold rolling
process in a four-stand mill. The simulation is based on analytical equations
describing the cold rolling process [33, 20, 8]. The data set consists of 42 variables
in total, which are listed in Table 3.3.

Feature Unit Description

H0, H4 mm thickness of coil at the entry and exit
Y0, Y4 mm yield strength of coil at the entry and exit
W mm width of the coil

D1 −D4 mm diameter of work rolls in each stand
Ft0 − Ft4 kN interstand tensions
Fr1 − Fr4 kN rolling force in each stand
Tr1 − Tr4 kN rolling torque in each stand
Vr1 − Vr4 kN rolling speed in each stand
S1 − S4 kN rolling gap in each stand
R1 −R4 % redutction in each stand
I1 − I4 kN motor current in each stand

Table 3. Prediction perfromance of best models

Given the characteristics of the production line and its condition (which is
continuously updated), the data generator randomly selects a steel coil from a
pool of 20 different prodcuts. For a given product, a simulation is perfromed,
which is based on several assumptions of the cold rolling process e.g. friction
coefficient, tensions, reductions. At each calculation, there is a small probability
that an anomalous observation will be generated. We defined four different types
of anomalies: increased roll friction, reduced bearing efficiency, reduced motor
efficiency, and abnormal reduction scheme, which can affect measurements from
different stands. We generated 20,000 samples with an anomaly ratio of 3.0%.
The data sample is presented in Figure 3. The upper plot presents the metadata
of a coil, while the lower plot depicts measurements for the first stand.

4 Results

We first report the predictive performance of each model, measured on the val-
idation set. The models were evaluated using the F1 score, G-mean, PRAUC,
precision and recall and are presented in Table 4. In terms of predictive capabil-
ities, the AE model significantly outperformed other methods. For most of the
models, we observe that precision and recall are balanced, except for Half-Space
Trees – in this case the recall is satisfactory, but the precision is very low, making
this model useless in practice (due to high number of false alarms).
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Fig. 3. Sample of TCM dataset with highlighed anomalies

Model PRAUC F1 G-mean Precision Recall

SAE 0.74 0.67 0.81 0.69 0.66
AE 0.81 0.75 0.86 0.76 0.74
Half Space Trees 0.06 0.08 0.54 0.04 0.40
KMeans 0.27 0.28 0.52 0.29 0.28
Isolation Forest 0.39 0.35 0.58 0.37 0.34
LODA 0.36 0.32 0.60 0.28 0.37
Local Outlier Factor 0.60 0.55 0.67 0.71 0.45
One-Class SVM 0.44 0.40 0.65 0.37 0.43

Table 4. Prediction perfromance of best models

Additionally, we evaluate the recall of the models with respect to the types of
anomalies. This give us a better understanding of the capabilities of each model,
the results are presented in Table 4. Each column corresponds to different type of
anomaly, while the values represent the fraction of correctly detected anomalies.

Faithfulness was estimated using 100 perturbations, in which 20 features were
randomly replaced with baseline values (determined based on the k-Means algo-
rithm). This setting allowed us to obtain repeatable results. Figure 4 presents
the estimation of the faithfulness metric. SHAP significantly outperformed other
methods in all scenarios tested, which indicates that it is likely to be the best
choice to explain anomalies in our use case. We also observe that limiting
the number of base samples for SHAP from 100 to 20 did not have a neg-
ative influence on faithfulness. To validate these observations we conducted
the Friedman test followed by the Nemenyi test with the p-value set to 0.05,
which confirmed our hypotheses. LIME method performed decently in explain-
ing tree-based methods, but poorly for auteoncoders. The lowest faithfullness
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Model Bearing Electric Reduction Work Roll

Count 35 37 47 35
SAE 0.543 0.811 0.787 0.457
AE 0.686 0.892 0.872 0.486
HalfSpaceTrees 0.343 0.243 0.702 0.257
KMeans 0.086 0.081 0.702 0.143
IsolationForest 0.114 0.000 0.936 0.171
LODA 0.257 0.189 0.745 0.200
LocalOutlierFactor 0.343 0.000 1.000 0.314
OneClassSVM 0.143 0.297 0.915 0.257
Table 5. Recall of each model with respect to anomaly type

AE HalfSpaceTrees IsolationForest KMeans LODA LocalOutlierFactor OneClassSVM SAE
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Fig. 4. Estimation of faithfulness for each combination of ML and XAI method

was achieved by CFE models, which outperfromed LIME only in models utiliz-
ing autoencoder architecture.

To determine stability, we generated 10 synthetic samples in the neighbor-
hood of explained observations, as the anomalies lie in the low-density regions
making it impossible to use samples from the data set. The comparison of stabil-
ity between different XAI methods is a intricate task, due to individual charac-
teristics of each method. To resolve the issue, we scaled all feature attributions
so that the sum of their absolute values for each exlanation is equal to 1.0. Fig-
ure 5 presents the distribution of stability for all explained samples. In most cases
SHAP achieved the lowest stability values, meaning that these explanations were
more robust to small changes in the feature values. Again, we have performed
Friedman and Nemenyi tests to confirm it, and the results indicated that statis-
tically significant differences between SHAP and other methods were observed.
Some exceptions from this behavior were observed for LIME(42), which had
comparable performance to SHAP on LODA, LOF and OCSVM. Additionally,
the stability of SHAP was not better than other methods for SAE. We observe
that limiting the number of features in LIME greatly deteriorates the stability of
this method in anomaly detection task. The obtained stability of CFE is poor,
which is probably caused by the non-detererministm of the heuristics used for
generating the explanations.
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The range of values for compacntess metric spans from 0, meaning all feature
attribution is assigned to a single feature, up to 3.73, which is obtained if all
42 features have equal feature attribution. Figure 6 presents the distribution of
the compactness metric. We observe that most of the methods result in complex
explanations, as the compactness values lie closer to the upper bound. LIME
method, which was limited to 10 features, naturally obtained relatively low values
compared to other approaches. Additionally, certain parts of the explanations
generated for autoencoders with the SHAP method achieved satisfactory scores
– these instances are related to electric motor failure. It is consistent with the
reality because for this anomaly only one feature was affected.

In terms of the last of the evaluated criteria, computational complexity, we
measured the time to compute each explanation. We run all experiments on the
Linux machine equipped with 64-core AMD Ryzen Threadripper PRO 5995WX
and 256GB of RAM. and conducted them in a sequential manner. The results
are presented in Figure 7. We observe that a very high impact on the computa-
tion time has the ML model itself, which we expected, because all utilized XAI
methods rely on calling the model hundreds or thousands of times to compute
explanation. The shortest computation time was achieved by deep learning ap-
proaches, making them particularly useful in streaming scenarios. A significant
drop in computation time is observed for the SHAP method with a reduced
number of base samples. Taking into account that SHAP-based explanations
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Fig. 7. Estimation of computation time for each combination of ML and XAI method

achieved comparable performance in terms of other metrics, we reason that lim-
iting the number of base samples gives a noticeable decrease of computational
complexity without a drop in performance. Regarding the CFE, we observe that
this method required longest time to compute explanations, which is not re-
flected by the increased performance of the method. It is worth noting that
there are large differences between CFE-GA and CFE-PSO, which vary depend-
ing on the model. For example, the computation time for Half-Space Trees was
much shorter with CFE-GA, while in case of Isolation Forest it was the opposite.
Moreover, we report that computation time varies significantly depending on the
parameters chosen for the optimization methods (e.g. number of generations for
GA or number of iterations for PSO). Lastly, changing the number of features
in LIME does not influence the time to generate the explanations.

5 Conclusion and future works

In this paper, we evaluated different XAD methods with respect to their pre-
dictive and explanatory capabilities. We selected eight state-of-the-art anomaly
detection models and three distinct XAI methods (each tested in two settings),
which gave us 48 XAD models in total. All ML models were trained on a syn-
thetic dataset, which simulates the cold rolling process of steel strip. In terms
of predictive performance, the models were evaluated based on the PRAUC,
F1 score, G-mean, precision and recall. To assess the performance of model ex-
planations, we selected four distinct metrics, which considered different aspects
of their explanations – faithfulness, stability, compactness, and computational
complexity. The results clearly showed that the autoencoder-based models sig-
nificantly outperformed other methods with respect to anomaly detection capa-
bilities. Other methods were able to decently predict only anomalies caused by
the invalid reduction scheme, which was the most complex type of anomaly (in
terms of the number of perturbed features). When considering the XAI methods,
we observed that SHAP significantly outperformed LIME and CFE, especially
in terms of faithfulness and stability. We also note that limiting the number of
base samples for SHAP did not have negative impact on its performance, but
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significantly reduced its computation time. This is very important in industrial
applications, where data is generated at high speeds and the explanations of the
anomalies should be almost instantaneous.

Despite CFE performing poorly compared to SHAP and LIME, we believe
this method is worth further research, due to its high tunability. Thus, in future
work, we plan to study the CFE more deeply to increase its explanatory capa-
bilities, as we find the achieved results unsatisfying. Moreover, we plan to focus
more on deep learning architectures based on the autoencoder. Additionally, we
want to investigate Generative Adversial Networks, which were not considered
in this study, but are known for their anomaly detection capabilities. Ultimately,
we will verify our results on the data from an existing cold rolling mill, to show
the practical application of the XAD.
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