
State Estimation of Partially Unknown
Dynamical Systems

with a Deep Kalman Filter

Erik Chinellato1[0009−0007−4628−5581] and Fabio Marcuzzi1[0000−0003−1757−3019]

Department of Mathematics “Tullio Levi Civita”, University of Padova, Via Trieste
63, 35121 Padova, Italy marcuzzi@math.unipd.it

Abstract. In this paper we present a novel scientific machine learning
reinterpretation of the well-known Kalman Filter, we explain its flexibil-
ity in dealing with partially-unknown models and show its effectiveness
in a couple of situations where the classic Kalman Filter is problematic.

Keywords: Kalman Filter · scientific machine learning · deep unfolding
· deep learning

1 Introduction

Often, in data-driven model discovery and in partially-unknown-model learning
from experimental data, a limited set of measured variables is given and one
aims at a model that describes a more complex process than that directly rep-
resented by measured variables. Typically, this means to include in the estimate
an additional set of unmeasurable variables that give a more extended represen-
tation of the true system’s dynamics. As an example, that we will use in this
paper as a model problem, we measure some temperatures on the boundary but
we want our model to represent also the behaviour of the internal temperature
field. This is paradigmatic for a great number of computational intensive appli-
cations, where one needs to indirectly measure constants and variables that have
a precise physical meaning (e.g. mechanical, thermal, etc.) from data obtained
by measurements of other physical quantities (e.g. displacements, temperatures,
etc.) or in different locations. This estimate represents a virtual measurement
of these variables and, if performed by an algorithm in real-time, it is usually
called a soft-sensor [3]. When these variables belong to the state-vector of a
dynamical system, it is common to adopt a state estimator and quite often this
is the Kalman Filter (KF) [7] [9]. It is a predictor-corrector algorithm where the
predictor is based on a reference model, which can be black-box or conveniently
a physico-mathematical model; the corrector acts on the basis of the description
of the modelling and measurement errors, represented by their covariance ma-
trices, and must operate a few matrix inversions. Actually, the Kalman Filter
is often used also to estimate unknown inputs and/or parameters of the model;
this is frequently done through a proper state-augmentation, see e.g. [12].
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The aim of this paper is to present a state/parameters estimation method
that inherits the structure of the Kalman Filter but it is blended with data-driven
model discovery, and we call it the Deep Kalman Filter.

Let us see a couple of motivations that lead us to combine the Kalman Fil-
ter with machine learning, and in particular neural/back-propagation learning.
First, we are interested in obtaining less demanding algorithms, suitable e.g. to
be executed in real-time on embedded systems [3], while simultaneously main-
taining a satisfactory interpretation of the physico-mathematical model proper-
ties and the inferred statistical description of the model errors, which is not the
case with plain neural computing. In this regard, it can be convenient to sub-
stitute covariance matrices determination and numerical inversion with neural
learning, an idea that has been already presented in [14] but here we formulate in
a quite different way. Secondly, we strive to develop a state-estimation algorithm
that allows to include general model uncertainties (also deterministic ones, even
nonlinear) that can be learned from data together with state estimation, since
both linearity of the reference state-space model and accurate knowledge of it
are often not encountered in practice.

There is an increasing literature about combining Kalman filtering and neural
networks. In particular, we refer to KalmanNet [14], where the overall informa-
tion required to generate the Kalman gain is learned by a Recurrent Neural Net-
work. Here we propose a novel, highly interpretable learning scheme for Kalman
filtering inspired by the unfolding technique [8], originally invented in the con-
text of nonnegative matrix factorizations. Similar approaches can be found also
in the Data Assimilation (DA) context; in the taxonomy developed in a recent
review [2], the Deep Kalman here presented is an end-to-end learning scheme for
the whole DA system and, precisely, a "Sequential-DA-inspired neural scheme"
that employs the unfolding technique instead of a Recurrent Neural Network,
thus providing a higher degree of interpretability to KF operations.

The paper is organized as follows: in Sec. 2 we briefly recall the Kalman
Filter equations. in sec. 3 we present the Deep Kalman Formulation and its
flexibility to deal with partially unknown models. In sec. 4 we present a few
relevant experiments and a Conclusions section ends the paper.

2 Kalman Filter estimation

Let us consider a parametric Discrete, Linear, Time-Invariant (DLTI) dynamical
system in state-space form:

x(k + 1) = A(k, p)x(k) +B(k, p)u(k) + v(k)

y(k) = Cx(k) + w(k)
(1)

where x ∈ Rn is the state vector, y ∈ Rm is the observation vector, and the de-
pendence of A and B from p is in general nonlinear. This would arise, for exam-
ple, from the discretization with an implicit method of a physico-mathematical
model (see an example in sec. 4). To estimate the state vector from measurement
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data it is a common choice to adopt a Kalman Filter, that we recall here in its
one-step version [9]:

P (k) =
[(
Q(k − 1) +A(k − 1, p)P (k − 1)A(k − 1, p)⊤

)−1
+ C⊤R−1C

]−1

(2)

epred = C (A(k − 1, p) x̂(k − 1) +B(k, p) u(k − 1) ) − y(k) (3)

δx̂(k) = −P (k) C⊤R−1epred (4)
x̂(k) = A(k − 1, p) x̂(k − 1) +B(k − 1, p) u(k − 1) + δx̂(k) (5)

From equation (4) it is evident that the KF operates a proportional feedback
action on the output prediction error epred, with a gain:

K(k)
G = −P (k) C⊤R−1 (6)

3 The Deep Kalman formulation

Let us generalize equations (3)-(4) for a nonlinear state-space system.
Given inputs {u(k)}k=0,...,N−1, measurements {y(k)}k=1,...,N , and an evolution
map f = f(x, p, u) depending on a state x, unknown dynamics vector p and
input u, we have:

x(k + 1) = f (x(k), p, u(k)) + v(k)

y(k) = Cx(k) + w(k)
(7)

For an initial state estimate x̂(0), the forward run of the filter is thus given by:

x̂(k) = x̂(k | k − 1) +K(k)
G ( y(k)− Cx̂(k | k − 1) ) ∀k = 1, . . . , N (8)

where x̂(k | k− 1) = f
(
x̂(k − 1), p(k), u(k)

)
is the k-th state prediction, C is the

observation matrix, K(k)
G is the k-th Kalman gain matrix and p(k) ≡ p is a shared

vector modelling unknown dynamics.
Let us now unfold these equations and untie the Kalman gains. More pre-

cisely, the unfolding process considers the k-th state-update of equation (8) as
the action of the k-th layer of a neural network. The untying then regards the
Kalman gain matrices K(k)

G as the network’s weights, which are therefore no
longer tied together by the recursive relation (2). The resulting scheme is shown
in Figure 1: each grey rectangle represents one layer of the network, embedding
equation (8). Note that this formulation is quite simpler than the one proposed
in [14] and does not require the knowledge of the measured state vector at each
time instant during the training phase, which is a hard constraint for many ap-
plications, but rather the only required quantity is the target final state x(N).
Also, there is no explicit learning of the initial condition x(0), but the covariance
of the initial-state estimation error P (0) (see eqns. (6) and (2)) is learned and
embedded directly in the first parameter matrix K(1)

G during training.
The weights of the proposed network also include the vector p(k) ≡ p.
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Fig. 1: Structure of the DeepKalman network.

3.1 Different parametrizations for K(k)
G

The most straightforward formulation for the parametrization of the gain matri-
ces K(k)

G is that each component is a weight of the net. Another possible network
architecture that provides more structure to the Kalman gain matrices and is
more closely related to the original Kalman Filter algorithm can be obtained by
splitting the former as:

K(k)
G = C(k)

x C⊤C(k)
y ∀k = 1, . . . , N (9)

where C
(k)
x plays the role of the state covariance matrix and C

(k)
y the inverse

of the measurement covariance matrix. Since the positive definiteness of these
matrices should be preserved, this alternative architecture replaces the weights
{K(k)

G }k=1,...,N with {L(k)
x }k=1,...,N and {L(k)

y }k=1,...,N where L
(k)
x , L(k)

y are lower
triangular matrices satisfying:

C(k)
x = L(k)

x L(k)⊤

x C(k)
y = L(k)

y L(k)⊤

y (10)

If K(k)
G ∈ Rn×m and p ∈ Rq, then the number of parameters in this second

architecture increases from nmK + q to 1
2 [n(n+ 1) +m(m+ 1) ]K + q.

In both cases the initialization of the parameters can be made from the
expression of K(k)

G (6) and equation (2) (A is a linearization of f in this case).
This is really effective, as we will show in the experiments of sec. 4, and provides
satisfactory interpretability to the learned parameters K(k)

G .
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3.2 Backpropagation details

Let us now give some details on the backpropagation algorithm in the case of
the architecture in equation (8). Given a desired final state x(N) we consider
the loss function:

L =
1

2
∥x̂(N)− x(N)∥22 +

λ

2

N∑
l=1

∥Cx̂(l)− y(l)∥22 = E +

N∑
l=1

F l
λ (11)

which controls both the reconstructed state as well as the intermediate measure-
ments at each layer.
As a consequence, one obtains the recursive relations:



∇x̂(N)E = x̂(N)− x(N)

∇x̂(l)F l
λ = λC⊤ (Cx̂(l)− y(l)) ∀l = 1, . . . , N

∇x̂(k)E =
[(
1−K(k+1)

G C
)
∂xf

(
x̂(k), p(k+1), u(k + 1)

)]⊤
∇x̂(k+1)E

∀k = 1, . . . , N − 1

∇x̂(k)F l
λ =

[(
1−K(k+1)

G C
)
∂xf

(
x̂(k), p(k+1), u(k + 1)

)]⊤
∇x̂(k+1)F l

λ

∀k = 1, . . . , l − 1, ∀l = 1, . . . , N

with which to compute the partial gradients:



∇K(k)
G

E = ∇x̂(k)E
(
y(k)− Cf

(
x̂(k − 1), p(k), u(k)

) )⊤
∀k = 1, . . . , N

∇K(k)
G

F l
λ = ∇x̂(k)F l

λ

(
y(k)− Cf

(
x̂(k − 1), p(k), u(k)

) )⊤
∀k = 1, . . . , l − 1, ∀l = 1, . . . , N

∇p(k)E =
[(
1−K(k)

G C
)
∂pf

(
x̂(k − 1), p(k), u(k)

)]⊤
∇x̂(k)E

∀k = 1, . . . , N

∇p(k)F l
λ =

[(
1−K(k)

G C
)
∂pf

(
x̂(k − 1), p(k), u(k)

)]⊤
∇x̂(k)F l

λ

∀k = 1, . . . , l − 1, ∀l = 1, . . . , N

Adding together all these contributions we obtain the overall gradients for our
proposed architecture:

∇K(k)
G

L = ∇K(k)
G

E +
N∑
l=1

∇K(k)
G

F l
λ ∀k = 1, . . . , N

∇pL =
N∑

k=1

(
∇p(k)E +

N∑
l=1

∇p(k)F l
λ

)
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and the weight update relation for some learning rates µK, µp is given by:{
K(k)

G ⇐ K(k)
G − µK∇K(k)

G

L ∀k = 1, . . . , N

p ⇐ p− µp∇pL
(12)

In practice, an optimizer is used in place of the above stochastic gradient descent.
For our implementation we adopted Adam [10] with moment parameters β1 and
β2 depending on the particular experiment being carried out. The learning rates
µK and µp also depend on the experiment and are adaptively reduced based on
the training residue.

As far as the Kalman gains are concerned, we will expand on their initial-
ization in a later section. The unknown dynamics vector p on the other hand is
initialized according to its physical meaning in order to not introduce biases.

3.3 Alternative formulations and extensions for the map f

One of the main approaches used to define the map f of (7) is to employ a
parametric model governed by differential equations and discretize it, as will be
done in our model problem of sec. 4. Possibly, a surrogate model can be used,
like e.g. a variationally mimetic operator network (VarMiON) [13].

Since the Kalman Filter operates a mere proportional control of the state-
estimation error, there are classes of problems where this gives poor performances
and, for example, an additional feed-forward term improves substantially the
results of the predictor; see e.g. [12] for an adaptive feed-forward with a gain
chosen according to the maximum principle for the heat equation; even this
sophisticated term can be actually implemented in the map f of (7) without
modifying the interpretation of the Deep Kalman formulation.

The map f can also be extended with a generic, parametric term to do data-
driven model discovery during training, or even an ensemble of extensions. This
can be done e.g. with the approach of sparse identification of nonlinear dynamics
(SINDy) [1] and e-SINDy [5], i.e. to maintain the interpretability of the extension
as an explicit function of the state variables. Simply, if the known part of the
model is given by a linear system of differential equations like:

Mẋ = Kx+ d (13)

and a collection of states X = [x(1) · · · x(T ) ] ∈ Rn×T is provided (e.g. the states
estimated by the Deep Kalman at each layer, so that T = N) together with their
derivatives Ẋ = [ ẋ(1) · · · ẋ(T ) ] ∈ Rn×T , which can be approximated numeri-
cally, we can build an appropriate (overcomplete) dictionary Φ(X) ∈ RT×L and
do sparse regression on: (

MẊ −KX −D
)⊤

= Φ(X)s (14)

where D = [ d(1) · · · d(T ) ] ∈ Rn×T and s ∈ RL×n is the sparse solution ma-
trix. Finally, we can actually set the map f of the Deep Kalman Filter as the
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discretization of the data-driven extended model:

Mẋ = Kx+ d+ (Φ(x)s )
⊤ (15)

where now Φ(x) ∈ R1×L. Note that this approach can be applied to partially
unknown nonlinear models as well.

In summary, if we lack an accurate model of the underlying dynamics and
we want to improve it by learning from observations, we have briefly described
how the Deep Kalman can be a framework embracing three core categories of
unknown dynamics: (a) parametric dynamical models with unknown parame-
ter values; (b) complex/unknown dynamics captured by interpretable surrogate
models, e.g. implemented using neural networks; and (c) inaccurate or partially-
known dynamical models that can be improved using data-driven extensions.

Finally, note that data-driven extensions can be physically interpretable even
when they describe a fictitious term in the model, if it has been proven to be
equivalent to a physical model property which is difficult to formulate or to
estimate; see e.g. how the estimation of inner cavities (a nonlinear geometric
inverse problem) can be reformulated as the estimation of fictitious heat sources
(linear inverse problem) in [6].

4 Numerical experiments

As a model problem, let us consider the heat equation:
ρC ∂tT = κ ∆T + fϑ in D × [0, tf ]

κ∇T · nS = q(t) on S × [0, tf ]

κ∇T · n = 0 on (δD \ S)× [0, tf ]

T (0, ·) = T0(·) in D

(16)

where D(x, y) = [0, 1]× [0, L] is a 2-dimensional domain, S = {(x, 0) : x ∈ [0, 1]}
is the measurable border, ρC is the heat capacity of the material, κ is its thermal
conductivity and nS , n are the outward normal vectors to S, δD\S respectively.
The restriction to a 2D problem is only for simplicity, the method here proposed
can be used in higher dimensions.

Let us discretize problem (16) in space using the Finite Element Method
(FEM) with Lagrangian elements P1, i.e. piecewise first-degree polynomials, and
in time with the implicit Euler method, so that at iteration k we get:

M (ρC)
T̃k − T̃k−1

dt
= K(κ)T̃k + fk

⇒
(
1− dt M (ρC)

−1
K(κ)

)
T̃k = T̃k−1 + dt M (ρC)

−1
fk

where M(ρC) ∈ Rn×n and K(κ) ∈ Rn×n are the mass and stiffness matrices of
the FEM discretization, dt is the time step chosen in the time-discretization and
fk is the heat source at time tk.
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Since we can measure only a few components of the temperature field T ,
we reformulate this model as a state-space dynamical system with the aim of
estimating its state from output measurements. Let us consider the following
state-space discrete model in physical coordinates:

xm(k + 1) = Amxm(k) +Bmum(k) + vm(k)

ym(k) = Cmxm(k) + w(k)
(17)

where xm(k) = T̃k is the state-vector, um(k) = fk the input, vm(k) and w(k)
are, respectively, the model and measurement errors, supposed i.i.d. Gaussian
processes, Cm is a matrix built with the rows of the identity matrix corresponding
to measured nodes, and lastly:

Am =
(
1− dtM (ρC)

−1
K(κ)

)−1

Bm = AmdtM (ρC)
−1

Now, to estimate the state vector we apply equations (2)-(5).

In this section, some numerical experiments are described to give a practi-
cal evidence of the algorithmic ideas previously presented. In all the examples,
experimental temperatures are simulated numerically, while intensive tests have
been done in our previous work to experimentally validate the model settings
(see [4]). A note about "inverse crimes": here we are solving the inverse prob-
lem using the same model that has generated the data, which is considered an
inverse crime. Actually, we are interested in analyzing the algebraic operations
made during the reconstruction, which are non trivial, and the simplified setting
we use is adequate to make significant comparisons, see the interesting discussion
in the white-paper of Wirgin [15]. In a real, specific application one should then
consider also model and measurement errors, to validate the practical accuracy
of his method in the specific application. In the next subsection we provide an
example of the robustness of Deep Kalman to model noise.

Let us describe the model settings: tf = 1.51 s, L = 0.1m, ρC = 3.2 ×
106 J/(m3 ◦C), k = 3.77× 103 W/(m ◦C), and

q(t) =
Wt

σ2
q

e
−

√
t

σq , t ∈ (0, tf ] (18)

where σq = 1.06 × 10−2 , W = 2.9511 × 107 J. The initial condition is set to
T0(·) = 20 ◦C. In this section an Implicit Euler method is adopted for the time
discretization, using a temporal step ∆t = 0.0005 s in (0, 0.1] and ∆t = 0.05 s
in (0.1, tf ]. A P1-FE method is used for space discretization, whose step length
along y is hy = 0.01m and hx = hy. The sensors are supposed to be in the
middle of each mesh edge in the instrumented boundary segment. Numerical
experiments have been carried out using MATLAB. As a general forcing term
we have used a gaussian forcing term fϑ with arbitrary variance and point of
application.
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State estimation of partially unknown systems with a Deep Kalman Filter 9

In the following subsections we see a couple of relevant parametrizations for
just as many inverse heat transfer problems.

4.1 Example: discovering a distributed forcing term

Let us suppose that the heat source term fϑ is an unknown function, in general,
except that it is assumed different from zero only in a few disconnected regions
of compact support. This is a common situation in many applications. In this
example, we estimate fϑ from a limited number of temperature measurements
T̃(fϑ), taken at the boundary. The estimate of fϑ can be seen as an indirect
measurement of fϑ from physical/direct temperature measurements and, with
this interpretation, it is usually called a soft-sensor [3]. This is quite a difficult
problem for Kalman filtering and, more precisely, for the Augmented Kalman
Filter (AKF): see [12] and Figure 2, where it is clear that the standard AKF
misses completely the right location, shape and intensity of the physical forcing
term.

Fig. 2: Comparison between the true forcing term (left) and estimated (right) by
the traditional (augmented) Kalman Filter algorithm.

With the method here presented, we set the unknown-dynamics vector of
parameters p of sec. 3 to um(k) in the reference model (17) and W = 0 in
(18). Moreover, the training/discovery process was carried out using β1 = 0.9,
β2 = 0.999 and µK = 5 · 10−3, µp = 6 · 10−3. We performed this experiment in
the ideal noiseless setting as well as in the presence of model noise significantly
corrupting the measured nodes’ temperatures. The added model noise is assumed
to be an i.i.d. Gaussian process with zero mean and variance σ2 = 1 · 10−4. See
Figure 3 and Figure 4 respectively for the results. In both cases the Deep Kalman
algorithm is able to estimate the forcing term with high accuracy. Note that in
the case with model noise, despite the relatively high output-prediction error, the
Deep Kalman is able to estimate with a good precision the internal temperature
field.
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10 E. Chinellato and F. Marcuzzi

Fig. 3: Forcing term estimation in absence of noise. Nodal values of the temper-
ature field T at time Tk = N (top-left). Loss-function (11) minimization (top-
right). Rectangular domain with the estimated source term fϑ (bottom-left).
Nodal temperatures at the measured boundary S (bottom-right).

4.2 Example: discovering internal material properties

Let us suppose that the ρC, the heat capacity of the material, is an unknown
function of (x, y) and, in particular, it is constant along x. This is an interesting
situation in applications. In this example, we estimate (ρC)(y) from a limited
number of temperature measurements T̃(ρC), taken at the boundary. It is another
example of soft-sensor [3] and a quite difficult problem for Kalman filtering, see
in [11] an analogous application to the estimation of the internal material stiff-
ness through mechanical vibration experiments.

With the method here presented, we set the unknown-dynamics vector of
parameters p of sec. 3 to the values of a piecewise constant approximation of
(ρC)(y), defined according to the previously assumed discretization of the do-
main. Moreover, the training/discovery process was carried out using β1 = 0.05,
β2 = 0.059 and µK = 5 ·10−3, µp = 1 ·10−2. The Deep Kalman algorithm is able
to estimate these parameters p with high accuracy, see Figure 5.
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State estimation of partially unknown systems with a Deep Kalman Filter 11

Fig. 4: Forcing term estimation in presence of model noise. Nodal values of the
temperature field T at time Tk = N (top-left). Loss-function (11) minimization
(top-right). Rectangular domain with the estimated source term fϑ (center-left).
Nodal temperatures at the measured boundary S (center-right). Zoom on the
top-left figure from node 780 to 880 (bottom).
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Fig. 5: Heat capacity estimation. Nodal values of the temperature field T at
time Tk = N (top-left). Loss-function (11) minimization (top-right). Rectangular
domain with the estimated heat capacity (ρC)(y) for y = 0, 0.01, 0.02, . . . , 0.1
(center-left). Nodal temperatures at the measured boundary S (center-right).
Zoom on the top-left figure from node 1 to 100 (bottom).
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Fig. 6: Forcing term estimation in absence of noise with a random initialization
of the parameters K(k)

G . Nodal values of the temperature field T at time Tk = N
(top-left). Loss-function (11) minimization (top-right). Rectangular domain with
the estimated source term fϑ (center-left). Nodal temperatures at the measured
boundary S (center-right). Zoom on the top-left figure from node 780 to 880
(bottom).
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4.3 Initialization strategy for parameters K(k)
G

In both previous examples, the initialization of the parameters K(k)
G in the Deep

Kalman learning algorithm was made by choosing reasonable values for the ma-
trices Q, P (0) and R, and precisely those dictated by standard rules to tune the
KF [7]. Then, we have set K(k)

G = P (1), where P (1) is given by (2) with k = 1.
In Figure 6 we repeat the experiment of sec. 4.1 but initializing the pa-

rameters K(k)
G with small random values, as is usually done in neural networks

learning. We see that the result is much worse, if compared with Figure 3. We can
make two considerations: first, the Deep Kalman allows to initialize the weights
in a very interpretable way and, in particular, it allows to initialize the weights
according to the standard rules adopted for the KF; second, if we do not put a
good apriori structure in this initialization, the results are not good.

5 Discussion and Conclusions

We have presented Deep Kalman, a novel scientific machine learning reinterpre-
tation of the well-known Kalman Filter, and shown its effectiveness in a couple
of situations where the classic Kalman Filter is problematic.

In this machine learning formulation, we kept the predictor model in its ex-
plicit original formulation, usually expressed by a physico-mathematical model;
this fact allows to ask for the identifiability of the parametric model learned by
the Deep Kalman, i.e. the one-to-one correspondence between the input-output
data used in the supervised learning and the value of the learned parameters.
This is typical for system identification but not attainable in pure neural learn-
ing.

With respect to execution speed, under the assumption that the gains K(k)
G

are entirely given a priori, the Deep Kalman and traditional Kalman Filter are
very similar. Indeed, a forward run of both algorithms performs the same alge-
braic operations. Nevertheless, the difference between the two becomes relevant
in the case of partially unknown models, which is the main focus of this contri-
bution. As a matter of fact, in this setting, the traditional Kalman Filter must
update the gains at run-time to compensate for the unmodeled dynamics, which
involves matrix inversions. The Deep Kalman on the other hand, by virtue of
its ability to learn these unknown dynamics during the training phase and the
prospect to differentiate the learning of the gains K(k)

G and the vector p, can
offer a potentially non-negligible speed-up if compared to the former algorithm.
Moreover, this efficiency in determining the gains for partially known models
may contribute to relevant memory savings, especially in comparison e.g. to the
demand of employing a filter-bank, a common option for the traditional Kalman
Filter, in this case.

The speed-up and memory saving are important when the Deep Kalman must
run in real-time and on computers with limited resources, like microcontrollers
for embedded applications.
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