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Abstract. Almost all optimization algorithms have algorithm-dependent
parameters, and the setting of such parameter values can significantly in-
fluence the behavior of the algorithm under consideration. Thus, proper
parameter tuning should be carried out to ensure that the algorithm
used for optimization performs well and is sufficiently robust for solving
different types of optimization problems. In this study, the Firefly Algo-
rithm (FA) is used to evaluate the influence of its parameter values on
its efficiency. Parameter values are randomly initialized using both the
standard Monte Carlo method and the Quasi Monte-Carlo method. The
values are then used for tuning the FA. Two benchmark functions and a
spring design problem are used to test the robustness of the tuned FA.
From the preliminary findings, it can be deduced that both the Monte
Carlo method and Quasi-Monte Carlo method produce similar results
in terms of optimal fitness values. Numerical experiments using the two
different methods on both benchmark functions and the spring design
problem showed no major variations in the final fitness values, irrespec-
tive of the different sample values selected during the simulations. This
insensitivity indicates the robustness of the FA.

Keywords: Algorithm · Firefly algorithm · Parameter tuning · Monte
Carlo method · Optimization.

1 Introduction

Many problems in engineering design and industry can be formulated as opti-
mization problems with a main design objective, subject to multiple nonlinear
constraints. Best design options correspond to the optimal solutions to such de-
sign optimization problems. To find such optimal solutions requires the use of
sophisticated optimization algorithms and techniques [1, 18]. A recent trend is
to use nature-inspired algorithms to solve engineering design optimization prob-
lems because nature-inspired algorithms tend to be effective, flexible and easy
to implement.
⋆ Corresponding author, email: gj219@live.mdx.ac.uk
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Almost all optimization algorithms and techniques, including nature-inspired
algorithms, have algorithm-dependent parameters, and these parameters need to
be properly tuned. Tuning algorithm-specific parameters play a crucial role in
determining the effectiveness of an algorithm, and the way these parameters are
configured can significantly influence the performance of the algorithm under
consideration [8, 15]. Consequently, fine-tuning algorithmic parameters is a vital
aspect of implementing and applying algorithms for solving problems in real-
world scenarios [13, 21, 22].

Ideally, an efficient method should be used for tuning or setting the pa-
rameters for a given algorithm so that the algorithm can obtain better results.
However, such methods are not yet available, and thus tuning is largely em-
pirical or experience-based. Therefore, tuning parameters for a given algorithm
can still be a challenging task, especially for tuning nature-inspired optimiza-
tion algorithms [2]. In addition, parameter tuning can be problem-specific, and
even with advanced tuning tools, a finely-tuned algorithm for one problem may
not generalize well to other problems, leading to the need for re-tuning for each
new problem or problem type and thus making it a time-consuming task in
optimization.

In this study, two different methods, namely, the standard Monte Carlo (MC)
and Quasi-Monte Carlo (QMC) methods, will be used to tune the parameters
of the Firefly Algorithm (FA). The performance of the tuned FA will then be
evaluated by comparing the fitness values obtained by FA using both MC and
QMC. These numerical experiments may give some insights into the tuning
efficiency of MC and QMC by investigating both the fitness values of problems
with two different tuning methods and over different optimization problems.

2 Literature Review of Parameter Tuning

The literature of parameter tuning for evolutionary algorithms and metaheuris-
tics is expanding, especially in the context of tuning parameters of nature-
inspired metaheuristic algorithms. Here, a brief review is carried out on different
approaches to parameter tuning, including online and offline approaches [18].

From the perspective of parameter tuning, for a given algorithm, a tuning
tool (or a tuner) should be used to tune the algorithm first, and then use the
tuned algorithm to solve a set of problems. Thus, there are three key components
here: an algorithm, a tuner, and a problem set. Since these three components
are involved simultaneously in tuning, it is possible that the parameter values
tuned may depend on both the algorithm under consideration and the problems
to be solved. Therefore, parameter settings can be algorithm-specific as well as
problem-specific.

For a given algorithm, its parameters can be tuned first before it is used for
solving optimization problems. This approach is usually called offline tuning.
Other studies also indicate that it may be advantageous to vary parameters
during iterations, and this approach is often referred to as online tuning [8, 13].
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Parameter tuning can be carried out either in sequence or in parallel and these
different methods can be loosely divided into ten different categories:

– Manual or brute force method
– Tuning by systematic scanning
– Empirical tuning as parametric studies
– Monte Carlo based method
– Tuning by design of experiments (DOE)
– Machine learning based methods
– Adaptive and automation methods
– Self-tuning method [9]
– Heuristic tuning with parameter control
– Other tuning methods

Other parameter tuning methods include sequential optimization approaches,
multi-objective optimization approaches, self-parameterization, fuzzy methods
as well as dynamic parameter adaptation approaches and hyper-parameter op-
timization [10, 11]. Although extensive studies have been dedicated to exploring
parameter tuning methods, both offline and online, a lack of comprehensive un-
derstanding persists regarding these methods. Sometimes, these methods may
not perform as well as expected, and the reasons behind these unexpected out-
comes remain elusive, underscoring the need for deeper insights. Some key issues
in parameter tuning include [15]

1. Non-universality. It is not clear whether tuned parameters are inherently
problem-specific and algorithm-specific, which may limit their generalization
to different problem sets.

2. High computational efforts. Parameter tuning tends to be a computationally
intensive task. This poses a significant barrier to effective parameter tuning,
necessitating the development of methods to minimize computational efforts.

3. Lack of theoretical insights. Despite a diverse spectrum of tuning methods
available in the current literature, most rely on heuristic approaches without
theory-based guidelines, lacking a clear understanding of their mechanisms
and optimal conditions for applications.

There are still some open problems related to parameter tuning. For example,
it is not clear how to tune parameters in the most effective way and how math-
ematical theories can be applied to parameter tuning. In addition, the practical
implications of well-tuned parameters on algorithm convergence remain another
open problem, thus highlighting the need for further research in this area.

3 Tuning Parameters by MC and QMC

Before the details of tuning parameters using the MC and QMC methods are
discussed, the main idea of FA and its parameters are outlined.
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3.1 Firefly Algorithm

The Firefly Algorithm (FA) is a nature-inspired algorithm that was developed
by Xin-She Yang in 2008, based on the flashing characteristics and flying pat-
terns of tropical fireflies [19]. FA has been applied to a diverse range of applica-
tions, including multi-modal optimization, multi-objective optimization [19, 17],
clustering [20], software testing [3], vehicle routing problems [21], multi-robot
swarming [22] and others.

For a given optimization problem, its solution vector x is encoded as the
locations of fireflies. Thus, the locations of two fireflies i and j correspond to two
solution vectors xi and xj , respectively. The main updating equation of firefly
locations or solution vectors is

xt+1
i = xt

i + βe−γr2ij (xj − xi) + αϵti, (1)

where the random number vector ϵti is drawn from a Gaussian normal distribu-
tion. In addition, the distance r between two solutions is given by the Euclidean
distance or L2-norm

rij = ∥xt
i − xt

j∥. (2)

The parameters to be tuned are the attractiveness parameter β, the scaling
parameter γ and the randomization strength parameter α. In most FA imple-
mentations, parameter α is further rewritten as

α = α0θ
t, (3)

where α0 is its initial value, which can be set to α0 = 1. Here, t is the pseudo-
time or iteration counter, and 0 < θ < 1 is the parameter to be tuned, instead
of α.

3.2 Monte Carlo Method

One approach to offline tuning is to use MC-based methods. In this study, all
the parameters in the FA are initialized randomly using MC and pseudo-random
numbers that are uniformly distributed. Pseudo-random numbers are random
numbers generated using generators, which are used in computer programs. They
are not truly random numbers and are generated in a deterministic way with
some sophisticated permutations.

In essence, the MC method is a statistical sampling method with statistical
foundations and its errors tend to decrease as O(1/

√
N) where N is the number

of samples [12]. Though this inverse-square convergence may be slow, it can work
well in practice [15], in comparison with manual or brute force methods.

In the current simulation for parameter tuning, the parameters of the FA
are randomly initialized by drawing random samples from uniform distributions
in a specific range of parameter values. Then, the discrete random samples are
used as the parameter setting of the FA. With such settings, the FA is executed
to solve the given optimization problems, such as the benchmark functions and
the spring design problem [1, 14].
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3.3 Quasi-Monte Carlo Method

To obtain better estimates, the standard MC method requires a large number of
samples. Theoretical analysis and studies from various applications suggest that
a quasi-Monte Carlo method can potentially speed up the convergence because
its errors decrease as O(1/N) under certain conditions. Such QMC methods use
low-discrepancy sequences or quasi-random numbers, and such sequences require
some careful generation and random scrambling of the initial sequences [4, 12,
14]. Therefore, this study also uses QMC to tune parameters in the FA and
comparison with the standard MC will be carried out.

For the generation of quasi-random numbers, there are efficient algorithms
such as van der Corput sequence, Sobol sequence and Halton sequence. Most of
these sequences will generate quasi-random numbers in the interval between 0
and 1. In the current simulation, the Sobol sequence with affine scramble and
digital shift will be used [4, 5, 16], which is a standard implementation in Matlab.

4 Experiment Setup and Benchmarks

To investigate the possible effect of two different tuning methods on the perfor-
mance of the FA, two benchmark functions and a design problem are used in this
study. The two benchmark functions are the sphere function and Rosenbrock’s
banana function. The former is a convex, separable function, whereas the latter
is a non-convex, non-separable function. The design problem is a non-convex,
nonlinear spring design problem, subject to four constraints.

4.1 Experimental Setup for FA Parameters

In the standard FA, there are three parameters θ, β and γ to be tuned. These
parameters of the FA can typically take the following values:

– Population size: n = 20 to 40 (up to 100 if necessary).
– β = 0.1 to 1 , γ = 0.01 to 10, though typically, β = 1 and γ = 0.1.
– α0 = 1, θ = 0.9 to 0.99 (typically, θ = 0.97). where α = α0θ

t.
– Number of iterations: tmax = 100 to 1000.

For simplicity in this study for both MC and QMC, the ranges of these
parameter values will be further narrowed down, as shown in Table 1.

4.2 Benchmark Functions

Optimization algorithms are typically assessed using a diverse set of standard
benchmark functions to validate their efficiency and reliability. Researchers eval-
uate these algorithms by comparing their performance across a wide range of
more than two hundred benchmark functions. The choice of benchmarks lacks
standardized criteria, but it is essential to use a diverse range of benchmark
problems, including different modes, separability, dimensionality, linearity and
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Table 1. Experimental setting for MC and QMC Simulations

Initialization Values Monte Carlo Quasi-Monte Carlo
Population size 20 20

Number of MC/QMC runs 10 10
Number of iterations 1000 1000
Parameter ranges of

θ [0.9, 1.0] [0.9, 1.0]
β [0, 1] [0, 1]
γ [0.5, 2.5] [0.5, 2.5]

nonlinearity. Numerous benchmark collections, including CEC suites, and those
referenced in articles, for example, Jamil and Yang [6], are available online.

While test functions are usually unconstrained, real-world benchmark prob-
lems originate from various applications with complex constraints and large
datasets. This present work will assess the FA’s parameter settings using three
test benchmarks.

1. The Rosenbrock function is a nonlinear benchmark [7], which is not convex
in the D-dimensional space. It is written as

f(x) = (1− x1)
2 +

D−1∑
i=1

[
100

(
xi+1 − x2

i

)2]
, x ∈ RD, (4)

where

−30 ≤ xi ≤ 30, i = 1, 2, ..., D. (5)

Its global minimum is located at x∗ = (1, . . . , 1) with fmin(x
∗) = 0.

2. The sphere function is a convex benchmark in the form

f(x) =

D∑
i=1

x2
i , x ∈ RD, (6)

where

−10 ≤ xi ≤ 10, i = 1, 2, ..., D. (7)

Its global minimum is located at x∗ = (0, . . . , 0) with f(x∗) = 0.
3. The spring design is an engineering design benchmark with three decision

variables and four constraints [1].

Minimize f(x) = (2 + x3)x
2
1x2, (8)
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subject to

g1(x) = 1− x3
2x3

71785x4
1

≤ 0,

g2(x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0,

g3(x) = 1− 140.45x1

x2
2x3

≤ 0,

g4(x) =
x1 + x2

1.5
≤ 0.

The simple bounds for design variables are

0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, 2.0 ≤ x3 ≤ 15.0. (9)

The best optimal solution found so far in the literature is

x∗ = [0.051690, 0.356750, 11.287126], fmin(x∗) = 0.012665. (10)

It is worth pointing out that the constraints in this optimization problem
are handled by using the standard penalty method.

5 Results and Hypothesis testing

To test the possible effects of different tuning methods on the performance of
the FA, a set of 10 runs have been carried out using both MC and QMC meth-
ods over three different optimization problems. All problems and runs use the
same maximum number of 1000 iterations. Based on the numerical experiments,
two hypotheses are proposed and the paired Student’s t-tests will be used for
comparison.

The two hypotheses to be tested are as follows

Hypothesis H1: Parameter Tuning methods (MC or QMC) have no signif-
icant effect on the fitness values obtained, for a given optimization problem.

Hypothesis H2: For a given algorithm, its performance on different prob-
lems is not affected by the parameter tuning method used.

5.1 Testing the First Hypothesis

For the MC simulation, the parameters of the FA (θ, β and γ) are taken from
uniform distributions in the ranges given in Table 1. Similarly, for the QMC
simulation, the parameters are taken from a scrambled Sobol sequence and then
mapped into the proper ranges of the parameters. For every objective function,
the optimal fitness value obtained along with the corresponding optimal solution,
and the parameter values from MC and QMC are recorded for post-processing
and hypothesis testing.
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Table 2. Rosenbrock function.

Fitness Values Monte Carlo Quasi-Monte Carlo
Run 1 4.0075e-01 2.0416e-01
Run 2 3.9088e-01 2.7798e-01
Run 3 7.2409e-02 7.0090e-02
Run 4 5.1595e-02 3.9830e-01
Run 5 3.3661e-01 3.2203e-02
Run 6 8.3948e-02 4.5692e-01
Run 7 1.3567e-01 7.1474e-02
Run 8 5.4517e-02 3.7071e-01
Run 9 1.1233e-01 1.7295e-01
Run 10 2.1764e-01 9.7198e-01
Mean 0.1856 0.3027

Std Deviation 0.1408 0.2776

Test h-value 0
p-value 0.2498

The t-tests are then used to test the hypotheses. According to the standard
t-test criteria, the h and p values obtained from the paired t-tests will determine
whether the null hypothesis should be rejected or not. The values for 10 runs
obtained from the MC and QMC simulations for each objective function are
listed in Table 2 to Table 4.

1. Rosenbrock Function. From the results for the Rosenbrock function summa-
rized in Table 2, a paired t-test has been carried out. As the p-value is much
larger than the threshold value 0.05, the first hypothesis cannot be rejected.
That is to say, there is no strong evidence to say that the fitness values
obtained are affected by different tuning methods.

2. Sphere Function. For the sphere function, the paired t-test has been carried
out. As clearly seen in Table 3, the high p-value means that there are no
significant differences in the results obtained by two tuning methods.

3. Spring design problem. For a realistic design problem with highly nonlinear
constraints, a similar hypothesis test, based on the results in Table 4, indi-
cates again no significant differences in the results between MC and QMC.

5.2 Testing the Second Hypothesis

The tests of the first hypothesis for all three problems give a consistent conclu-
sion that there are no significant differences in the results obtained by the FA
whatever the tuning methods were used. To see if this is consistent with the
group means, the mean fitness values from three separate problems are tested
using the same t-test.

The t-test results are summarized in Table 5, which again shows that the null
hypothesis (H2) holds. That is to say, there is no statistically significant support
for one tuning method being better than the other.
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Table 3. Sphere function.

Fitness Values Monte Carlo Quasi-Monte Carlo
Run 1 3.0614e-003 0.0000e+000
Run 2 0.0000e+000 2.7361e-242
Run 3 1.4977e-001 1.7983e-003
Run 4 3.1305e-002 0.0000e+000
Run 5 7.4281e-316 0.0000e+000
Run 6 7.6838e-003 3.0621e-139
Run 7 1.3688e-003 2.3227e-003
Run 8 0.0000e+000 0.0000e+000
Run 9 9.1990e-110 0.0000e+000
Run 10 0.0000e+000 1.0116e-254
Mean 1.9318e-02 4.1211e-04
Std Deviation 4.6842e-02 8.7754e-04
Test h-value 0
p-value 0.2181

Table 4. Spring design.

Fitness Values Monte Carlo Quasi-Monte Carlo
Run 1 0.016590 0.030303
Run 2 0.035127 0.226819
Run 3 0.033739 0.0171432
Run 4 0.026841 0.047312
Run 5 0.119560 0.039970
Run 6 0.017505 0.021963
Run 7 0.027859 0.053268
Run 8 0.021918 0.148673
Run 9 0.021212 0.0193273
Run 10 0.021681 0.071922

Mean 0.0342 0.0567

Std Deviation 0.0306 0.0621

Test h-value 0
p-value 0.3179

Table 5. Mean fitness values for three different problems.

Problem Monte Carlo Quasi-Monte Carlo
Rosenbrock 0.1856 0.3027
Sphere 0.0193 0.0004
Spring Design 0.0342 0.0567
Test h-value 0
p-value 0.7259
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This conclusion is a bit surprising from the perspective that the QMC method
usually produces better results than the standard MC method for multiple di-
mensional numerical integrals. This study seems to show that both MC and
QMC methods produce similar results for the parameter tuning purpose.

5.3 F-Test for Variances

The hypothesis tests so far show that no significant differences were found in
the mean objective values obtained by MC and QMC. However, the same level
of mean values does not necessarily give the same level of variances. Thus, it is
useful to carry out the test of variances. For this purpose, we use the two-sample
F-test to see if the variances for the spring design problem obtained by MC and
QMC are equal.

The F-test using the same data shown in Table 4 gives h = 1 and p-value p =
0.0262, which is smaller than the critical value 0.05. This means that there is a
sufficient difference in variances to reject the null hypothesis. Therefore, it can be
concluded that there are no significant differences in mean values obtained by the
FA using MC and QMC, but there are some statistically noticeable differences
in their corresponding variances of the objective values.

However, it is worth pointing out that the statistical tests that have been
carried out here are mainly to test the differences in means using paired t-tests.
In addition, the sample size of 10 is relatively small, thus it may be possible that
further more extensive tests may reveal that more comprehensive results may
not be completely consistent with this preliminary conclusion.

6 Conclusion and Future Work

From the simulation results of the three different optimization benchmarks, there
is not enough evidence to reject the null hypotheses. For hypothesis 1, surpris-
ingly, there was no significant difference in the fitness values obtained via MC
and QMC.

For Hypothesis 2, the fitness values obtained by MC and QMC simulations
also fail to reject the null hypothesis. For all three benchmark functions, simi-
lar orders of fitness values were obtained for both tuning methods. The QMC
method does not produce significantly better results, when compared to the
standard MC method.

The preliminary study consists of only a small number of optimization prob-
lems, it may be the case that other benchmark problems and other algorithms
may not show such robustness. Therefore, a further study is required to deter-
mine whether the parameter settings of the FA using these two parameter tuning
methods exhibit the same property. Furthermore, some detailed statistical anal-
ysis and theoretical analysis will be needed to gain insights into the effect of
parameter tuning and its potential link to the convergence behavior observed
in these numerical experiments. These will form part of the authors’ further
research topics.
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