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Abstract. A classical non-stationary (n + 1)-body planetary problem
with n bodies of variable mass moving around the central star on quasi-
elliptic orbits is considered. In addition to the mutual gravitational at-
traction, the bodies may be acted on by reactive forces arising due to
anisotropic variation of their masses. The problem is analyzed in the
framework of Newtonian’s formalism and the differential equations of
motion are derived in terms of the osculating elements of aperiodic mo-
tion on quasi-conic sections. These equations can be solved numerically
and their solution will describe the motion of the bodies in detail. How-
ever, due to the orbital motion of the bodies the perturbing forces include
many terms describing short-period oscillations. Therefore, to obtain the
solution with high precision one needs to choose very small step size or
to use an adoptive step size method and this increase a time of calcula-
tion substantially. As we are interested in the long-term behaviour of the
system it will be necessary to perform additional calculations in order to
extract a secular part of the solution. To simplify the calculations we ex-
pand the perturbing forces into power series in terms of eccentricities and
inclinations which are assumed to be small and average these equations
over the mean longitudes of the bodies. Finally, we obtain the differen-
tial equations describing the evolution of orbital parameters over a long
period of time. As an application, we have solved the evolution equations
numerically in the case of n = 3 and demonstrated an influence of the
mass variation on the motion of the bodies. All the relevant symbolic
and numeric calculations are performed with the aid of the computer
algebra system Wolfram Mathematica.

Keywords: Multi-planetary system · variable mass · equations of mo-
tion · reactive forces · long-term evolution · Wolfram Mathematica.
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1 Introduction

The classical many-body problem is a famous model of celestial mechanics that
is applied for studying an orbital motion in the planetary systems (see [1, 2]).
Recall that it describes the dynamical behaviour of the bodies P0, P1,... Pn of
masses m0, m1,... mn, respectively, attracting each other according to Newton’s
law of universal gravitation. Such a model provides good approximation for the
motion of planets Pj , (j = 1, 2, . . . , n) around a parent star P0 if the bodies
are spherically symmetric and their masses are constant. Note that applying
Newton’s second law, one can easily write out the equations of motion of the
(n + 1)-body system but their general solution cannot be found in the case of
three or more interacting bodies.

The mass of the parent star in the planetary system is usually much greater
than the masses of planets and so in the first approximation the planets move
around the star along Keplerian orbits determined by the corresponding exact
solution of the two-body problem. Mutual attraction of the planets disturbs their
motion and enforces their orbital parameters to change. However, application of
the perturbation theory that has been developed quite well enables to investi-
gate these effects accurately (see [3, 4]). This approach turned out to be very
successful for understanding a satellite motion in the Sun-planet and binary star
systems when all parameters of the system remain constant and the stationary
perturbation theory is used for its analysis (see, for example, [5, 6]).

Real celestial bodies are not always stationary and their characteristics such
as mass, size, shape, and internal structure, may vary with time (see, for example,
[7–9]). The bodies masses influence essentially on their interaction and motion
and so it is natural to study the dynamics of the many-body system with variable
masses. Investigation of the simplest such system composed of two bodies has
shown that the mass variability affects essentially its dynamic evolution (see [10–
14]). Later these investigations were generalized to the system of three bodies of
variable masses although works in this field are not numerous (see [15, 16]).

Note that the problem of two bodies of variable masses is not integrable, in
general. Therefore, the perturbation theory based on the exact solution of the
two-body problem cannot be applied in the case of variable masses. However,
one can modify the equations of motion in the problem of two bodies of variable
mass in such a way that their general solution can be written in symbolic form for
arbitrary law of mass variation of the bodies (see [17]). This solution describes
aperiodic motion of a body on a quasi-conic section and may be considered as
unperturbed motion. Such approach was exploited in a series of works [18–22],
where the problem of three bodies of variable masses was investigated in the
framework of the Hamiltonian formalism. Recently the three-body problem was
investigated in the framework of Newton’s formalism what enables to obtain
directly differential equations for the orbital elements (see [23]).

The present work is an extension of [23] and is devoted to the study of dy-
namical evolution of multi-planetary system of (n + 1) bodies when n planets
P1, P2, . . ., Pn move around a central star P0 on quasi-elliptic orbits which are
assumed to not intersect. The problem is studied in the framework of the pertur-
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bation theory where an aperiodic motion on quasi-conic sections is considered
as the unperturbed motion. Mutual attraction of the bodies P1, P2, . . ., Pn and
reactive forces arising in the case of anisotropic mass variation enforce the orbital
elements to change. Differential equations determining the perturbed motion of
the bodies are obtained in terms of the osculating elements of aperiodic motion
on quasi-conic sections in the framework of Newton’s formalism. In the case
of small eccentricities and inclinations of the orbits the perturbing forces may
be expanded in series in these parameters up to any desired order but here we
consider only the first order terms what is sufficient to obtain the results cor-
responding to the accuracy of the observations. Averaging the equations of the
perturbed motion over mean longitudes of the bodies P1, P2, . . ., Pn in the ab-
sence of mean-motion resonances, we obtain the differential equations describing
the evolution of orbital elements over long periods of time. These equations are
solved numerically for different laws of the masses change in the case of n = 3.
All relevant symbolic and numerical calculations are performed here with the
aid of the computer algebra system Wolfram Mathematica [24].

The paper is organized as follows. In Section 2 we describe the model under
consideration and obtain the equations of motion in the osculating elements of
aperiodic motion on quasi-conic sections. Then in Section 3 derive the evolution-
ary equations which are solved numerically in Section 4 in the case of n = 3. At
last, we summarize the results in Conclusion.

2 Equations of motion

In a relative coordinate system with the origin at the center of parent star P0

of mass m0(t) the equations of motion of the planets P1, P2, . . ., Pn of masses
m1(t),m2(t), ...,mn(t), respectively, may be written in the form (see [17, 23])

d2rj
dt2

+G(m0 +mj)
rj
r3j

− γ̈j
γj

rj = F j , j = 1, 2, . . . , n. (1)

Here G is the gravitational constant, rj is the radius-vector of the planet Pj and
the twice differentiable functions γj(t) are defined by

γj(t) =
m00 +mj0

m0(t) +mj(t)
, j = 1, 2, . . . , n, (2)

where m00 = m0(t0), mj0 = mj(t0) are the masses of the bodies P0, Pj , (j =
1, 2, . . . , n), respectively, at the initial instant of time. The forces F j in the
right-hand side of (1) are given by

F j = G

n∑
k=1(k ̸=j)

mk

(
rk − rj
r3jk

− rk
r3k

)
− γ̈j

γj
rj +Qj , (3)

where

rjk =
√
(xk − xj)2 + (yk − yj)2 + (zk − zj)2, rj =

√
x2
j + y2j + z2j , (4)
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and the reactive forces Qj are determined by the expressions (see [25])

Qj =
ṁj

mj
V j −

ṁ0

m0
V 0, j = 1, 2, . . . , n. (5)

The dot above a symbol in (3) – (5) denotes the total time derivative of the
corresponding function, and V j , (j = 0, 1, 2, . . . , n) are the relative velocities of
the particles leaving the body Pj or falling on it.

2.1 Unperturbed motion

Note that in the case of constant masses when γj(t) = 1, (j = 1, 2, . . . , n) equa-
tions (1) reduce to the well-known equations determining relative motion of the
bodies in the classical (n+1)-body problem. These equations are not integrable
and are usually studied by methods of perturbation theory using an exact so-
lution of the two-body problem as the first approximation (see, for example,
[3]).

To apply similar approach to the case of variable masses we add the terms
γ̈j/γjrj in the left-hand side of equations (1) and in expressions (3) for the forces
F j in the right-hand side of (1). This does not change the equations of relative
motion (1) but enables to get integrable differential equations from (1) at F j = 0
for arbitrary laws of mass variation of the bodies.

Indeed, at F j = 0, (j = 1, 2, . . . , n) equations (1) become independent of each
other and each of them has an exact solution that describes aperiodic motion
of the body Pj , (j = 1, 2, . . . , n) on a quasi-conic section (see [17]); it can be
written as

xj = γjaj

(
(cosEj − ej) (cosωj cosΩj − sinωj sinΩj cos ij)−

−
√
1− e2j sinEj (sinωj cosΩj + cosωj sinΩj cos ij)

)
,

yj = γjaj

(
(cosEj − ej) (cosωj sinΩj + sinωj cosΩj cos ij)−

−
√
1− e2j sinEj (sinωj sinΩj − cosωj cosΩj cos ij)

)
,

zj = γjaj

(
(cosEj − ej) sinωj +

√
1− e2j sinEj cosωj

)
sin ij . (6)

The constants aj , ej , ij , Ωj and ωj in (6) are analogues of the well-known Kep-
lerian orbital elements and are determined from the initial conditions of motion
(see [17]). An analogue of the eccentric anomaly Ej is determined by the well-
known Kepler equation

Ej − ej sinEj = Mj , (7)

where analog of the mean anomaly Mj is given by

Mj =

√
κj

a
3/2
j

(Φj(t)− Φj(τj)) , Φj(t) =

∫ t

0

dt

γ2
j (t)

, (8)
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where κj = G(m00 +mj0), (j = 1, 2, . . . , n). By τj in (8) we denote an analog of
the time when the body Pj passes through the pericenter.

Note that solutions (6) differ from the corresponding solutions to the two-
body problem with constant masses only by the presence of a time-dependent
scaling coefficient γj(t). Besides, the mean anomaly Mj is not a linear func-
tion of time but it is an increasing function of time (see (8)). If the laws of
masses variation mj(t) are known the functions γj(t) define the mean anomalies
Mj(t) and equation (7) enables to find the eccentric anomalies Ej(t) as functions
of time. Therefore, solutions (6) define the unperturbed motion of the planets
Pj in terms of the time and 6n constants of integration aj , ej , ij , Ωj , ωj , and
τj , j = 1, 2 . . . , n, which may be considered as analogues of the Keplerian orbital
elements (see [17]).

2.2 Perturbed motion

Mutual attraction and reactive forces (5) arising in the case of anisotropic mass
variation of the bodies Pj affect their motion and the orbital elements must nec-
essarily vary with the time. To obtain the differential equations, determining the
dependence of the orbital parameters on time, one can use the method of the
variation of arbitrary constants that is well-known in the theory of differential
equations. Assuming the orbital parameters are functions of time and substitut-
ing solutions (6) into (1), we obtain 3n differential equations for 6n unknown
functions aj(t), ej(t), ij(t), Ωj(t), ωj(t), Mj(t), (j = 1, 2, . . . , n). Additional 3n
equations are usually obtained from the condition that the coordinates xj , yj , zj
and the corresponding velocity components at time t are determined by func-
tions (6) and their derivatives with respect to time under the condition that
the orbital elements are constant. As a result, the perturbed coordinates and
velocity components of the bodies Pj yield the instantaneous orbital elements
aj , ej , ij , Ωj , ωj , and Mj given by formulas (6)–(8). Such instantaneous elements
are known as the osculating elements (see, for example, [1, 2]).

By performing the corresponding symbolic calculations (see details in [23]),
we obtain the following system of differential equations for finding the depen-
dence of the orbital elements on time:

daj
dt

=
2a

3/2
j γj(t)

√
κj(1− ej cosEj)

(
ej sinEj Frj +

√
1− e2jFτj

)
, (9)

dej
dt

=

√
aj(1− e2j )γj(t)

√
κj(1− ej cosEj)

(√
1− e2j sinEj Frj+

+ (2 cosEj − ej − ej cos
2 Ej)Fτj

)
, (10)

dij
dt

=

√
ajγj(t)√

κj(1− e2j )
Fnj

(
(cosEj − ej) cosωj −

√
1− e2j sinωj sinEj

)
, (11)
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dΩj

dt
=

√
ajγj(t)√

κj(1− e2j )

Fnj

sin ij

(
(cosEj − ej) sinωj +

√
1− e2j cosωj sinEj

)
, (12)

dωj

dt
= −

√
ajγj(t) cot ij√
κj(1− e2j )

Fnj

(
(cosEj − ej) sinωj +

√
1− e2j cosωj sinEj

)
−

−
√
ajγj(t)

ej
√
κj(1− ej cosEj)

(
(cosEj − ej)

√
1− e2jFrj−

−(2− e2j − ej cosEj) sinEjFτj

)
, (13)

dMj

dt
=

√
ajγj(t)

ej
√
κj(1− ej cosEj)

(√
1− e2j (−2 + e2j + ej cosEj) sinEjFτj+

+
(
(1 + 3e2j ) cosEj − ej(3 + e2j cos(2Ej))

)
Frj

)
+

√
κj

a
3/2
j γ2

j (t)
. (14)

The forces Frj , Fτj , and Fnj in the right-hand sides of (9)–(14) are the radial,
transversal and normal components of the forces F j , respectively, determined
by expressions (3), (5). The reactive forces Qj (see (5)) are usually determined
in the orbital systems of coordinates of the bodies Pj , so the forces F j are also
written in these systems of coordinates. The direction cosines of the unit vectors
erj = (exj , eyj , ezj), eτj = (τxj , τyj , τzj), and enj = (nxj , nyj , nzj) along the
radial, transversal, and normal directions, respectively, can be easily written on
the basis of solutions (6):

exj =
xj

γjaj
, eyj =

yj
γjaj

, ezj =
zj

γjaj
, (15)

nxj = sinΩj sin ij , nyj = − cosΩj sin ij , nzj = cos ij , (16)

τxj = nyjezj − nzjeyj , τyj = nzjexj − nxjezj , τzj = nxjeyj − nyjexj . (17)

Denoting the components of the relative velocities of particles leaving the
body Pj , (j = 1, . . . , n) or falling on them along the radial, transversal, and
normal directions in the orbital system of coordinates related to the body Pj by
Vrj , Vτj , Vnj and using (3), (5), we obtain

Frj = F j · erj = G

n∑
k=1(k ̸=j)

mk

((
rk
r3jk

− 1

r2k

)
(erk · erj)−

rj
r3jk

)
− γ̈j

γj
rj +Qrj ,

Fτj = F j · eτj = G

n∑
k=1(k ̸=j)

mk

(
rk
r3jk

− 1

r2k

)
(erk · eτj) +Qτj ,

Fnj = F j · enj = G

n∑
k=1(k ̸=j)

mk

(
rk
r3jk

− 1

r2k

)
(erk · enj) +Qnj , (18)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_13

https://dx.doi.org/10.1007/978-3-031-63775-9_13
https://dx.doi.org/10.1007/978-3-031-63775-9_13


Modeling the Dynamics of a Multi-Planetary System 7

where the corresponding components of the reactive forces Qj are given by

Qrj =
ṁj

mj
Vrj −

ṁ0

m0
(Vr0 (er1 · erj) + Vτ0 (eτ1 · erj) + Vn0 (en1 · erj)) ,

Qτj =
ṁj

mj
Vτj −

ṁ0

m0
(Vr0 (er1 · eτj) + Vτ0 (eτ1 · eτj) + Vn0 (en1 · eτj)) , (19)

Qnj =
ṁj

mj
Vnj −

ṁ0

m0
(Vr0 (er1 · enj) + Vτ0 (eτ1 · enj) + Vn0 (en1 · enj)) .

The relative velocities V 0 in (19) of the particles leaving the body P0 or falling
on it are assumed to be given in the orbital system of coordinates related to
the body P1. If the relative velocities V 0 and V j and laws of variation of body
masses are known, equations (9) – (14) completely determine the perturbed
motion of the bodies Pj , j = 1, 2, . . . , n.

3 Evolutionary Equations

Differential equations (9) – (14) describe the perturbed motion of the planets in
terms of the osculating orbital elements but they are not integrable and their
exact solution cannot be found. However, in many problems of celestial mechan-
ics, eccentricities and inclinations of body orbits are small (see [1, 4]). Here we
consider this practically important case of small eccentricities ej << 1 and incli-
nations ij << 1, (j = 1, 2, . . . , n) and expand the right-hand sides of equations
(9) – (14) in power series in these parameters. Note that applying the computer
algebra system Mathematica (see [24]), one can calculate such expansions with
any required accuracy but the corresponding expressions become very cumber-
some in higher order terms. Here we restrict ourselves to computations up to
the first order and obtain the following differential equations for the secular
perturbations of the orbital elements of the body P1:

da1
dt

=
2a

3/2
1 γ1√
κ1

(
ṁ1

m1
Vτ1 −

ṁ0

m0
Vτ0

)
,

de1
dt

= −
3
√
a1

2
√
κ1

e1γ1

(
ṁ1

m1
Vτ1 −

ṁ0

m0
Vτ0

)
+

n∑
s=2

Gmses√
a1κ1

Π1s
12 sin(ω1−ωs+Ω1−Ωs),

di1
dt

= −
3
√
a1

2
√
κ1

e1γ1

(
ṁ1

m1
Vn1 −

ṁ0

m0
Vn0

)
cosω1+

n∑
s=2

Gmsis
4
√
a1κ1

B1(α1s) sin(Ω1−Ωs),

dΩ1

dt
= −

3
√
a1

2
√
κ1

e1γ1

(
ṁ1

m1
Vn1 −

ṁ0

m0
Vn0

)
sinω1

i1
−

−
n∑

s=2

Gms

4
√
a1κ1

B1(α1s)

(
1− is

i1
cos(Ω1 −Ωs)

)
,
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dω1

dt
=

3
√
a1

2
√
κ1

e1γ1

(
ṁ1

m1
Vn1 −

ṁ0

m0
Vn0

)
sinω1

i1
+

√
a1√
κ1

γ1

(
ṁ1

m1
Vr1 −

ṁ0

m0
Vr0

)
−

− 3a
3/2
1

2
√
κ1

γ1γ̈1 +

n∑
s=2

Gms√
a1κ1

(
Π1s

11 − 1

4
B1(α1s)

(
1 +

is
i1

cos(Ω1 −Ωs)

))
+

+

n∑
s=2

Gms√
a1κ1

es
e1

Π1s
12 cos(ω1 − ωs +Ω1 −Ωs), α1s =

a1γ1
asγs

< 1. (20)

Remind that reactive forces (19) acting on the star P0 are determined in the
orbital coordinate system of the body P1. Due to this equations (20) differ a
little bit of the differential equations for the secular perturbations of the orbital
elements of the bodies P2, . . . , Pn which are given by

daj
dt

=
2a

3/2
j γj
√
κj

ṁj

mj
Vτj ,

dej
dt

= −
3
√
aj

2
√
κj

ejγj
ṁj

mj
Vτj +

3
√
aj

2
√
κj

ejγj
ṁ0

m0
(e1Vτ0 cos(ω1 − ωj +Ω1 −Ωj) +

+ e1Vr0 sin(ω1 − ωj +Ω1 −Ωj) + i1Vn0 cos(ωj −Ω1 +Ωj)− ijVn0 cosωj)−

−
j−1∑
s=1

Gmses√
ajκj

Πsj
12 sin(ωs − ωj +Ωs −Ωj)+

+

n∑
s=j+1

Gmses√
ajκj

Πjs
12 sin(ωj − ωs +Ωj −Ωs),

dij
dt

= −
3
√
aj

2
√
κj

ejγj

(
ṁj

mj
Vnj −

ṁ0

m0
Vn0

)
cosωj−

−
j−1∑
s=1

Gmsis
4
√
ajκj

B1(αsj) sin(Ωs −Ωj) +

n∑
s=j+1

Gmsis
4
√
ajκj

B1(αjs) sin(Ωj −Ωs),

dΩj

dt
= −

3
√
aj

2
√
κj

ejγj

(
ṁj

mj
Vnj −

ṁ0

m0
Vn0

)
sinωj

ij
−

−
j−1∑
s=1

Gms

4
√
ajκj

B1(αsj)

(
1− is

ij
cos(Ωs −Ωj)

)
−

−
n∑

s=j+1

Gms

4
√
ajκj

B1(αjs)

(
1− is

ij
cos(Ωj −Ωs)

)
,

dωj

dt
= −

3a
3/2
j

2
√
κj

γj γ̈j +
3
√
aj

2
√
κj

ejγj

(
ṁj

mj
Vnj −

ṁ0

m0
Vn0

)
sinωj

ij
+
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+

√
aj

√
κj

γj
ṁj

mj
Vrj +

3
√
aj

2ej
√
κj

γj
ṁ0

m0
(Vn0(ij sinωj − i1 sin(ωj −Ω1 +Ωj))−

− Vr0e1 cos(ω1 − ωj +Ω1 −Ωj) + Vτ0e1 sin(ω1 − ωj +Ω1 −Ωj))+

+

j−1∑
s=1

Gms√
ajκj

(
Πsj

22 −
1

4
B1(αsj)

(
1 +

is
ij

cos(Ωs −Ωj)

)
+

+
es
ej

Πsj
12 cos(ωs − ωj +Ωs −Ωj)

)
+

+

n∑
s=j+1

Gms√
ajκj

(
Πjs

11 −
1

4
B1(αjs)

(
1 +

is
ij

cos(Ωj −Ωs)

)
+

+
es
ej

Πjs
12 cos(ωj − ωs +Ωj −Ωs)

)
, j = 2, 3, . . . , n. (21)

Here

Πik
12 =

1

8
(9B0(αik) +B2(αik))−

1 + α2
ik

8αik
(9C0(αik)− 3C2(αik))+

+
3

16
(7C1(αik) + C3(αik)) ,

Πik
11 = −3

4
αik (B0(αik) + 2C1(αik)) +

6α2
ik + 15

8
C0(αik)−

9

8
C2(αik),

Πik
22 = − 3

4αik
(B0(αik) + 2C1(αik)) +

6 + 15α2
ik

8α2
ik

C0(αik)−
9

8
C2(αik), (22)

andB0(αik), B1(αik), B2(αik), C0(αik), C1(αik), C2(αik), C3(αik) are the Laplace
coefficients (see [4, 23]). As orbital parameters of the bodies are assumed to sat-
isfy the conditions a1γ1 < a2γ2 < . . . < anγn the arguments of the Laplace
coefficients in (20)– (22) are smaller than 1:

αik =
aiγi
akγk

< 1, 1 ≤ i < k ≤ n. (23)

Equations (20), (21) determine the secular perturbations of the orbital el-
ements of the planets P1, . . . , Pn. Although we take into account only linear
terms in the power expansions of the right-hand sides of equations (9) – (14) in
terms of eccentricities ej and inclinations ij , the equations (20), (21) are very
complicated and we cannot find their solution in symbolic form. However, we
can choose some realistic laws of the masses variations and find their numerical
solution. In this way we can investigate an influence of the masses variation on
the dynamics of the (n+ 1)-body planetary system.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_13

https://dx.doi.org/10.1007/978-3-031-63775-9_13
https://dx.doi.org/10.1007/978-3-031-63775-9_13


10 A. Prokopenya, M. Minglibayev, A. Kosherbayeva

4 Simulation

To test the model, let us consider the case of three planets P1, P2, P3 orbiting the
parent star P0. To solve equations (20), (21) numerically, it is expedient to use
the dimensionless variables. For example, we use initial values of the semi-major
axis a10 = a1(t0) and the mass m00 of body P0 as units of distance and mass,
respectively, and define dimensionless distance a∗j , mass m∗

j and time t∗ by

a∗j =
aj
a10

, m∗
0 =

m0

m00
, m∗

j =
mj

m00
, t∗ = t

√
κ1

a
3/2
10

, j = 1, 2, 3. (24)
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Fig. 1. Eccentricities ej and inclinations ij of the bodies P1, P2, P3 (short dashing
– constant masses, long dashing – isotropic mass changes, solid curves – anisotropic
mass changes, Vn0 = 1/2, Vτ1 = −1).

The mass of the parent star P0 is assumed to decrease according to the
Eddington-Jeans law

m∗
0(t

∗) =
(
(m∗

00)
1−nj − β0(1− n0)(t

∗ − t∗0)
) 1

1−n0
, (25)

where n0 = 2, β0 = 1/300000, while the mass of the planet P1 increases with
time at constant dimensionless rate ṁ1 = 2, 277 · 10−12. Masses of the planets
P2, P3 are assumed to be constant.
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Fig. 2. Parameters ωj and Ωj of the bodies P1, P2, P3 (short dash – constant masses,
long dash – isotropic mass changes, solid curves – anisotropic mass changes, Vn0 =
1/2, Vτ1 = −1).

As a test system, we consider the Sun, Jupiter, Saturn, and Uranus as bodies
P0, P1, P2, and P3, respectively, and choose the following initial values for orbital
elements (see [4]):

m00 = 1, 9891× 1030kg, m10 = 1, 8982× 1027kg, m20 = 5, 6852× 1026kg,

m30 = 8, 6843× 1025kg, a10 = 5, 2034AU, a20 = 9, 5371AU, a30 = 19, 191AU,

e10 = 0, 0484, e20 = 0, 0541, e30 = 0, 0472, i10 = 1, 304◦, i20 = 2, 485◦,

i30 = 0, 772◦, Ω10 = 100, 56◦, Ω20 = 113, 72◦, Ω30 = 74, 23◦,

ω10 = 273, 98◦, ω20 = 338, 71◦, ω30 = 96, 73◦.

In the case of constant masses of the bodies equations (20), (21) describe the
secular perturbations of the orbital elements in the framework of the classical
four-body problem (see [4], [2]). Taking into account the isotropic mass varia-
tion of the body P0 according to the Eddington-Jeans law and linear isotropic
increase of mass of the body P1 when reactive forces do not arise results in
only some quantitative changes of solutions to (20), (21) (see Fig. 1,2). However,
the anisotropic mass variation with only two nonzero dimensionless velocities
Vn0 = 1/2, Vτ1 = −1 modifies substantially behaviour of the inclinations ij and
the longitudes of the ascending node Ωj of all three planets. The semi-major
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axes a2 and a3 remain constant because only transversal reactive forces Qτj can
change them (see (20), (21)). As we assume Vτ1 = −1 the semi-major axis a1 of
the body P1 decreases with time (Fig. 3).

100000 200000 300000
t, yr

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1.0000

a1

Fig. 3. Semi-major axis a1 of the body P1 in the case of Vn0 = 1/2, Vτ1 = −1).

If only one component of the relative velocity Vr0 of the particles leaving
the most massive body P0 along the radial direction is greater than zero (Vr0 =
1) dependance of the eccentricities ej and arguments of pericenter ωj on time
changes (see Fig. 4,5). Again orbital elements of the body P3 are the most
sensitive to appearance of the radial reactive force because its mass is the smallest
one. These results demonstrate that even very small changes of the masses of
celestial bodies can influence essentially on their long-term evolution.

5 Conclusion

In this paper, we investigate a multi-planetary problem of many bodies of vari-
able masses that attract each other according to Newton’s law of universal gravi-
tation. We assume that the bodies may be acted on by the reactive forces arising
due to anisotropic variation of the bodies masses. Using Meshcherskii equation,
we have defined the reactive forces explicitly and derived the differential equa-
tions of motion of the bodies in the relative system of coordinates with the most
massive body P0 located at the origin in the framework of Newton’s formalism.
Equations of motion (1) are presented in the form which enables to find an exact
solution (6) to the two-body problem of variable masses in the case of F j = 0.
Using the exact solution (6) and applying the method of variation of constants,
we derived differential equations of the perturbed motion in terms of the oscu-
lating elements of the aperiodic motion on quasi-conical section. It should be
emphasized that the obtained equations (9)–(14) are valid for any laws of the
mass variation of the bodies and completely determine the perturbed motion of
the bodies Pj , (j = 1, 2, . . . , n).

In the case of small eccentricities and inclinations of orbits, we have expanded
the right-hand sides of equations (9)–(14) in power series in terms of the orbital
elements up to the first order. As the coefficients of ej and ij in the obtained
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Fig. 4. Eccentricities ej and inclinations ij of the bodies P1, P2, P3 (short dash –
constant masses, long dash – isotropic mass changes, solid curves – anisotropic mass
changes, Vr0 = 1).

expressions are periodic functions of the mean longitudes λj , we replaced them by
the corresponding Fourier series. Finally, we have shown that the right-hand sides
of differential equations (9)–(14) contain the terms describing behaviour of the
orbital elements on long-time intervals and quite cumbersome terms determining
the short-term oscillations of the orbital elements. Assuming that the mean-
motion resonances are absent in the system and averaging the equations over
the mean longitudes λj , we derived the differential equations determining the
secular perturbations of the orbital elements. Note that the equations obtained
describe the perturbed motion of the bodies in the general case when the masses
of all bodies vary anisotropically, and reactive forces occur.

To test the model, we have solved the averaged equations (20), (21) numer-
ically for three planets (n = 3) in the case when the mass of the parent star
decreases according to the Eddington-Jeans law and the mass of the body P1

increases linearly with time while masses of the bodies P2, P3 do not change.
The results obtained in two different cases of reactive forces acting on the bodies
P0, P1 are shown on Fig. 1–5. Comparison with the case of constant masses (see,
for example, [4]) demonstrates that masses variation can significantly affect the
evolution of orbital parameters. Thus, choosing some realistic values of the sys-
tem parameters and different laws of the mass variation one can solve equations
(20), (21) numerically and investigate an influence of the masses variation on
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Fig. 5. Parameters ωj and Ωj of the bodies P1, P2, P3 (short dash – constant masses,
long dash – isotropic mass changes, solid curves – anisotropic mass changes, Vr0 = 1).

the dynamics of multi-planetary systems. In our future work, we plan to study
exoplanetary systems of variable masses when the number of celestial bodies
exceeds four.
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