
Single-Scattering and Multi-Scattering in

Real-time Volumetric Rendering of Clouds

Mikoªaj Bajkowski1 and Dominik Szajerman1[0000−0002−4316−5310]

Institute of Information Technology, Lodz University of Technology, �ód¹, Poland
dominik.szajerman@p.lodz.pl

Abstract. The aim of this work was to design an algorithm for ren-
dering volumetric clouds in real time using a voxel representation. The
results were veri�ed using reference renders created with the Blender

program using the Principled Volume shader. The important properties
of the algorithm that were tried to be achieved are the ability to dis-
play clouds with di�erent characteristics (thin and dense clouds) and
the speed of operation enabling interactivity. We proposed a method
consisting of two parameterizable image display algorithms with various
performance and properties. The starting point was the single-scattering
algorithm, which was extended with precalculation, and a simpli�ed form
of multi-scattering. Individual methods were compared with reference
images. Methods performing similar tasks, depending on the purpose,
generate single image frames at a rate ranging from several dozen hours
to a few seconds. Using the described mechanisms, the proposed method
allowed to achieve times between 1 and 200 milliseconds, depending on
the method variant and quality settings.

Keywords: Single-scattering · Multi-scattering · Ray marching · Cloud
rendering.

1 Introduction

Being an inherent element of the Earth's landscape, clouds are an important
element of the �eld of special e�ects, three-dimensional animation, and computer
games that try to transfer at least a small part of the real world to virtual
space. Unfortunately, the architecture of graphics accelerators is optimized for
displaying graphics based on triangle meshes, which cannot properly re�ect the
complex structure of such a phenomenon.

For this reason, rendering realistic volumetric structures remains one of the
most di�cult challenges in high-performance computer graphics. This di�culty
is caused by the great complexity of light phenomena that in�uence the appear-
ance of such a structure. One of the frequently cited features of clouds is their
high albedo. This causes the light to be dispersed multiple times in the cloud,
which multiplies the number of physical interactions that must be simulated in
order to generate a realistic image.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

2 M. Bajkowski and D. Szajerman

2 Related Work

Methods for realistic cloud rendering have been known for a long time[7]. One
of them is synthesis using ray tracing, among others with support for Monte-
Carlo[3] methods. In many scienti�c works, it serves as a reference technique to
which the developed or optimized method must be as close as possible. Unfor-
tunately, it is characterized by very high computational complexity. This pre-
cluded the method from being used in interactive applications for many years.
Only recently, with the introduction of graphics cards supporting this technique
in hardware, it has become possible to hybridly use ray tracing to enhance the
e�ects obtained with traditional polygon rendering techniques in real time.

In the case of interactive solutions, where the observation point is only on
the ground, it may still be a reasonable solution to implement a dome with a
static or dynamically generated two-dimensional texture of clouds distributed in
the sky[11]. This is a simple solution, and the appropriate lighting e�ects are
synthesized by pre-processing the clouds to extract the data needed for appro-
priate shading operations. This method pays o� with e�cient rendering. This
works particularly well when the lack of depth will not be perceived negatively,
e.g. when the interactive experience e�ectively focuses the observer's attention
on other objects in the virtual space.

If clouds are an object that takes up most of the rendered image or is a sig-
ni�cant part of gameplay, then a di�erent approach is needed. In games such as
War Thunder or the Flight Simulator series, the player takes their feet o� the
ground, having the opportunity to observe clouds from di�erent angles, lighting
conditions, and the possibility of being inside such a phenomenon. Creators have
at their disposal hybrid techniques based to some extent on billboarding [6]. A
more advanced and increasingly popular solution is volumetric representation.
The clouds in the above-mentioned titles look similar to those in Egor Yusov
work[13]. A particle system was used here. The similarity of the spheres that
make up clouds allowed, among other things, to optimize the display by pre-
calculating the light scattering characteristics within such a volumetric domain.
The problem in this case, however, is the relatively small variety of textures and
shapes of clouds that can be obtained in this way.

There are techniques that compete with ray tracing. These are methods for
rendering volumetric structures using voxels, but most of the work focuses on
o�ine rendering solutions, often using methods simulating multi-scattering. D.
Koerner et al. [10] used the �ux-limited di�usion method, the e�ects of which
were very similar to reference images created using the ray tracing method, and
rendering reduced to below a second.

Another example is the work of Simon Kallweit et al. [8], which introduces
a realistic synthesis of cloud images using a multilayer perceptron predicting
the radiance distribution. There, it was also possible to achieve e�ects indistin-
guishable from the reference image generated by ray tracing, and the full-quality
rendering time was reduced from several dozen hours to just a few seconds. Addi-
tionally, the results are compared with the �ux-limited di�usion method, which

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

Single-Scattering and Multi-Scattering in Real-time Volumetric Rendering. . . 3

in this case performs unfavorably when rendering volumetric structures with
high albedo, such as clouds.

There are no works describing single- and multi-scattering methods using
voxel-based raymarching of atmospheric clouds. This work aims to investigate
this scenario and explore the possibility of extending the basic single-scattering
algorithm to achieve render times that allow the technique to be used in inter-
active applications. At the same time, it will try to synthesize lighting e�ects
characteristic of techniques with higher computational complexity.

3 Method

Later in the work, it is described how the following solutions were implemented
in the rendering pipeline:

� Single-Scattering brute-force,
� Single-Scattering with cached photon map,
� Simpli�ed Multi-Scattering with cached photon map based on Single-Scattering.

3.1 Dataset

The OpenVDB[5] format was used as the cloud density data source. It is a �xed-
depth hierarchical structure that allows the use of voxels of a speci�c resolution
and optimizes memory usage by excluding areas where the value can be consid-
ered equal to the background. In the presented case, these are all areas where
the cloud density is zero. Standard OpenVDB structure settings were used: the
root has a maximum of (25)3 branches, each branch has a maximum of (24)3

leaves and each leaf has a maximum of (23)3 voxels. The data in the appropriate
format was obtained from the 3D Art[2] website.

3.2 Single-Scattering

Single-scattering (SS) is understood as a situation in which light on its way from
the source to the observer's eye is subject to a single scattering event. In the
context of volumetric cloud rendering, this problem is solved by creating a ray
originating from the point of view that penetrates the cloud mass, undergoing
a single scattering event towards the light source, repeatedly along an axis that
intersects the point of view.

In the SS implementation used, two parts can be basically distinguished:
the primary ray and the shadow ray. The path of the primary ray begins at the
point of observation and its direction is determined to pass through a given pixel
on the screen. The step length is predetermined and should be a compromise
between the algorithm's e�ciency and the desired accuracy of mapping the cloud
structure.

At each step of the primary ray, information about the cloud density is col-
lected. The density of the sample determines the background occlusion factor

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

4 M. Bajkowski and D. Szajerman

and the amount of light re�ected towards the camera. The shadow ray is taken
into account at each step of the primary ray for which the cloud sample has a
non-zero density (Fig. 1). It begins in the last position of the primary ray and
is directed towards the light source. On the section from the beginning of this
ray to the boundary of the cloud, the integral of the cloud mass is calculated.
As in the case of the primary ray, a constant step length is de�ned here. The
integration result is important to determine the amount of light absorbed by the
cloud.

primary
ray

shadow
rays

Fig. 1. Visualization of the rays used in the single-scattering algorithm.

The Monte-Carlo [9] method was used to stabilize the integration results in
the case of multiple sampling. It is important that the stochastic process in this
case guarantees a uniform distribution of values in the considered interval over
subsequent samples. This is because it is assumed that a light scattering event
can occur with equal probability at any point along the main ray. In this case it
was implemented by randomizing the length of the �rst iteration of the step for
each ray

The noise source is a previously generated blue noise texture whose o�set is
randomized for each call to the rendering pipeline. Blue noise has a high amount
of high-frequency noise, which favors the integration of results and the use of
noise removal techniques[4].

The background occlusion factor (�nal alpha of a given fragment) is calcu-
lated by the formula (1):

αx =

x∏
i=1

e−dxlg (1)

where x is the next step number, dx is the cloud density at a given point in
space resulting from the step number, and lg is the length of the primary ray
step.

The color of the pixel is calculated by the formula (2):

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

Single-Scattering and Multi-Scattering in Real-time Volumetric Rendering. . . 5

cx =

x∑
i=1

αxcssixss(1− e−dxlg) (2)

where css is the base color of the cloud, and ixss (3) is the intensity of the
incoming light calculated from the shadow ray (4).

ixss = L(dv,
10

txss
) + lb(txss) (3)

txss =

inf∑
j=1

dj · lp (4)

The function L(dv, dp) is a modi�ed approximate Lorenz-Mie phase function
that depends on the dot product of the primary and shadow ray direction vectors.
Nishita et al.[12] proposed two empirically derived approximations for nebulous
atmospheres of di�erent densities. The modi�cation consists in modulating the
shape and strength of the function depending on the integral value in order to
imitate changes in the light propagation characteristics depending on the mass
of the cloud integrated by the ray. The solution is su�cient for the presented
application, as it is used to obtain the e�ect of silverlining1 which occurs in
areas with a low value of the shadow ray integral. The formula (5) contains a
generalized form of the function proposed by Nishit et al.[12], modi�ed so that
there is no signi�cant light intensity decay when the coe�cient dp ≈ 0, and the
primary and shadow ray vectors have opposite directions (dv ≈ −1).

L(dv, dp) =
1

4π
dp

(
1 + dv

2

)dp

(5)

An additional isotropic factor (6) showing a lower degree of absorption im-
itates light scattering, assuming the existence of irradiance coming from the
surrounding cloud mass. The coe�cients modifying the actual weights of the
input parameters were also selected empirically.

lb(txss) = e−txss + se
txss
10 +

1

5
2se−

txss
50 (6)

3.3 Single-Scattering Cached

In the case of a stationary light source, the value returned by the shadow ray
depends only on the starting position of this ray. In addition to the density value,
the structure can store the previously calculated integral value discretized in the

1 A bright outline of the cloud observed �against the sun�, characteristic of dense
clouds. A light ray, passing through a small mass of cloud, is largely scattered in the
original direction, which causes a large amount of light to reach the observer's eye,
being perceived as intense [1].

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

6 M. Bajkowski and D. Szajerman

space of a single voxel. This should largely reduce the computational complexity
of the algorithm at the expense of limited resolution.

The theoretical increase in memory requirement according to the previous
solution is twofold due to the need to store information about the sum of the
integral in parallel with the cloud density data. In practice it is higher due to the
unfavorable padding of the leaf cell array of the hierarchical structure. The �nal
highest resolution cloud data size was 239 Megabytes compared to the original
62.

3.4 Multi-Scattering

The multi-scattering (MS) algorithm was created on the basis of the Single-
Scattering Cached algorithm and the photon map used in it. In order to achieve
performance that will allow real-time interaction, a number of simpli�cations
have been made to make this possible.

The implemented scenario is based on the following assumptions:

� The scene has one directional light source (sun).
� A single volumetric cloud is rendered.
� The properties of the cloud located only at a short distance from the point
under consideration are important

In relation to the SS algorithm, in addition to a single light scatter, a point
cloud is introduced at a short distance from the branching point, which simulates
the irradiance resulting from the scattering of light coming from the immediate
vicinity of the sampled point. In addition to the value of the integral taken
from a given cloud point, the integral between the initial sampling point and
the cloud point is approximated by taking the density value at both points (7).
Indeed, unlike a single scattering in the basic form of the algorithm, two such
events occur, which are additionally repeated for di�erent variants of the point
arrangement at which the second scattering occurs.

txms =

n∑
j=1

|x− xj |
dx + dxj

2
+ txjss (7)

The set of points that is part of the sampling cloud has the following prop-
erties:

� The scattering direction vector is uniformly random.
� In the case of a cloud consisting of N points, the distance of subsequent
points from the local center of the cloud coordinate system is rx = Rx

N .
Where R is the maximum radius of the sphere of in�uence.

The MS factor undergoes a di�erent transformation of the obtained intensity
into the color of the cloud. In this case, the phase function used is isotropic.
Additionally, the underlying SS algorithm is still in use, but its absorption co-
e�cient is higher to e�ectively illuminate only directly illuminated parts of the
cloud. This action increases the dynamic range deep in the cloud, where the MS
algorithm plays a greater role.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

Single-Scattering and Multi-Scattering in Real-time Volumetric Rendering. . . 7

4 Experiments and results

In order to compare the results, images generated for di�erent camera angles and
parameters a�ecting the performance and quality of the render were compared
separately for each method. Additionally, images of di�erences between selected
scenarios have been processed to show in which parts of the images they are the
largest. The di�erence in speed and accuracy of the single-scattering algorithm
depending on the presence of the precalculation mechanism is shown. Based on
a precalculated integral, single-scattering and multi-scattering are compared to
reference method. Reference images are obtained from Blender using Principled

Volume shader.
The generated images have a resolution of 1024 × 1024 pixels. Renders of

the same shots are compared (identical camera position, cloud position, light
direction). Frame render time was also documented. For each scenario, there are
settings that change from the default ones and a�ect performance and image
quality (Tab. 1).

Table 1. Rendering settings. Columns �hq� show hight quality settings and columns
�hp� show high performance settings.

Parameter SSBF SSC MS
hq hp hq hp hq hp

Primary ray lenght 0.20 0.60 0.05 0.60 0.05 0.60
Shadow ray lenght 0.11 0.60 0.60 0.60 0.60 0.60

Integral multiplier 22.00 5.00
Intensity multiplier 3.573 6.414
Lorenz-Mie function multiplier 1.00 0.00

In�uence factor exponent n/a 2.00
Radius of the sphere of in�uence n/a 0.97

Points n/a 11 8
Rand on n/a 1 0

This part presents the results of the implemented algorithms compared with
reference images. Each scene shows an identical cloud and light source setting.
Di�erent scenarios arise due to changes in camera position and cloud density,
which should introduce su�cient variability in the algorithm's input data.

The following terminology is used hereinafter:

� SS � Single Scattering � Single scattering algorithms in a general sense.
� SSBF � Single Scattering Brute Force � An algorithm implementing single
scattering without precalculation support.

� SSC � Single Scattering Cached � Single scattering algorithm supported by
a precalculated photon map.

� MS/MSC � Multi Scattering Cached � Multiple scattering algorithm sup-
ported by the same photon map.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

8 M. Bajkowski and D. Szajerman

� Reference � Render using Principled Volume shader.

Full image quality (shown in all subsequent renders) is achieved after gener-
ating 100 frames of a still image. All time measurements show the time it takes
to generate a single frame.

4.1 Single Scattering Brute Force

This section contains visual (Fig. 2) and performance (Fig. 3) results for the
SSBF method with high quality and high performance settings settings. Cloud
rendering with a lower density multiplier has a longer single frame render time.
There is a visible reduction in the detail of the generated image and an increase
in noise for high performance settings.

d
=

1
6
2
0

d
=

3
2
4

d
=

1
2
.9
6

Fig. 2. SSBF, high quality (3 columns on the left) vs. high performance (3 columns on
the right), various points of view (one per column), various density multipliers d.

4.2 Single Scattering Cached

Table 1 shows the settings for this algorithm. Unlike the SSBF algorithm, no
shadow ray is used because its results have been precalculated and discretized
within a single voxel.

Figure 4 shows visual results for the method. For high quality settings the
images obtained are very similar to those generated by the SSBF method.

The high performance setting is characterized by an increased primary ray
length. As in the case of SSBF, there is a visible reduction in the level of detail in
similar areas. Moreover, in the case of dense areas visible from the observation
point in the direction of incidence of light, a signi�cant darkening of directly

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

Single-Scattering and Multi-Scattering in Real-time Volumetric Rendering. . . 9

5 10 15 20 25 30
101

102

103

Time [ms]

D
en
si
ty

m
u
lt
ip
li
er

1 2 3 4 5
101

102

103

Time [ms]

D
en
si
ty

m
u
lt
ip
li
er

Fig. 3. SSBF, high quality (left) and high performance (right). Frame generation time
vs. cloud density multiplier d.

illuminated areas is visible. The frame generation time is inversely proportional
to the cloud density multiplier (Fig. 5).

d
=

1
6
2
0

d
=

3
2
4

d
=

1
2
.9
6

Fig. 4. SSC, high quality (3 columns on the left) vs. high performance (3 columns on
the right), various points of view (one per column), various density multipliers d.

4.3 Multi Scattering Cached

Table 1 contains the settings for the algorithm. The length of the primary ray
and the number of sampled points have an in�uence here. In each frame of the
animation, the position of the sampling points is randomized. For high quality

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

10 M. Bajkowski and D. Szajerman

3 4 5 6 7 8 9 10
101

102

103

Time [ms]

D
en
si
ty

m
u
lt
ip
li
er

1 1.2 1.4 1.6 1.8 2
101

102

103

Time [ms]

D
en
si
ty

m
u
lt
ip
li
er

Fig. 5. SSC, high quality (left) and high performance (right). Frame generation time
vs. cloud density multiplier d.

settings, unlike SS renders, details and increased brightness of cloud fragments
that are not directly lit are visible (Fig. 6).

For high performance settings, the length of the primary ray has been in-
creased and the number of sampled points has been reduced. Randomization of
points per frame is disabled to speed up image stabilization.

High-performance render is characterized by a reduction in the detail of the
cloud mass representation, similar to the rest of the algorithms. The details
created by MS operation do not di�er signi�cantly. However, it can be suggested
that a larger number of points and their randomization in each frame (the results
are stabilized by the TAA algorithm) are not necessary in the case of high
performance settings in order to obtain a detailed representation of the cloud.

The frame generation time compared to SS algorithms has been signi�cantly
increased (Fig. 7). It is inversely proportional to the density multiplier of the
generated volumetric structure.

4.4 Comparison with the reference method

In Figure 8 (top) there is a big di�erence in contrast due to the di�erent color
management system. In addition, in the case of the SS algorithm, the cloud is
perceptually denser. In dark parts of the cloud, the SS algorithm highlights less
details than the reference image. The texture of the low-density cloud (Fig. 8
bottom) is very similar for both algorithms. The backlight view (Fig. 9 top) of a
dense cloud highlights the di�erences in the silverlining e�ect of both methods,
which is more intense in the case of reference. The same shot for a thin cloud (Fig.
9 bottom) shows a similar e�ect, with the di�erence that it is visible throughout
the entire volume of the cloud.

The use of the MS algorithm (Fig. 10 top) shows a similar nature of details
in the dark parts of the cloud to those present in the reference image, but their
intensity is lower. In the case of thin clouds (Fig. 10 bottom), the e�ect is sim-
ilar to the SS algorithm (Fig. 8 bottom). The application of the MS algorithm

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

Single-Scattering and Multi-Scattering in Real-time Volumetric Rendering. . . 11

d
=

1
6
2
0

d
=

3
2
4

d
=

1
2
.9
6

Fig. 6. MS, high quality (3 columns on the left) vs. high performance (3 columns on
the right), various points of view (one per column), various density multipliers d.

100 150 200 250 300
101

102

103

Time [ms]

D
en
si
ty

m
u
lt
ip
li
er

20 25 30 35 40 45
101

102

103

Time [ms]

D
en
si
ty

m
u
lt
ip
li
er

Fig. 7. MS, high quality (left) and high performance (right). Frame generation time
vs. cloud density multiplier d.

(Fig. 11 top) shows a similar di�erence to that in Fig. 10 (top). The e�ect of
silverlining does not change because it comes from the underlying SS algorithm.
In the case of thin clouds (Fig. 11 bottom) the situation is similar to Fig. 9
(bottom).

4.5 Summary

The algorithm based solely on traditional single scattering e�ectively re�ects
the appearance of low-density clouds and fragments of dense clouds that are
directly illuminated by a light source. Areas hidden in their own shadow are
characterized by a lack of contrast and a low level of detail. Using our multi

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

12 M. Bajkowski and D. Szajerman

Fig. 8. Comparison of SS with the reference, and di�erence, d=1620 (top) d = 12.96

(bottom), the �rst point of view.

Fig. 9. Comparison of SS with the reference, and di�erence, d=1620 (top) d = 12.96

(bottom), the second point of view.

scattering approximation, details are obtained in these parts of the structure. It
also produces a visual e�ect that is less di�erent from the reference images than
the initial SS algorithm.

The lengthening of the primary ray reduces the e�ectiveness of re�ecting the
cloud density, and the longer shadow ray in the case of the SSBF algorithm
reduces the detail of determining the brightness of a given cloud fragment.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

Single-Scattering and Multi-Scattering in Real-time Volumetric Rendering. . . 13

Fig. 10. Comparison of MS with the reference, and di�erence, d=1620 (top) d = 12.96

(bottom), the �rst point of view.

Fig. 11. Comparison of MS with the reference, and di�erence, d=1620 (top) d = 12.96

(bottom), the second point of view.

For each implemented algorithm, a performance degradation is observed in
proportion to the reduction of the cloud density multiplier (Tab. 2). In thin
clouds, the di�erence between settings with di�erent performance is also reduced.
What is important from the point of view of the MS algorithm is the number
of points and randomization in each frame for the �nal e�ect. There are visible
di�erences, although they are small.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

14 M. Bajkowski and D. Szajerman

Table 2. Average frame render times (in milliseconds) for various density multipliers.

SSBF SSC MS
density hq hp hq hp hq hp

1620 9.90 2.08 4.24 1.18 89.66 25.56
324 15.27 2.50 5.13 1.26 144.90 29.26

12.96 22.93 3.25 6.23 1.42 208.89 34.12

5 Discussion

Slow performance was observed for each algorithm when rendering thinner clouds.
This results from the use of optimization, which samples the denser structure
with the primary ray only to the point where it is pro�table. during the op-
eration alpha is accumulated. Exceeding the limit value (here it is 95%) stops
sampling because the in�uence of further samples on the �nal color is negligible.
Thinner clouds are less sensitive to step length in terms of �nal render quality,
so increasing the step length should allow to recover the performance lost due
to the above-mentioned reason.

The use of multi-scattering is pro�table only in the case of dense clouds.
Below a certain density, the capabilities of the single-scattering algorithm do
not di�er much from those of reference renderers.

The generated images were created as a result of a di�erent tone mapping

process, therefore the reference images are more contrasting than those generated
using the presented methods. Nevertheless, when comparing the performance of
the MS and SS algorithms, it can be concluded that the characteristics of the
details are more similar to the reference images in the case of the MS implemen-
tation. MS algorithm, while generating an image slower than any SS method, it
is still signi�cantly faster than ray tracing used in Principled Volume shader.

The use of precalculation results in a signi�cant increase in performance at
the expense of increased demand for GPU memory. To avoid this problem, a
di�erent data arrangement would be needed in the SSBO structure to avoid
unfavorable padding.

6 Conclusions

The assumption of constant lighting conditions allowed the use of precalcula-
tion of SS calculations, while the analysis of the characteristics of phenomena
occurring in high-albedo clouds and other algorithms based on MS allowed the
creation of a simpli�ed method that can be used in interactive applications.

The resulting solution renders the volumetric structure in a way closer to the
reference method than the initial algorithm (SS). However, it was not possible to
achieve e�ects identical to the images generated in Blender. The main problem
is the use of a di�erent color transformation at the post-processing stage in both
programs, which is the reason for di�erences in contrast and color tone.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

Single-Scattering and Multi-Scattering in Real-time Volumetric Rendering. . . 15

Di�erences in the nature of clouds with di�erent densities were also noticed.
In the case of thin clouds, the SS algorithm is su�cient to generate images similar
to the reference methods. Thin clouds also have lower step length requirements
for ray marching. Dense clouds, however, bene�t from optimization based on
their properties. On the other hand, they require the use of an MS-based algo-
rithm to generate more realistic results.

Rendering times allows the use of the proposed methods for real-time ren-
dering, especially for the Single Scattering Cached algorithm where the times
are single milliseconds per frame. For Multi Scattering Cached, the high perfor-
mance setting reaches times of approximately 30 milliseconds, which also allows
for attempts to be used in real-time rendering. The high quality setting in MSC
gives times above 100 milliseconds. Future works could consider improving these
times.

References

1. Silver lining and cloud iridescence, http://ww2010.atmos.uiuc.edu/(Gh)

/guides/mtr/opt/wtr/ir.rxml, accessed: 3 Feb 2024
2. 3D Art: Free VDB clouds by VFX assets, https://www.3dart.it/en/

free-vdbclouds/, accessed: 19 Dec 2022
3. Deng, H., Wang, B., Wang, R., Holzschuch, N.: A practical path guiding method

for participating media. Computational Visual Media 6(1), 37�51 (Mar 2020).
https://doi.org/10.1007/s41095-020-0160-1

4. Eric Heitz, L.B.: Distributing monte carloerrors as a blue noise in screen space by
permutingpixel seeds between frames (2019), https://hal.archives-ouvertes.
fr/hal-02158423/le/blueNoiseTemporal2019\slides.pdf, accessed: 2 Jan 2023

5. Foundation, A.S.: Openvdb, https://www.openvdb.org/, accessed: 19 Dec 2022
6. Harris, M.J., Lastra, A.: Real-time cloud rendering. Computer Graphics Forum

20(3), 76�85 (Sep 2001). https://doi.org/10.1111/1467-8659.00500
7. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities.

ACM SIGGRAPH Computer Graphics 18(3), 165�174 (Jan 1984).
https://doi.org/10.1145/964965.808594

8. Kallweit, S., Müller, T., Mcwilliams, B., Gross, M., Novák, J.: Deep
scattering: rendering atmospheric clouds with radiance-predicting neu-
ral networks. ACM Transactions on Graphics 36(6), 1�11 (Nov 2017).
https://doi.org/10.1145/3130800.3130880

9. Keller, A.: Quasi-monte carlo methods in computer graphics: Theglobal illumina-
tion problem, https://www.semanticscholar.org/paper/Quasi-Monte-Carlo/

579bca8c938f1e0f25474a02a493f5b6ea8886, accessed: 23 Jan 2024
10. Koerner, D., Portsmouth, J., Sadlo, F., Ertl, T., Eberhardt, B.: Flux-limited dif-

fusion for multiple scattering in participating media. Computer Graphics Forum
33(6), 178�189 (Mar 2014). https://doi.org/10.1111/cgf.12342

11. Mukhina, K., Bezgodov, A.: The method for real-time cloud rendering. Procedia
Computer Science 66, 697�704 (2015). https://doi.org/10.1016/j.procs.2015.11.079

12. Nishita, T., Miyawaki, Y., Nakamae, E.: A shading model for atmospheric scatter-
ing considering luminous intensity distribution of light sources. In: Proceedings of
14th SIGGRAPH '87. ACM (Aug 1987). https://doi.org/10.1145/37401.37437

13. Yusov, E.: High-performance rendering of realistic cumulus clouds using pre-
computed lighting (2014). https://doi.org/10.2312/HPG.20141101

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_12

https://dx.doi.org/10.1007/978-3-031-63775-9_12
https://dx.doi.org/10.1007/978-3-031-63775-9_12

