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1 Cardinal Stefan Wyszyński University in Warsaw, Poland
{k.trojanowski,a.mikitiuk,jakub.grzeszczak}@uksw.edu.pl

2 Normandy University of Le Havre, Le Havre, France
frederic.guinand@univ-lehavre.fr

Abstract. Complete Coverage and Path Planning methods operate on
many models depending on initial constraints and user demands. In this
case, we optimize paths for a set of UAVs in the disaster area divided
into rectangular regions of different sizes and priorities representing the
expected number of victims. Paths maximize the number of victims lo-
calized in the first minutes of the UAVs’ operation and minimize the
entire operation makespan. The problem belongs to the domain of mul-
tiobjective optimization; therefore, we apply the Strength Pareto Evo-
lutionary Algorithm 2, which is equipped with several problem-specific
perturbation operators. In the experimental part, we use SPEA2 to four
selected test cases from a TCG-CCPP generator powered by actual data
on residents in selected regions in Poland published by Statistics Poland.

Keywords: Multiobjective Optimization, Coverage Path Planning, Un-
manned Aerial Vehicles, Terrain Coverage, Heuristic Optimization

1 Introduction

In recent times, UAVs have found an increasing number of applications, both
civil, like agricultural, scientific, or emergency, and military, like surveillance or
battlefield activity. In the presented case, we develop applications for the first
reconnaissance in the disaster areas caused by floods or earthquakes. When base
transceiver stations (BTSs) are out of order, and ground communication tracks
and roads have been flooded or destroyed, victims cannot communicate about
their location, state, and needs. In this case, UAVs represent the first, immedi-
ate response to the problem of reconnaissance and communication delivery. The
UAV application has many aspects that must be subject to analysis, like com-
munication, path planning, or emergency management. UAVs’ mobility features
and availability or access to additional information to predict the localization
of victims in the path-planning process significantly impact the rescue action’s
plan and effectiveness.
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In this research, we develop a path-planning procedure for a team of simulta-
neously operating UAVs. The paths are optimized to satisfy the two objectives:
to get information about the condition and location of all persons in the disaster
area and to minimize the time to find the victims demanding immediate help.
UAVs are equipped with Mobile Base Stations (MBSs). Turned-on mobile phones
of the victims help UAVs discover phones’ precise GPS coordinates and owners’
identity through phone or IMEI numbers. Additionally, we consider the terrain,
which is not uniform in terms of population; selected regions, like villages and
cities, have more chances to have people present than others, like farmlands or
wastelands. Therefore, the shape of UAVs’ paths matters for the average wait-
ing time for help. Time is a critical factor in helping victims. The first minutes
following an accident are the most important in emergency management.

We continue our earlier research described in [6] and [13]. In those publi-
cations, we formulated a model of the disaster area and proposed a Test Case
Generator and a path-planning method for a team of UAVs. The method imple-
ments the Local Search approach but operates on a new model-specific solution
representation and uses a number of new perturbation operators. We formulated
a function expressing the number of victims localized in the first minutes of the
UAVs’ work and maximized it in the experimental research. In this paper the
main contribution is a new two-stage optimization and computer simulations:

1. In the first stage, we generate an initial population of solutions. We make
them randomly or employ the earlier proposed Local Search. In this method,
a newly generated solution is better than the current one when its overall
operation makespan is shorter. When they have equal makespans, the one
with fewer victims missed in the first minutes of the UAVs’ operation is bet-
ter. This second criterion is a reformulated function calculating the number
of victims localized in the first minutes of the UAVs’ work.

2. In the second stage, we apply one of the multiobjective optimization heuris-
tics, The Strength Pareto Evolutionary Algorithm 2 (SPEA2), using the
initial population from the previous stage. Two criteria are minimized: the
overall operation makespan and the number of victims missed in the first
minutes of the UAVs’ operation. Both stages use the same previously pro-
posed representation of solutions, but in the latter one, we propose new
perturbation operators.

3. In the experimental part, we used an earlier proposed benchmark from the
Test Case Generator. The nondominated sets from SPEA2 vary depending
on the initial population and settings of evolutionary parameters. We find
their most beneficial settings and indicate the pros and cons of multi-criteria
optimization compared to the single-criteria approach.

The paper consists of seven sections. Section 2 presents the model of the
disaster area. Section 3 discusses the representation of the set of paths for a
team of UAVs. Section 4 describes two solution evaluation criteria defining the
objective space. Section 5 presents SPEA2 and problem-specific operators. The
experimental part of the research is described in Section 6. Finally, Section 7
concludes the paper.
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2 Representation of A Disaster Area Map

A team of UAVs operates over a rectangle disaster area. We aim to generate
UAV paths that cover the entire area and can cross but should not overlap. The
precise location of the disaster victims is unknown. However, some estimations
about their density in selected places exist. Therefore, we divide the area into
a set of non-overlapping regions covering the entire area and having priorities
representing chances for the presence of victims. The regions are rectangles of
different sizes; every place within a region has the same population density. In
the presented research, the region’s priority depends on the population density
in the region; however, in general, the priority may also originate from natural
disaster circumstances like the epicenter’s location and the strength of tremors
in the case of quakes or hydrographical conditions in the case of floods. Every
region must belong to one of the paths because we have to localize all victims.

The sub-areas with a similar population density are approximated by rect-
angle regions since path generation algorithms satisfying UAV mobility features
exist for such types of regions [2,4,8]. Models dividing the area into regions
were proposed in numerous approaches to the Coverage Path Planning prob-
lem [1,7,9,10,11,12]. However, none have regions with assigned priorities for the
coverage order. For the experimental research, we used the Test Case Genera-
tor for Problems of Complete Coverage and Path Planning (TCG-CCPP) [6],
which proceeds data on residents in a 1-kilometer grid from the ”2021 Pop-
ulation and Housing Census in Poland” published by Statistics Poland3. The
generator transforms an input grid of size n by n squares with population den-
sity estimated from the census into an area divided into rectangular regions with
different population density levels.

A region has two attributes: a surface area and an expected number of cit-
izens/victims (ENV). Still, when we divide the region’s ENV by the area, we
derive the third attribute — population density. ENV for a path equals the sum
of ENVs for the regions in this path, and ENV for the disaster area equals the
sum of ENVs for all paths.

As mentioned earlier, regions from TCG-CCPP are rectangular. Hence, they
are easy to cover by UAV flight trajectories. Therefore, we do not build precise
paths within these regions. We rather optimize the order of visiting regions,
where neighbor regions in the path do not necessarily have to be adjacent on
the terrain map. Thus, the given path-planning problem is a combinatorial one.

3 The Problem Solution — UAVs’ Paths

When a disaster occurs, all paths for u UAVs must be fully defined before the
UAVs start operating over the disaster area. Hence, the operational area model
must already exist and be available for computations. Briefly, the area must
be divided into a set of convex regions concerning their priorities, and we need

3 Geostatistics Portal, https://geo.stat.gov.pl, the date of access: Dec 28, 2022
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to know the number of available UAVs, their mobility features, and starting
locations. A central computational unit generates paths when the rescue teams
with UAVs have already been dispatched and are on their way, or even earlier,
during periodic safety inspections and tests.

We need paths for all UAVs, so a single solution consists of u paths containing
lists of regions’ IDs. In the sum of paths, no ID can be omitted to ensure the
finding of all victims. Moreover, the sum must contain no duplicated IDs to
avoid redundant workloads during the paths’ execution. The solution execution
is called a round. Managing distances between UAVs is unnecessary since the
paths are generated offline, so no interactive navigation occurs.

A region’s coverage time for a UAV equals a surface unit’s coverage time
multiplied by the surface area. The traversing time equals the distance to traverse
divided by the UAV’s cruising velocity. The surface unit’s coverage time and the
UAV’s cruising velocity are the problem’s parameters that are constant over the
entire round. Each path execution time considers the sum of the overall time
of regions’ coverage and the time necessary to traverse between them. For any
two consecutive regions in the path being adjacent to each other in the terrain,
traverse time equals zero. Otherwise, the traverse time equals the execution time
for a UAV’s direct flight in a straight line between the two closest points of the
region’s boundaries. It is important to stress that the location of the region’s
entry and exit points does not change the number of found victims over time.

4 Evaluation of UAVs’ Paths

We use a model where the area has the size of n × n one-kilometer base units
and is fully covered by rectangle regions whose side lengths are also expressed
in base units. UAV paths consist of two types of tasks: (1) a region covering and
(2) traversing from one region to another. Execution of the region coverage takes
time proportional to the region’s area in square kilometers multiplied by a unit
coverage time Tsc. During the region’s coverage, the number of localized victims
grows linearly. When UAV traverses from one region to another, no victims are
found. The traverse path is a straight line, and its execution takes time inversely
proportional to the UAV’s cruising velocity Vcr.

A model of an example problem and its example solution S are presented in
Figure 1. The left part of the figure shows the disaster area divided into regions,
whereas the right part shows example paths for a team of two UAVs. Both UAVs
start from the position s and execute paths s246s and s153s, respectively, where
digits represent the region’s IDs. Figure 2 shows charts of the number of already
found victims over time for the two parts of S, that is S1 executing s246s and S2

— s153s, and example values of Tsc = 2 and Vcr = 1. The chart of the number
of already localized victims over time for S is the sum of charts calculated for
each UAV. Detailed discussion on the charts can be found in [13].

We use two criteria to evaluate solutions. The first one equals the makespan
of the round, that is, the path execution time of the UAV that finished last:

f1(x) = max(Ti) where i ∈ {1, . . . , u} (1)
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victims per region:
1: 2
2: 32
3: 16
4: 14
5: 27
6: 9

UAV Paths:
UAV1: s246s
UAV2: s153s

Fig. 1. An example test case and its solution: layout of an area divided into regions
(on the left) and paths for two working UAVs having a starting point s in the corner
of the area (on the right); extracted from [13]

Fig. 2. Graphs of the number of detected victims over time; extracted from [13]

The second one is the sum of the areas over the curves describing the number
of victims found over time, called SAOC. Due to the different execution times of
the UAVs’ paths, the curves of the UAVs that finished earlier than the last one
are extended to its length, called Tmax.

In Figure 2, SAOC(i) equals the sum of differences between the curve’s bound-
ing rectangle area of size Tmax · ENV (Si) and the gray area under the curve.
For an ideal solution, SAOC equals 0. However, it is an unrealistic scenario. The
second optimization function f2 looks as follows:

f2(x) =
SAOC

f1(x)× vexp
where SAOC =

u∑
i=1

ext(SAOC(i), Tmax) (2)

SAOC(i) is an area over the curve defined by the i-th UAV’s path. The parameter
vexp defines the ENV of the entire disaster area, and ext(SAOC(i), Tmax) is a
function that returns the area over the i-th curve extended to Tmax. The area of
the sum of rectangle boundings for SAOC equals f1(x) · vexp.

Eventually, the optimization goal is: min[f1, f2].
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5 The Optimization Method

In the experimental part, we use one of Pareto-based evolutionary multiobjective
optimization algorithms [3], namely Strength Pareto Evolutionary Algorithm
Version 2 (SPEA2) [14]. Main steps of SPEA2 are presented in Algorithm 1.

Algorithm 1 SPEA2

1: Initialization P ▷ generate an initial population of solutions
2: Evaluation(P ) ▷ evaluate two objective values for each solution
3: EvaluationSF (P ) ▷ evaluate SPEA2 fitness
4: E ← Update(P ) ▷ initialize archive (external set)
5: repeat
6: EvaluationSF (E) ▷ evaluate SPEA2 fitness
7: P ← Tournament(E) ▷ perform binary tournament selection
8: P ′ ← Variation(P ) ▷ apply recombination and mutation
9: Evaluation(P ′) ▷ evaluate two objective values for each solution
10: EvaluationSF (P

′ ∪ E) ▷ evaluate SPEA2 fitness
11: E ← Update(P ′ ∪ E)
12: until termination condition met

The algorithm manages two populations of solutions: a reference set P and an
archive E. In the first step of the algorithm, we generate an initial population of
solutions for P . For each of them, we evaluate the two objective functions (Step
#2). Henceforth, the position of solutions in the objective space is known, and
one can assess the SPEA2 fitness of solutions (Step #3). Eventually, we copied
the entire reference set to the archive since we assumed that the archive size
equals the reference set size (Step #4). Then, the main loop starts.

In the first step of the main loop (Step #6), we evaluate SPEA2 fitnesses
of solutions in the archive E, which is redundant in the first execution of the
main loop but not in the next ones. Then, the binary tournament selection on the
archive’s population generates clones to save to the current reference set P (Step
#7). Variation operators perturb solutions in P and make its new representation,
P ′. There are two types of variation operators: binary (crossover) and unary
(mutation). Solutions represent a set of u paths for all UAVs. Therefore, the
operators have to consider the complex structure of the solution representation.

For pairs of solutions randomly selected from P , we perform two variation
operators: crossover and mutation (Step #8). Crossover implements the PMX
operator [5]. PMX operates on two paths: permutations of elements from n
unique IDs. In our case, we have a team of UAVs, and a solution consists of a set
of their paths being sequences of regions’ IDs. For the aim of the representation
adaptation to PMX, we concatenate the UAVs’ paths into one list of regions’
IDs and remember the paths’ lengths, that is, concatenation points. This way,
we always obtain lists of the same constant length regardless of the UAVs’ path
lengths and know how to reverse the process of merging paths into one list.
The lists’ lengths equal the total number of regions. Then, the PMX operator
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is executed in a typical manner. First, for the two parents randomly selected
from P , it selects uniformly two cut points along the list at random. Then,
the substrings between the two cut points are copied into offsprings. Next, the
remaining values are copied from respective parents, following the rules defined
in PMX, to guarantee the feasibility of newly created paths. In the last step, we
restore the division into UAVs’ paths concerning the remembered concatenation
points.

Then, we perform the mutation operator. Four mutation operators adjusted
to the current problem-specific representation have been proposed in [13]. In this
research, two new operators are proposed. Hence, we have six operators in hand.

All the operators apply three modification procedures, each based on two
evaluation criteria. Modification procedures are as follows:

1. Move — in a randomly selected UAV’s path, we insert a randomly selected
sector in front of another randomly selected sector,

2. Exchange — any two randomly selected sectors in two randomly selected
UAV’s paths are inserted in front of randomly selected sectors in the opposite
paths,

3. Hop — we insert a randomly selected sector from a randomly selected UAV’s
path in front of another randomly selected sector of another randomly se-
lected UAV’s path.

In the three procedures, neither the UAVs’ paths nor the new locations for
sectors in these paths are selected uniformly at random. Chances for a path to be
selected may depend on one of two criteria: its total execution time (the longer,
the more chances — criterion pcT ) or the total expected number of victims in all
sectors in the path (the more victims found, the more chances — criterion pcP ).
Chances for selecting a location in a path for a sector s may also depend on one
of two criteria. One of them is the traverse time (criterion scT ). That is, for each
pair of sectors si and sj , we calculate traverse times from si to s and s to sj , and
the chances are inversely proportional to the sum of the two (the shorter traverse
time, the more chances). Chances for selecting a location in a path for a sector
s may also depend on the difference between the population density in s and in
sector si in front of which s will be located (criterion scD). In this case, for each
sector si in the path, we calculate the difference between its population density
and the population density in s, namely diff(si, s). When all the differences are
greater than zero, the chances are proportional to them. Otherwise, the chances
are proportional to: 1+diff(si, s)−min(diff(sj , s)) j ∈ {1, . . . , the path’s length}.

Eventually, we obtain six mutation operators labeled with the first letter
of the modification procedure and the selection criteria symbols: M[pcT, scT ],
M[pcP, scD], E[pcT, scT ], E[pcP, scD], H[pcT, scT ], H[pcP, scD]. The operators
originate from the four problem-specific perturbation operators presented in [13].
These four operators have symbols LD:GD, LD:GT, LT:GD, and LT:GT. They
can be mapped on the current six ones as follows: operator LD:GD works
the same as application of the two: M[pcP, scD] and E[pcP, scD], LD:GT —
M[pcP, scD] and E[pcT, scT ], LT:GD — M[pcT, scT ] and E[pcP, scD], LT:GT
— M[pcT, scT ] and E[pcT, scT ].
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Since we did not know which mutation would be the most beneficial, we
applied a simple reward system. We use a table Tmut containing six cells where
initial values in all cells equal 1/6. They represent the probability of the mutation
operator selection for the six operators. The mutation step begins with a random
selection of the operator. Probability selection depends on the factors in Tmut,
which add up to one. The operator receives a prize when the mutated offspring
is better than its parent, that is, the respective cell in Tmut grows by δrew. Then,
values in cells are normalized to sum up to one again.

The remaining steps of the main loop represent generic procedures of SPEA2.
In Step #9, we evaluate the two objective functions for all new solutions stored
in P ′ and in Step #10 — the SPEA2 fitness of solutions. Then, a new archive E
content is selected from the sum: P ′ and E (Step #11). It is a ranking selection
based on the solution’s SPEA2 fitness values. The main loop is executed for a
limited number of the SPEA2 fitness evaluations, and this number is one of the
algorithm’s parameters.

The following parameters control the algorithm: the reference set size |P |,
the archive size |E|, crossover probability pcross, mutation probability pmut, the
table Tmut storing coefficients representing mutation operators’ chances for ap-
plication, prize δrew for mutation operators for improving the solution, and a
stopping condition which is the maximum number of SPEA2 fitness function
calls maxnffc.

We have five ways of the initial population generation: random initialization
and using the outcome of four versions of Local Search with four problem-specific
perturbation operators: LD:GD, LD:GT, LT:GD, and LT:GT [13]. LS optimizes
just the first objective function, f1. In the case of a tie, the second objective
function, f2 defined in eq.(2), decides. SPEA2 is executed five times for every test
case, once using a random population and four times — populations generated
by LS.

6 Experimental research

6.1 Plan of experiments

In the experimental part, we did tests with the SPEA2 algorithm. A solution rep-
resents a set of paths for u = 10 UAVs, and the total expected number of victims
vexp = 100% of the population in the test area, hence each region must appear
just once in one and only one path. Therefore, the sum of the paths’ lengths in
all solutions is the same and equals the total number of regions. The algorithm
parameters are as follows: population size equals 30, pcross ∈ {0.25, 0.5, 0.75, 1},
pmut ∈ {0.25, 0.5, 0.75, 1} and δrew = {0.001, 0.005, 0.01, 0.05}.

The size of the disaster area’s side n = 30, the unit coverage time Tsc = 10,
the UAV’s cruise velocity during traverse from one region to another nonadjacent
one Vcr = 1, and stopping condition, that is, the maximum number of SPEA2
fitness function calls maxnffc = 500000. We have four testing areas from TCG-
CCPP covering: Gliwice, Lodz, Warsaw (SW), and Gdansk Bay.
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We did five groups of experiments. They differ in the origin of the SPEA2
initial population. In four groups, the initial population is the outcome of the
Local Search application using one of the four versions of perturbation: LD:GD,
LD:GT, LT:GD, or LT:GT [13]. Each version of LS was called 30 times to gen-
erate a population of 30 solutions. In the fifth group, the initial population was
generated randomly.

Objective space consists of two criteria: f1 as defined in Eq. (1) and f2 as
defined in Eq. (2). Both criteria are minimized. Experiments aim at verification
of the ability of multiobjective optimization algorithms to find valuable sets of
nondominated solutions in the given objective space. Additionally, we investigate
the role of initial populations for SPEA2 in searching for the most prominent sets
and the influence of the initial population on the tuning of SPEA2 evolutionary
parameters.

6.2 Results of experiments

Each of the Figures 3-6 presents the five most promising sets of solutions found
by SPEA2 using initial populations generated by four LS operators for the four
testing areas. Figure 7 shows the five most promising sets of results obtained
using random initial populations for the four areas.

Fig. 3. The five most promising sets of solutions found by SPEA2 using initial popu-
lations generated by four LS operators for the Gliwice area

On most diagrams, there is no set containing both the best solution in terms
of makespan and the best solution in terms of the area over the curve. Only the
results obtained from the initial population generated by LT:GT for the Warsaw
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10 K. Trojanowski et al.

Fig. 4. The five most promising sets of solutions found by SPEA2 using initial popu-
lations generated by four LS operators for the Lodz area

Fig. 5. The five most promising sets of solutions found by SPEA2 using initial popu-
lations generated by four LS operators for the Warsaw (SW) area

area and from the random initial populations for the Warsaw and the Gdansk
Bay areas contain a set with the best solutions in both terms. On the other
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Fig. 6. The five most promising sets of solutions found by SPEA2 using initial popu-
lations generated by four LS operators for the Gdansk Bay area

Fig. 7. The five most promising sets of solutions found by SPEA2 using random initial
populations for the four areas

hand, there are diagrams with some sets that contain only solutions worse than
those of the remaining sets.
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Table 1. Configurations of SPEA2 parameters: pcross, pmut and δrew for the experi-
ments, which results are presented in Figure 3 (the Gliwice area), Figure 4 (the Lodz
area) and Figure 7

init. Gliwice area Lodz area
pop. pcross pmut δrew pcross pmut δrew

L
S
[L
D
:G

D
] 0.50 0.75 0.050 0.25 0.50 0.050

0.75 1.00 0.010 0.25 0.75 0.001
1.00 0.50 0.005 0.50 0.50 0.001
1.00 0.50 0.010 0.50 0.50 0.010
1.00 0.50 0.050 1.00 0.50 0.010

L
S
[L
D
:G

T
] 0.75 0.75 0.010 0.25 0.50 0.005

1.00 0.50 0.005 0.25 1.00 0.005
1.00 0.75 0.005 0.75 0.25 0.001
1.00 0.75 0.010 0.75 0.50 0.005
1.00 1.00 0.005 0.75 1.00 0.005

L
S
[L
T
:G

D
] 0.25 0.75 0.005 0.50 0.75 0.005

0.25 0.75 0.010 0.50 0.75 0.010
0.50 0.75 0.010 0.75 0.50 0.005
1.00 0.75 0.010 1.00 0.50 0.001
1.00 1.00 0.005 1.00 0.50 0.010

L
S
[L
T
:G

T
] 0.50 0.75 0.005 0.25 0.50 0.005

0.50 0.75 0.010 0.25 1.00 0.001
0.75 0.75 0.010 0.50 0.75 0.005
0.75 1.00 0.005 0.75 0.75 0.005
1.00 0.75 0.050 1.00 0.50 0.001

ra
n
d
o
m
ly

0.75 0.75 0.050 0.50 1.00 0.001
0.75 1.00 0.005 0.50 1.00 0.005
1.00 0.50 0.005 0.75 0.75 0.001
1.00 0.75 0.010 0.75 0.75 0.005
1.00 1.00 0.005 1.00 0.75 0.005

Experiments described in [13] show that for the Lodz and Warsaw areas,
the perturbation operator LT:GT produced the best LS results. In our current
experiments, for the Lodz area, both the best solutions were produced from the
initial population generated by LT:GD. For the Warsaw area, the best makespan
solution was in a set obtained from the initial population generated by LT:GD,
while the best AOC solution was contained in a set obtained from the initial
population generated by LD:GD. According to [13], for the Gdansk Bay area,
operator LT:GD produced the best LS results. In our current experiments, the
best makespan solution was in a set obtained from the initial population gener-
ated by LT:GD, while the best AOC solution was contained in a set obtained
from the initial population generated by LD:GT. LD:GT produced the best LS
results for the Gliwice area. In the current research, we got the best makespan
solution using a random initial population. The best AOC solution was in a set
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Table 2. Configurations of SPEA2 parameters: pcross, pmut and δrew for the experi-
ments, which results are presented in Figure 5 (the Warsaw (SW) area), Figure 6 (the
Gdansk Bay area) and Figure 7

init. Warsaw (SW) area Gdansk Bay area
pop. pcross pmut δrew pcross pmut δrew

L
S
[L
D
:G

D
] 0.75 0.50 0.001 0.25 0.50 0.005

0.75 0.50 0.005 0.25 0.75 0.001
0.75 0.75 0.050 0.50 0.75 0.001
1.00 0.75 0.001 0.50 1.00 0.001
1.00 0.75 0.010 0.75 0.75 0.001

L
S
[L
D
:G

T
] 0.50 0.75 0.010 0.25 0.50 0.001

0.75 0.50 0.005 0.25 1.00 0.005
0.75 1.00 0.005 0.50 0.75 0.001
1.00 0.25 0.005 0.75 0.50 0.001
1.00 0.50 0.001 0.75 0.75 0.001

L
S
[L
T
:G

D
] 0.25 0.75 0.010 0.25 0.75 0.001

0.50 0.50 0.050 0.50 0.50 0.001
0.75 0.75 0.010 0.50 1.00 0.001
0.75 1.00 0.050 0.75 0.50 0.001
1.00 0.75 0.010 0.75 0.75 0.001

L
S
[L
T
:G

T
] 0.25 1.00 0.050 0.25 0.50 0.001

0.50 0.75 0.005 0.50 0.50 0.001
0.50 0.75 0.010 0.50 0.75 0.005
0.50 0.75 0.050 0.50 1.00 0.001
0.75 0.75 0.005 0.75 0.50 0.001

ra
n
d
o
m
ly

0.50 0.75 0.010 0.25 1.00 0.001
0.75 1.00 0.010 0.50 0.75 0.001
1.00 0.50 0.010 1.00 0.50 0.001
1.00 0.75 0.005 1.00 0.50 0.005
1.00 1.00 0.010 1.00 0.75 0.001

obtained from the initial population generated by LD:GD. Thus, all five ways of
generating an initial population for SPEA2 were useful for some data sets.

Tables 1 and 2 show configurations of SPEA2 parameters for experiments
which results are presented in Fig 3- 7. All used values of pcross, pmut, and
δrew appear in these tables. Moreover, for each way of generating the initial
solution and for each area, the five most promising results were obtained using
five different triples of values (pcross, pmut, δrew). Among 100 values of pcross, 1.0
appeared 29 times, 0.75 28 times, 0.5 26 times, and 0.25 only 17 times. Among
100 values of pmut, the most common was 0.75 (45 times), while 0.25 was the
least common (only twice), 0.5 appeared 32 times, and 1.0 – 21 times. Values of
δrew 0.001, 0.005, 0.01, and 0.05 appeared 32, 34, 24, and 10 times respectively.

We can conclude from the aforementioned observations that almost all values
of SPEA2 parameters can provide promising results for some data sets. Only the
probability of mutation 0.25 should be avoided in future experiments.
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Figure 8 shows the improvement of solutions returned by tested algorithms.
While Local Search offered quite a lot of improvement, further optimization with
SPEA2 managed to shorten these solutions by up to 20%

Fig. 8. Cumulative number of victims found over time for a randomly generated solu-
tion (dotted), a solution optimized by Local Search (dashed), and an example solution
returned by SPEA2 (solid)

7 Conclusions

We applied the SPEA2 multiobjective optimization algorithm to the problem of
complete coverage and path planning for emergency response by UAVs in disaster
areas. We aimed to maximize the number of victims localized in the first minutes
of the UAVs’ operation and minimize the entire operation makespan.

For experiments, we used four test cases from TCG-CCPP based on the data
from the Geostatistics Portal by Statistics Poland. Initial solutions for SPEA2
were created randomly or using LS with one of the four pairs of perturbation op-
erators we described in our earlier paper. Our experiments generated promising
sets of problem solutions.

We repeated the experiments with several parameters’ values that deter-
mined the probability of crossover and mutation and the reward for a successful
mutation. The results showed that almost all values used for these parameters
could provide the most promising results for some data sets. The only restriction
is that the mutation probability should be at least 0.5. The SPEA2 algorithm
was able to significantly improve the entire operation makespan.
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