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Abstract. Solving an optimal control problem consists in �nding a con-
trol structure and corresponding switching times. Unlike in a bang-bang
case, switching to a singular control perturbs the control structure. The
perturbation of one of the switching times a�ects any subsequent singular
intervals in the control, as the trajectories move along di�erent singular
arcs with di�erent values of singular controls. It makes the problem of
�nding optimal solutions extremely di�cult. In this paper, we discuss
a gradient method for solving optimal control problems, when singular
intervals are present in the optimal structure. The method is based on
applying the necessary conditions of optimality given by the Pontrya-
gin Maximum Principle, where the control variable enters the Hamilto-
nian linearly. To demonstrate the method, we formulate a nonlinear op-
timal control problem and then, using the proposed algorithm, we solve
the problem and �nd the optimal control structure and corresponding
switching times. Lastly, we compare the results with results obtained us-
ing three popular optimisation modelling languages: Pyomo, AMPL and
JuMP. These languages serve as interfaces for solving the optimal con-
trol problem with the non-linear optimisation algorithm Ipopt. Our case
study shows that the presented method not only computes the switching
times accurately, but also moves precisely along the singular arc.

Keywords: Gradient method · Optimal control · Singular control ·

Mathematical modelling

1 Introduction

In general, optimal control deals with the problem of �nding a control that
achieves a certain optimality criterion. Indeed, the need to control the dynamics
of various objects arises in engineering, biological, ecological, and medical appli-
cations. In population control problems, for example, the aim is to minimise (or
maximise) the size of one of the considered populations, however, other control
objectives can also be considered. Solving an optimal control problem consists
in �nding a control structure and corresponding switching times. When singular
controls do not appear in the optimal structure, computing bang-bang controls
is quite simple. However, the appearance of singular controls makes the problem
of �nding optimal solutions extremely di�cult.
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Numerical methods for optimal control can be categorised into two main
types: indirect and direct methods. Indirect methods are based on the Pon-
tryagin Maximum Principle, where the optimal control problem is transcribed
to a Hamiltonian boundary-value problem and then solved numerically using
a di�erential-algebraic equation solver. On the other hand, direct methods in-
volve approximating the problem and transforming it into a nonlinear program-
ming problem, which is subsequently solved using well-developed software such
as Ipopt [13]. For an overview and comparison of direct and indirect methods,
we refer to [1,7,8,10] and references therein.

Note that, even if the method accurately computes the switching times, the
obtained control may exhibit oscillations within the singular region, i.e. the con-
trol oscillates in�nitely many times between the bounds [14]. This typically oc-
curs when the optimal control consists of singular and bang-bang intervals. Thus,
when applying a computational method without a priori information about the
optimal control structure, both direct and indirect methods may produce incor-
rect results. In this paper, we present a gradient method for solving singular
control problems in the presence of singular intervals in the optimal structure.

As an example, we formulate an optimal control problem for a heteroge-
neous population dynamics model with a non-standard objective functional in-
troduced by us in [2]. This functional additionally penalises the size of the
control-resistant population. From a biological standpoint, this is related to
control-resistant subpopulations, such as chemotherapy-resistant cancer cells,
virus-resistant, antibiotic-resistant strains of bacteria, or any pesticide-resistant
insect populations. In our previous papers we showed that the resistance penalty
gives rise to locally-optimal singular controls, see e.g. [3,4,5], as well as [9]. From
a practical perspective, singular controls correspond to low-control time-varying
control schedules. We analyse a simple model that allows us to use the gradi-
ent algorithm with the minimum required mathematical complexity. However,
the algorithm can be applied to more detailed and complex models, where the
control variable enters the Hamiltonian linearly.

This paper is organised as follows. Firstly, we formulate an optimal con-
trol problem and recall some formulas, concepts and notions, related to singular
control. Next, we discuss gradient methods for �nding optimal controls in the
bang-bang form and derive a modi�ed gradient method for solving optimal con-
trol problems when singular intervals are present in the optimal structure. We
illustrate the applicability of the method using a simple mathematical model.
Finally, we numerically solve a nonlinear optimal control problem, using both
direct methods and the derived indirect method. Conclusions are drawn based
on the performed numerical simulations.

2 Optimal control problem

A dynamic optimisation problem, in which the state n = n(t) is linked in time to
a control function u = u(t), is called an optimal control problem. More precisely,
the solution to ordinary di�erential equations ṅ = F (n, u(t)) is shaped by the
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control with an objective J = J(u) that is optimised over all possible responses
subject to external controls. Let us now formulate the problem to be considered.

The dynamics is de�ned by a continuously di�erentiable vector �eld f and
control vector �eld g as

ṅ = f(n) + g(n)u(t), (1)

n ∈ Rn, with initial condition n(0) = n0. The vector �eld f represents the
uncontrolled dynamics, while the vector �eld g represents the in�uence of the
control on the system. We de�ne the objective (or cost) functional in so-called
Bolza form as the integral of a Lagrangian L and a penalty term M ,

J(u(·)) = M(T,n(T )) +

∫ T

0

L(n(t), u(t))dt, (2)

where T is a �xed terminal time. Then, the optimal control problem is as follows:
minimise the objective (2) over all admissible controls u : [0, T ] → [0, umax]
subject to dynamics (1) over an interval [0, T ].

Let p : [0, T ] → (Rn)∗. We de�ne the so-called Hamiltonian function

H(p,n, u) = pT (f(n) + g(n)u) + L(n, u). (3)

The Pontryagin Maximum Principle provides the �rst-order necessary con-
ditions for optimality for our optimal control problem.

Theorem 1. If u∗ is an optimal control with corresponding trajectory n∗, then

there exists a co-state vector p : [0, T ] → (Rn)∗, which satis�es the adjoint

equation

ṗ = −∂H

∂n
, (4)

with terminal condition p(T ) = ∂M
∂n (T,n∗), such that the Hamiltonian H is min-

imised a.e. on [0, T ] by u∗ along the optimal trajectory with a constant minimum

value c, i.e.

H(p(t),n∗(t), u∗(t)) = min
0≤v(t)≤umax

H(p(t),n∗(t), v(t)) ≡ c.

The adjoint equation, together with the model dynamics, forms a two-point
boundary value problem that is related to the optimal control through the min-
imising condition. It should be pointed out that the system may have multiple
solutions. To determine the globally optimal control, we need to �nd all of them.

If the Hamiltonian is linear in control, its minimising property motivates the
de�nition of the switching function

Φ(t) =
∂H

∂u
. (5)

If u∗ is an optimal control, then u∗(t) =

{
0 if Φ(t) > 0,
umax if Φ(t) < 0.

Thus, the condition

Φ(t) = 0 is the �rst-order necessary condition for the Hamiltonian to be minimal.
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If Φ(τ) = 0 for some τ ∈ [0, T ], but Φ is non-zero in some neighbourhood of τ ,
then the function Φ changes sign at time τ and the optimal control switches
between 0 and umax: from 0 to umax if Φ̇(τ) < 0 and from umax to 0 if Φ̇(τ) > 0.
This type of control is called bang-bang control. If Φ and all its derivatives vanish
identically on some interval, then the control admits intermediate values between
0 and umax and we say that the control is singular. In general, determining all
points where Φ(t) = 0, t ∈ [0, T ], is extremely complicated.

In many practical problems, optimal controls consist of �nite concatenations
of bang-bang and singular controls. Generally, the standard procedure for deter-
mining the structure of the optimal control is to analyse the switching function
and its derivatives. A convenient tool in this analysis is the Lie bracket. We have

Φ̇ = pT [f ,g]− ∂L

∂n

T

g, (6)

Φ̈ = pT [f , [f ,g]]− ∂L

∂n

T (
[f ,g] +

∂g

∂n
f

)
− fT

∂2L

∂n2
g

+

(
pT [g, [f ,g]]− ∂L

∂n

T ∂g

∂n
g − gT ∂2L

∂n2
g

)
u.

The Lie bracket of two di�erentiable vector �elds f and g can be de�ned as
[f ,g] (n) = ∂g

∂n f(n)−
∂f
∂ng(n). For the derivative of these formulas we refer to [9].

If a control is singular on some interval I ⊂ [0, T ], then Φ = Φ̇ = Φ̈ = ... = 0
identically on I. If we solve these equations for the co-state variable p and
the term multiplying u is nonzero, the equation Φ̈ = 0 can be solved for u,
determining the singular control

− pT [f , [f ,g]] +
∂L

∂n

T (
[f ,g] +

∂g

∂n
f

)
+ fT

∂2L

∂n2
g

=

(
pT [g, [f ,g]]− ∂L

∂n

T ∂g

∂n
g − gT ∂2L

∂n2
g

)
using, (7)

as a feedback formula that only depend on the state variables n of the system
(1), and does not depend on the co-state variables p of the system (4).

Singular control, however, is not necessarily minimising, but it can also be
maximising. In that case, instead of being the optimal control, it would represent
the worst possible option (see [9]). The strengthened Legendre-Clebsch condition
provides a high-order necessary condition for the optimality of singular controls,
allowing the distinction between these two classes. If a minimising control u is

singular of order 1 on an open interval I ⊂ [0, T ], then ∂
∂u

d2

dt2
∂H
∂u < 0 for all t ∈ I.

Three main types of solutions to single-input optimal control problems can be
distinguished [6]: (i) singular controls do not exist, (ii) singular controls exist and
are locally minimising (the strengthened Legendre-Clebsch condition is satis�ed,
∂
∂u

d2

dt2
∂H
∂u < 0), and (iii) singular controls exist, but are locally maximising (the

strengthened Legendre-Clebsch condition is not satis�ed, ∂
∂u

d2

dt2
∂H
∂u > 0).
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In case (i), the optimal control is bang-bang with a small number of switch-
ings that can be easily established. In case (ii), the optimal control consists of
both bang-bang and singular intervals, where a bang-bang control with a larger
number of switchings is not optimal. In case (iii), the optimal control consists
of a potentially very large number of switchings. The singular arc is the limit of
bang-bang trajectories where the number of switchings increases and tends to
in�nity. In this limit, the singular arc corresponds to scenario (ii), which is not
optimal. Thus, in this case, more switchings do not improve the result and typi-
cally the solution is bang-bang with a small number of switchings. This scenario
is by far the most di�cult of the three scenarios.

3 Gradient methods for �nding optimal control

The computation of optimal controls using numerical methods is often ine�cient
and may fail when optimisation is performed without prior knowledge of their
structure. When singular controls are not present in the optimal structure, com-
puting bang-bang controls is quite simple. Following the ideas presented in [12]
(cf. [9]), optimal switching times for bang-bang control problems with a speci-
�ed number of switches can be found using iterative methods. In these methods,
the gradient of the objective functional with respect to the switching times is
computed in each iteration. The number of switches is taken arbitrarily at the
beginning of the algorithm. Results obtained for di�erent numbers of switches
are then compared to identify the optimal solution. Indeed, de�ning an upper
limit for the number of switches is always possible since too many switches are
not applicable. In brief, we can describe this approach as follows. Arbitrarily se-
lect switching times 0 = t0 < t1 < ... < tk < tk+1 = T . Let ui denote the value of
the bang-bang control on the interval [ti, ti+1] for i = 0, ..., k. Note that the con-
trol's value on the �rst interval determines the sequence u = (u1, ..., uk). Solve
the state equations (1) for a given control u. Using the transversality condition,
p(T ) = [ω1, ω2]

T , the adjoint co-state variables p can be computed by integrat-
ing the adjoint equation (4) backward in time (since the equations depend only
on the state variables n). Subsequently, using formulas (5) and (6), the switching
function Φ and its derivative Φ̇ can be easily evaluated at the switching times
ti. By introducing small changes, iteratively update the switching times until
they agree with the zeros of the computed switching function. Formally, when
a control u is perturbed by δu, the �rst variation δJ can be found as

δJ = J(u+ δu)− J(u) ≈
∫ T

0

∂H

∂u
δudt.

Note that the derivative with respect to δu is actually given by the switching
function Φ = ∂H

∂u . Depending on the value of the switching function at the
switching time ti for the control used, increase or decrease the lengths of the
intervals [ti−1, ti], where the increment is simply taken as

δti = (−1)iα
∂H

∂u

∣∣∣
t=ti

= (−1)iαΦ(ti).
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Here, the parameter α represents an adaptive step-size parameter (learning rate)
ensuring the convergence of the procedure.

However, the method described above cannot be directly applied if locally
optimal singular controls exist. The presence of any subsequent singular interval
in the control will perturb the control structure and switching times. Further-
more, switching to singular control will cause the trajectory to follow a di�erent
singular arc with di�erent values of the singular control.

Therefore, we propose a modi�ed version of the aforementioned algorithm (cf.
[2]). Suppose that the structure of a control is �xed, meaning that the optimal
control consists of a �nite sequence with elements from 0, 1, and S, corresponding
to no control, full control and singular control, respectively. However, the struc-
ture of the optimal control does not provide any information about the switching
times. Treating the objective functional as a function of switching times, with
a slight abuse of notation, an approximate gradient of the objective functional
with respect to the switching times can be computed using �nite di�erences

∂J

∂ti
≈ J(t1, ..., ti +∆, ..., tk)− J(t1, ..., ti, ..., tk)

∆
(8)

for some positive constant ∆ ≪ 1. Algorithm 1 describes the procedure.

Algorithm 1 Gradient method.

1. Assume k, structure of optimal control, initial switching times t = (t1, ..., tk) and
initial value of learning rate α.

2. Solve the state equations (1) for a given u (de�ned by the assumed structure of
optimal control), taking into account the singular control form, de�ned by (7).

3. Compute the co-state variables p by integrating the adjoint equation (4) backward
in time using the terminal condition.

4. Evaluate the Hamiltonian H given by (3) along the controlled trajectory.
5. Compute the gradient ∇J(t), according to formula (8).
6. Adapt the learning rate α to ensure the gradient descent.
7. Compute new switching times t− α∇J(t).
8. Repeat steps 2-7 until a prescribed tolerance has been reached.

To ensure gradient descent, it is bene�cial to reduce the learning rate as the
training progresses. This can be done by implementing prede�ned learning rate
schedules or employing adaptive learning rate algorithms. In our approach, we
utilise the Adaptive Moment Estimation algorithm (Adam) and, if necessary,
its modi�cations. However, other methods for adjusting the learning rate can
also be considered (see e.g. [11]). It is important to note that, for the gradient
to be well-de�ned, we typically require that ti+1 − ti > ∆ for all i. However,
during iterations, the switching times change and potentially cross, i.e. tt+1 − ti
may fall below ∆ for some i. In this case the corresponding interval is removed
from the control structure, resulting in trajectories with a reduced number of
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switchings. In general, gradient methods are more suitable for �nding local rather
than global minima. Thus, to ensure optimality, the method should be run with
di�erent starting control structures and several random initial switching times
for each control structure.

4 Numerical computations of optimal controls

4.1 Mathematical model

As an example, we consider a simple mathematical model describing the co-
existence of control-sensitive and control-resistant subpopulations of the same
species. The growth of the �rst one follows the exponential growth function,
while the second population growths according to the logistic law, sharing re-
sources with the �rst population. We assume that they di�er in their reaction
to control. In other words, we consider a scenario in which the growth of the
control-sensitive subpopulation limits the growth of the control-resistant sub-
population. Intentionally, we choose as simple as possible mathematical model,
because our aim is to investigate how the proposed objective functional a�ects
the structure of the optimal control. The non-dimensional model considered in
this study is as follows

ṅ1 = λ1n1 − n1u,

ṅ2 = λ2n2(1− n2 − n1),
(9)

where n1 and n2 are the non-dimensional sizes of control-sensitive and control-
resistant subpopulations, respectively; u = u(t), u : [0, T ] → [0, 1] is the non-
dimensional control; T is the time horizon; λ1 and λ2 are growth rates.

4.2 Nonlinear objective functional

Mathematical models typically represent some underlying processes arising from
medical, biomedical, physical, economical, or engineering problems. However, the
form of objective functional is arti�cially imposed from the outside and usually
there exist several options that can be used in a particular situation. The form
of the objective depends on whether the system response and properties are
satisfactory with respect to other criteria that were not included in the model
dynamics. Let us now de�ne the following objective functional

J(u(·)) = M (T, n1(T ), n2(T )) +

∫ T

0

L (n1(t), n2(t), u(t)) dt

= ω1n1(T ) + ω2n2(T )

+

∫ T

0

(
η1n1(t) + η2n2(t) + ξG

(
n2(t)−n1(t)

ϵ

)
+ θu(t)

)
dt,

(10)

where ω1, ω2, η1, η2, ξ, θ are non-negative parameters (weights), ϵ > 0, and
G : R → (0, 1) is a twice continuously di�erentiable function. Terms ω1n1(T ),
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ω2n2(T ) penalise the size of the entire population at the end of the assumed
�xed control interval [0, T ], while η1n1(t), η2n2(t) penalise the size of the en-
tire population during the control. The linear term θu(t) represents the overall
amount of control given and penalises side-e�ects (cumulative negative e�ects,
toxicity or costs) related to their usage. It should be pointed out that the lin-
ear term containing the control u has a clear biological meaning, but makes the

mathematical analysis di�cult. The non-standard term ξG
(

n2(t)−n1(t)
ϵ

)
is an

activation function introduced to penalise time periods during which the popu-
lation is control-resistant (n2 > n1). We require the following properties

1. G(x) → 0 as x → −∞; G(x) → 1 as x → ∞;
2. G′(x) > 0 for all x; xG′′(x) < 0 for x ̸= 0;
3. G(0) = 1

2 and G′(0) = 1
2 .

Notice that G(x) ≈ 1 whenever x ≫ 0 and G(x) ≈ 0 when x ≪ 0. Thus, the
term increases whenever n2 > n1 and stays roughly constant if n1 < n2. The
function G can be thought of as a smoothed version of the Heaviside function,
where the parameter ϵ controls the steepness of the slope, i.e. it determines how
close the control-resistant population needs to become to the control-sensitive
one for the penalty to be applied. The concept of this function was introduced
by us in [2]. For numerical purposes, we can take 1

2

(
1 + tanh x

ϵ

)
as the function

of G, as shown in Figure 1. However, other types of activation functions can also
be applied.

-1 -0.5 0 0.5 1
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0.4
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Fig. 1: Activation function G(x) = 1
2

(
1 + tanh x

ϵ

)
.

4.3 Optimal control problem

As it was mentioned earlier, our goal is to control population dynamics (growth).
The optimal control problem may be formulated as follows: for a �xed terminal
time T �nd a measurable function u : [0, T ] → [0, 1] minimising the objective
functional (10) subject to dynamics (9).

Let us introduce the following notations

n =

[
n1

n2

]
, f(n) =

[
λ1n1

λ2n2(1− n2 − n1)

]
, g(n) =

[
−n1

0

]
, p =

[
p1
p2

]
.
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Following the theory described in Section 2, by elementary but tedious cal-
culations, we get

H = p1(λ1 − u)n1 + p2λ2n2(1− n2 + n1) + η1n1 + η2n2 +
ξ
ϵG

′ (n2−n1

ϵ

)
+ θu,

where p1 and p2 satisfy

ṗ1 = −p1(λ1 − u) + p2λ2n2 − η1 +
ξ
ϵG

′ (n2−n1

ϵ

)
,

ṗ2 = −p2λ2(1− 2n2 − n1)− η2 − ξ
ϵG

′ (n2−n1

ϵ

)
,

(11)

with terminal conditions p1(T ) = ω1, p2(T ) = ω2. From the de�nition of the
switching function Φ and relations for its derivatives, we can state that the
singular control has the following form

using = λ1 −
λ2n2(1− n2 − n1)

n1
+

ϵ2λ2(η2 − η1)n2 + 2ϵξλ2n2G
′ (n2−n1

ϵ

)
ξn1G′′

(
n2−n1

ϵ

) (12)

and the corresponding singular trajectory lies in the following singular arc

0 = Farc(n1, n2; c) := ϵ (η1 + λ1θ − c+ (η2 − η1)n2)

+ ϵξG
(
n2−n1

ϵ

)
− ξ(1− n1 − n2)G

′ (n2−n1

ϵ

)
. (13)

This is a consequence of the Pontryagin Maximum Principle and the condition
of constancy of the Hamiltonian, H ≡ c = const. Note that the above formulas
are obtained as feedback formulas that only depend on the state variables n of
the system (9), but do not depend on the co-state variables p.

As it was mentioned earlier, ∂H
∂u = Φ, thus to verify if the Legendre-Clebsch

condition is ful�lled along the singular arc, we need to determine the coe�cient

next to the control u in the expression for Φ̈, i.e. ∂
∂u

d2Φ
dt2 = −n2

1

ϵ2 ξG
′′ (n2−n1

ϵ

)
.

Using the assumptions about G, we see that the Legendre-Clebsch condition is
satis�ed only if n1 > n2.

Regarding the problem under consideration, we can have any of these three
cases: (i) if the term G that penalises the resistance is omitted from the objective
functional (ξ = 0), the singular control does not exist and the optimal control
is bang-bang, (ii) if n1 > n2, then the Legendre-Clebsch condition is satis�ed
and the optimal control consists of bang-bang and singular intervals, and (iii) if
n1 < n2, then the Legendre-Clebsch condition is not satis�ed and the singular
control is not optimal.

4.4 Numerical optimisation

In this section we solve the optimal control problem using numerical computa-
tions. The goal is to minimise the objective functional under the model dynamics
with the terminal non-dimensional time T chosen to be 14. To solve the optimal
control problem and compute the optimal solution, we use the gradient method
described in the previous section. Possible optimal control structures for di�erent
numbers of switches k are listed in Table 1.
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Table 1: Possible structures of optimal controls for di�erent numbers of switches
k. Characters 0, 1, S denote no control, full control and singular control.

k possible structures
0 0 1 S

1 01 0S 10 1S S0 S1

2 010 01S 0S0 0S1 101 10S 1S0 1S1 S01 S0S S10 S1S

3
0101 01S0 0S01 0S10 1010 10S0 1S01 1S10 S010 S0S0 S101 S1S0
010S 01S1 0S0S 0S1S 101S 10S1 1S0S 1S1S S01S S0S1 S10S S1S1

The gradient method was run for each of the control structures with several
random initial switching times. An adaptive learning rate algorithm, speci�cally
the Adam Optimisation Algorithm, was employed to ensure e�ective gradient
descent. The initial value of α was empirically set in the range of 0.0001−0.001,
while the exponential decay rates for the �rst and second moments were set
within the range of 0.9− 0.9999. However, alternative methods for adjusting the
learning rate could also be considered. To solve equations and �nd switching
times numerically, the standard MATLAB solver ode45 and the MATLAB event
model were used with an error tolerance set to 10−9. Each simulation used the
following parameter values: λ1 = 0.2, λ2 = 0.1, ω1 = 5, ω2 = 10, η1 = 2, η2 = 3,
θ = 0.5, ϵ = 0.01, ξ = 1.

For the initial condition [0.44, 0.05], representing an initially control-sensitive
population, it was found that the minimal value of the objective functional,
11.8659, is achieved for a control of type 1S1 with two switching times: 2.0822
and 13.8674. By evaluating the Hamiltonian H along the obtained controlled
trajectory and solving the adjoint equations (11) backwards in time using the
terminal condition, we veri�ed that the Hamiltonian is indeed constant (H ≡
c = 1.0112, constant up to the method order). Additionally, we con�rmed that
the switching function has appropriate signs. The optimal solution with corre-
sponding control, trajectory and switching function are shown in Figure 2. The
optimal control starts with a full control interval as it penalises the control-
sensitive subpopulation. Then, the control switches to singular part, de�ned by
(12). As depicted in Figures 2a and 2c, a singular control maintains the size of
the control-sensitive subpopulation just above the size of the control-resistant
one. It follows directly from the penalty-activation function G included in the
objective functional. The singular interval in the middle is crucial for preserving
the sensitive subpopulation. The control ends with a full dose interval to pe-
nalise the population size at the terminal time. The red dotted curve in Figure
2c represents the singular arc, given by (13), where the right part minimises,
while the left part � maximises the objective. By computing the derivative of
the switching function on co-state and state variables, we determine that in the
region between the two parts of the singular arc, the control can only switch
from 0 to 1, while in the other regions (outside), it may switch only from 1 to 0.

The initial condition [0.24, 0.25] was chosen to represent an initially control-
resistant population. In this case, the Legendre-Clebsch condition is not satis�ed
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Fig. 2: Optimal solution (a), together with the corresponding optimal control (b),
trajectory (c) and the switching function (d). Red dotted curve in (c) depicts
the singular arc. Initial condition was chosen to be n1(0) = 0.44, n2(0) = 0.05.

(for n2 > n1), indicating that the optimal control starting from the singular in-
terval cannot be optimal. This reduces the number of possible control structures.
In this scenario, the optimal trajectory was numerically found to be 0S1. The
minimal value of the objective cost is 30.9052, while switching times are 1.0180
and 13.5811. The optimal solution, corresponding control, trajectory and switch-
ing function are shown in Figure 3 (the constant value of H ≡ c = 2.2095). The
control begins with a no-control interval, and when the population becomes suf-
�ciently control-sensitive, a singular control is used.

4.5 Comparative analysis

Now, we utilise three popular languages of optimisation modelling:

� Pyomo: A Python-based open-source optimisation modelling language with
its di�erential algebraic equation extension Pyomo.DAE.

� AMPL: A Mathematical Programming Language, speci�cally designed for
expressing and solving mathematical programming problems.
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Fig. 3: Optimal solution (a), together with the corresponding optimal control (b),
trajectory (c) and the switching function (d). Red dotted curve in (c) depicts
the singular arc. Initial condition was chosen to be n1(0) = 0.24, n2(0) = 0.25.

� JuMP: An algebraic modelling language that is a collection of supporting
packages for mathematical optimisation embedded in the Julia language.

These modelling languages serve as interfaces for solving the optimal con-
trol problem using the non-linear optimisation algorithm Ipopt, with a regularly
spaced grid of 1000 points and the forward Euler method. Ipopt is an imple-
mentation of an interior point method and is capable of solving constrained
non-linear programming problems (see [13] for details).

Figures 4a-4b depict the results obtained using the Pyomo modelling lan-
guage with the Ipopt solver, for initial conditions [0.44, 0.05] and [0.24, 0.25],
respectively. When penalising the side e�ects (control costs, θ = 0.5 > 0), a con-
trol with a large number of �fast� switchings is obtained. It was veri�ed that
increasing the number of discretisation points (grid points) increases the number
of switching points and has virtually no e�ect on the solution. The optimal sin-
gular trajectory is the limit of bang-bang trajectories with an increasing number
of switchings tending to in�nity. It is important to note that using the approx-
imation method to determine a singular arc based on oscillations is generally
not feasible. This phenomenon supports the concept of �chattering� (see [14]),
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where the control oscillates many times between the bounds. Figures 4c-4d show
the results obtained using the AMPL language, while Figures 4e-4f showcase the
result obtained using the JuMP language. These results closely align with those
obtained using the gradient method, but numerical artifacts on the singular in-
terval can still be observed. This should be treated as artifacts caused by the
appearance of a singular arc, where the method is unable to switch on to the
optimal singular trajectory correctly and then switch to the bang-bang control.

In each optimisation result, the �rst and last switches follow those obtained
from the gradient method, up to the grid-step size. Additionally, the mean op-
timal control values di�er by less than 0.5% across methods, with the smallest
value obtained using Pyomo and the largest using AMPL. The number of grid
points typically has a negligible impact on the qualitative results, primarily con-
tributing to a more accurate numerical calculation of the objective cost (through
numerical integration) and switching times. Increasing the number of grid points
may have an impact on the results, but a noticeable improvement in the result
occurs with a very signi�cant increase in the number of grid points and is sen-
sitive to changes in model parameters, in particular weights in the objective
functional. For example, when solving the problem with θ = 0, each modelling
method gives almost identical results, with minor di�erences attributable to the
grid step size. In this scenario, the optimal trajectories closely approximate the
singular arc de�ned by (13).

5 Conclusions

In this paper, we discussed a modi�ed gradient method for solving the optimal
control problems when singular intervals are present in the optimal structure.
The appearance of singular controls complicates the problem of �nding optimal
solutions, because trajectories move along di�erent singular arcs with di�erent
values of singular controls. However, the existence of singular controls leads to
intermediate-value controls, which can signi�cantly impact the optimisation re-
sults. The structure of optimal control depends primarily on the form of the
objective functional, but also changes based on initial conditions and model dy-
namics. Even if the optimal control is initially bang-bang, it may change to
bang-singular, when the dynamics change in response to the control. Singular
controls are often more natural candidates for optimality than bang-bang con-
trols, which arise only when singular controls do not exist or are inadmissible.

The numerical computation of optimal strategies poses a problem of high
complexity. Direct methods can successfully run if all optimal control variables
are bang-bang. Many di�erent approaches can be applied after discretising the
optimal control problem, even when the exact number of switching times is
not known a priori. However, numerical procedures for solving singular control
problems are usually problematic. Direct forward-backward sweep methods are
not advisable. Indeed, some methods can detect the structure of the optimal
solution and accurately compute the switching times without prior information
about optimal control. As we showed, it is possible that the discretisation of
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Fig. 4: Optimal controls of the model (9)-(10) obtained by Pyomo (a)-(b), AMPL
(c)-(d) and JuMP (e)-(f). The initial condition in (a), (c) and (e) was set to be
[0.44, 0.05], while in (b), (d) and (f) was set to be [0.24, 0.25].

an optimal control problem generates numerical artifacts and determining the
exact optimal trajectory becomes impossible. In contrast to other numerical
algorithms and modelling interfaces, the presented algorithm, after switching
to the singular interval, moves along the particular singular arc that can be
derived analytically. This approach provides the best possible approximation
of optimal controls. A priori assumption that the optimal control structure is
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�xed e�ectively eliminates non-optimal controls, which could only be numerical
artifacts.
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