
GraphMesh: Geometrically Generalized Mesh
Refinement using GNNs

Ainulla Khan1[0009−0007−4062−2049], Moyuru Yamada1[0009−0009−1907−7503],
Abhishek Chikane1, and Manohar Kaul1[0000−0003−1871−1620]

Fujitsu Research of India, {ainulla.khan, yamada.moyuru, abhishek.chikane,
manohar.kaul}@fujitsu.com

Abstract. Optimal mesh refinement is important for finite element sim-
ulations, facilitating the generation of non-uniform meshes. While exist-
ing neural network-based approaches have successfully generated high
quality meshes, they can only handle a fixed number of vertices seen dur-
ing training. We introduce GraphMesh, a novel mesh refinement method
designed for geometric generalization across meshes with varying ver-
tex counts. Our method employs a two-step process, initially learning a
unified embedding for each node within an input coarse mesh, and subse-
quently propagating this embedding based on mesh connectivity to pre-
dict error distributions. By learning a node-wise embedding, our method
achieves superior simulation accuracy with reduced computational costs
compared to current state-of-the-art methods. Through experimentation
and comparisons, we showcase the effectiveness of our approach across
various scenarios, including geometries with different vertex counts. We
validated our approach by predicting the local error estimates for the
solution of Poisson’s equation.

Keywords: Finite Element Methods · Mesh Refinement · Graph Neural
Networks.

1 Introduction

In the fields of structural mechanics [2], aerospace [3], geophysics [4], and acous-
tics [5] physics simulation is a crucial tool, allowing for the exploration of phe-
nomena that are otherwise challenging to study directly. For these applications,
simulations rely on mathematical models represented mainly using partial dif-
ferential equations (PDEs) [1]. These PDEs are solved on a specific geometric
domain using Finite Element Method (FEM) [18]. Meshing is the initial step in
FEM, wherein a physical structure is discretized into a mesh of finite elements.
Each element represents a segment of the overall behavior of the structure. The
method solves PDEs to provide the Finite Element (FE) solution by utilizing
mesh of the structure. The effectiveness of FEM highly depends on the mesh
quality. The mesh needs to be sufficiently detailed to capture critical structural
behaviors, however finer meshes yield longer computations. Therefore, mesh re-
finement methods focus on generating an optimal mesh, where only specific

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

2 K. Ainulla et al.

regions with simulation errors are refined for improving the simulation accuracy.
The traditional mesh refinement method involves a multi-step process: initially
generating coarse meshes for the geometry, followed by computing the FE solu-
tion on these initial meshes. Subsequently, a posteriori error estimation is con-
ducted to refine the mesh elements in high-error regions. These steps repeat until
the mesh meets the user’s specified tolerance. Despite its effectiveness in gener-
ating non-uniform meshes, this method is computationally intensive because of
the repeated execution of complex error estimation step [7]. Significant advance-
ments have been witnessed through introduction of deep learning techniques
in the area of mesh refinement to overcome the limitations of the traditional
methods.

MeshingNet [9] is a significant work in the domain of mesh refinement using
deep learning techniques [8]. It introduces a novel approach to mesh genera-
tion, employing deep neural networks to automate the mesh refinement. The
key innovation in MeshingNet is its ability to generate high-quality meshes for
geometries by learning from existing mesh datasets. This approach significantly
reduces the reliance on manual meshing and expert knowledge. This approach
uses Triangle software [6] for dataset generation, which involves Delaunay-based
mesh refinement. The reported results outperform a non deep learning based
method, ZZ estimation [11]. However, a crucial limitation of MeshingNet is the
lack of the generalization capability to handle a number of edges that are differ-
ent from those in training data, further the method accommodates only a single
dimension for learning the boundary condition with other limited features.

There are other works that use graph neural networks for learning mesh-
based simulations. But, they focus on simultaneously approximating physical
quantities for time-dependent PDEs and perform Adaptive Mesh Refinement
(AMR) on geometries across multiple time steps [12]. The method particularly
excels in handling External Dynamic Lagrangian Systems, where mesh refine-
ment occurs progressively across different time steps adapting progressively to
external (time dependent) conditions. Our method is different from this work
as our method can be used for various PDEs (e.g. Poisson’s Equation, Linear
Elasticity) while researchers in [12] consider only time-dependent PDEs. On
the other-hand, GraphMesh deals with automatic mesh refinement on domains
where the approach of AMR may not be applicable.

A recent work known as GMR-Net [13] has introduced an effective mesh re-
finement approach using Graph Convolutional Networks (GCNs) [17]. The above
work leverages supervised learning specifically for elliptic PDEs. In this method,
the model exhibits the capability to predict local error density at each nodal
region of the coarse mesh with advanced input features based on polygon ver-
tices to enhance prediction accuracy. However, a major limitation of this method
lies in its inability to generalize over geometries characterized by a number of
vertices beyond a predefined range. This limitation occurs due the use of a fixed
input embedding size for features, with padding employed for accommodating a
restricted range of polygonal geometries based on the number of vertices.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

GraphMesh: Geometrically Generalized Mesh Refinement using GNNs 3

The current landscape of mesh refinement methodologies exhibits limitations
in their performance, particularly when faced with tested geometries that deviate
from the training set. Addressing this challenge necessitates the development of
a model capable of accommodating input polygonal geometries with an arbitrary
number of vertices. Such a model should not only demonstrate adaptability
to diverse geometries but also excel in delivering accurate refinements while
simultaneously optimizing simulation time.

In response to the existing limitations in mesh refinement methods, we present
GraphMesh, a geometrically generalized mesh refinement model to handle polyg-
onal geometries with any given numbers of vertices. Enclosed within a generalized
Embedding-Decoder based two-stage framework GraphMesh is designed to refine
meshes in two sequential steps, leading to the generation of high-quality optimal
meshes. In the first step, GCN-based network is employed to embed the node-
wise input features to a latent embedding. Subsequently, a second GCN employs
a residual connections based architecture on the obtained node-wise latent em-
beddings to predict simulation errors for the solution of Poisson’s equation. This
two-stage process enhances the adaptability of our framework, ensuring effective
performance across any shaped geometries.

Leveraging the capabilities of Graph Neural Networks, our proposed frame-
work handles polygonal structures with varying numbers of edges, addressing
a crucial limitation observed in existing methodologies. The essence of this ap-
proach is not only the model’s adaptability to diverse polygonal configurations
but also its significant impact on enhancing simulation accuracy while concur-
rently reducing simulation time. Our work distinguishes itself through the fol-
lowing contributions:

1. We propose a novel architecture that performs mesh refinement on any given
geometric shape irrespective of its number of vertices, without re-training.

2. Our method shows superior results in the trade-off between simulation ac-
curacy and simulation cost over the state of the art existing method.

The following section provides background details, followed by Section 3,
which discusses our methodology. Section 4 outlines the experimental setup,
while section 5 delves into the results. The main findings from our experiments
are then discussed in section 6, and the conclusion, along with potential future
applications of our research, is presented in section 7.

2 Background

2.1 Mesh Generation

Mesh representations of shapes involve discretization of the domain leading to
the generation of both CoM and FiM of the given geometry. In this work, we gen-
erated meshes by initially creating diverse input geometries through the method-
ology employed in [13] and subsequently utilizing the Gmsh software on the gen-
erated geometries. The geometry generation process first, entails the use of two

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

4 K. Ainulla et al.

concentric circles with proper spacing. Then the internal area formed by these
circles is subsequently divided into N sections, where N represents the number
of vertices required for the specific geometry under generation. Subsequently,
within each section, an interior point is randomly generated which forms the
polygon vertex, lastly joining of the points in each section leads to the formation
of a unique geometric shape.

2.2 FE Solution and Simulation Error

The generated meshes are used for simulations, executed with the aid of an open-
source FE solver FreeFEM [15]. The problem we address in this paper involves
the solution of Poisson’s equation ▽u + φ = 0 within generated meshes with
the boundary condition of u = α imposed on the polygon boundaries. Here, φ
and α represents the PDE parameter and boundary value of the input meshes
respectively. Following the methodology outlined by Minseong et al. [13], we
estimated the simulation error values e at each nodal location of input CoM.
The error estimation process utilizes the simulation results uCoM and uFiM

corresponding to both CoM and FiM, respectively.

2.3 Characteristic Length

We facilitated the mesh refinement using refinement module of Gmsh. This re-
finer operates on the basis of an element’s l, which can be dynamically adjusted
to enhance accuracy. Specifically, the refinement process focuses on regions where
the e around a given node is notably large. As the characteristic length decreases,
meshes are locally refined in the vicinity of nodal region, optimizing the reso-
lution in areas with significant error deviations. The optimal length around a
node, is precisely defined by a user-defined parameter β as:

l =
β

e
. (1)

Here, β plays a role in governing the refinement density of the meshes, offering
users the flexibility to tailor the refinement process based on specific considera-
tions and desired levels of accuracy.

3 Methodology

3.1 Overview

The core of our approach involves training a GNN model to learn a mapping
between parameters, including geometry G, boundary conditions (BC), and the
corresponding region-specific simulation error e. To enhance geometric general-
ization, we leverage the inherent properties of GNNs, which are independent of
the number of nodes within a given graph. Specifically, we employ a two-step
approach, consisting of the Vertex-Graph Gnv for each node n in the input CoM

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

GraphMesh: Geometrically Generalized Mesh Refinement using GNNs 5

and the Main-Graph Gm representing the input CoM itself (Figure 1). The graph
Gnv captures embeddings for each CoM node n using geometric features with
respect to polygon vertices and boundary, PDE features, regardless of the num-
ber of edges or vertices. The nodal features between the vertex x and node n of
Gnv is represented by fnx. Consequently, the graph Gm predicts e at each nodal
region of the input CoM. The predicted simulation errors (denoted as ê) are then
subjected to an established mathematical function (Equation (1)), yielding an
optimal length l. These optimal lengths are subsequently employed to guide the
mesh refinement process.

Fig. 1. Architectural Framework with the Vertex-Graph Gnv containing node features
fnx and Main-Graph Gm, demonstrated through an example input mesh.

By predicting e our proposed method provides control of mesh refinement
through adjustments in mesh refinement parameters in equation 1. This presents
a versatile and adaptable strategy for refining meshes at the user’s discretion (by
the choice of β), without necessitating re-training for each choice of l (see equa-
tion 1). Moreover, this approach also facilitates a rigorous evaluation methodol-
ogy that enables the observation of the relationship between simulation accuracy
and simulation time across varying refinement levels during inference. This not
only provides insights into the trade-offs between accuracy and computational
efficiency but also contributes to a more better understanding of the model’s
performance under different refinement configurations.

We employ a non-neural network based conventional method using the Gmsh
software [14] for the generation of ground-truths, encompassing an input geom-
etry, CoM and FiM of the geometry. Simulations are conducted on both the
coarse and fine meshes, generating region-wise error distributions based on the
L1-norm of simulation results. Subsequently, acknowledging the time-consuming
and resource-intensive nature of fine mesh generation, the automation strategy

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

6 K. Ainulla et al.

is to use GNN-based supervised learning to predict the region-wise simulation
errors.

3.2 Data Preparation

For training we use the geometric and PDE features extracted from the CoM.
The geometric features, for defining node attributes, are mean value coordinates
(MVC), vertex distance, and depth. These features contribute to a representation
of nodal attributes, for extraction of the mesh characteristics during the error
estimation process.

MVC. The MVC feature computes the weight of a polygon vertex p for the
node n in the given input CoM. Considering an input CoM with k vertices the
weight ηv for vertex v is computed as [16] :

(2)

with θv = angle ̸ pvvpv+1.
This feature, employed in learning the node’s position relative to polygon

vertices, demonstrates robustness against variations in polygon geometry [16].
Vertex Distance and Depth. The Vertex Distance feature provides insights

into the number of hops separating each polygon vertex p from the node n in
the given input CoM, offering information on spatial information. The Depth
feature gives the the closest polygon vertex p to the node n within the CoM [13].

PDE and Boundary Condition. The PDE features relates to the PDE param-
eter φ of the Poisson’s equation and the boundary values α on all the boundary
edges. For the boundary condition corresponding α value is used for the polygon
vertex p.

Our model takes e, as the ground truth feature in our dataset. This unique
approach aims to make our model independent of the refinement parameter β.

3.3 Architectural Details

3.3.1 Vertex Graph for Nodal Representations. The formation of the
vertex graph Gnv is central to our methodology, aiming to obtain a node-wise
representation of the overall polygon shape. The graph for a node n of input
CoM is given by Gnv = (V nv, Env) where Gnvrepresent the external geometry
of the polygon. Here, vertices of the polygon represents nodes V nv (A,B,C,D,E
and F as given in figure 1), and polygon edges represent the links Env (Figure
1).

The input node features fnx for a given node n depends on polygon vertex
x of the given input CoM. (see section 3.2). Previous state-of-the-art method

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

GraphMesh: Geometrically Generalized Mesh Refinement using GNNs 7

(GMR-Net), resorted to padding to handle these features only up to polygons
with pre-defined 9 polygon vertices. Each node n in the graph used in GMR-
Net comprised a 29-dimensional node feature vector, with 9, 9 and 9 dimensions
allocated to MVC, Vertex Distance, and BC, respectively. Since for the node n
these features are different with respect to each polygon vertex p. The remaining
two dimensions were dedicated to depth and φ. Notably, a padding mechanism
using -1 was employed to address polygons with fewer than 9 edges [13].

Our model introduces a novel concept by constructing a vertex graph for
each node n of input CoM, aiming to accommodate features for any number of
polygon vertices. This results in a fixed dimensional feature vector for the nodes
of the vertex graph. In this configuration, the features fnx of a node n concerning
the polygon vertex x are specifically assigned to the corresponding node in the
vertex graph. Consequently, a given input CoM consists of sub graphs equivalent
to the number of nodes in the mesh. Furthermore, each sub graph contains nodes
equivalent to the number of polygon vertices with a fixed dimensional node
feature vector irrespective of the polygon geometry. This arrangement makes
the model adaptable to diverse polygonal shapes, independent of number of
edges without re-training. After the training phase, the latent embedding of the
nodes in the input coarse mesh stores information corresponding to the polygon
corners.

The vertex graph Gnv is designed to encode the polygon’s distinct geometry
into a representative embedding. Within this graph, the message-passing step
within the GCN [17] gives an updated node feature in Gnv vector x

′

i using the
function given by:

x
′

i = fv
⊕

k∈N(i)

(xkW). (3)

Where fv denotes the implementation of MLP and
⊕

k∈N(i) denote averaging
over the one-hop neighbours N(i) of node feature vector xi with learnable param-
eter W . This function aggregates the neighborhood’s information for each node
via its connected edges. Further, to obtain a graph level latent representation
for the nodes in main graph Gm, a subsequent average pooling layer is intro-
duced over the nodes of the corresponding vertex graph Gnv. For information
aggregation, we experimentally opted for a single-layered GCN with 128 hidden-
dimensions on the vertex graph, hence integrating one-hop neighborhood-based
information.

3.3.2 Main Graph for Prediction of Simulation Error. The latent rep-
resentations of nodes within the CoM, learned from the vertex graph, act as
the node features for the main graph Gm and the edge information is obtained
using the linkages between nodes in CoM. Subsequently, the graph Gm is passed
through a GCN architecture based on Residual Network [13]. The architecture
employs information aggregation over a 6-hop neighborhood, featuring skip-
connections every two layers of GCN, and a hidden dimension size of 128. This
ResNets-based GCN enables the extraction of node-level e within the CoM. The
proposed two-step process enables an initial compression of polygon vertex-based

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

8 K. Ainulla et al.

information into a fixed-sized latent embedding followed by leveraging this em-
bedding for predicting e values. This introduces a generalization ability to our
approach, making it universally applicable to various polygon geometries without
any limitations concerning the number of polygon vertices.

3.4 Training and Evaluation

During the training phase, both of our graphs are trained using a supervised
approach, with ground truth error values associated with each node in Gm.
We train GraphMesh with the L1 loss function between the ground truth e
and model predicted ê across N nodes, as outlined in equation 4. To evaluate
the model’s performance, we calculate the average simulation error estimates
Ae across nodes in the refined mesh. This involves, first obtaining node-wise l
values using the model-predicted ê with the help of equation 1. The Gmsh mesh
refiner is then employed to generate refined meshes based on these l values.
Subsequently simulations are conducted on these refined meshes, to compute Ae

by comparing the simulation results of the model-predicted refined mesh with
the corresponding FiM (section 2.2) followed by node-wise averaging.

Furthermore, we assess methods for achieving optimal simulation accuracy
within minimal time. In this evaluation, we generate multiple refined meshes
with varying refinement levels by adjusting β values based on a single model-
predicted ê. For each refined mesh, we compute Ae values while recording the
simulation time. The results are visually represented, illustrating the variation
in Ae and simulation time under this evaluation.

L =
1

N

N∑
i=1

|êi − ei|. (4)

4 Experimental Setup

4.1 Dataset

The CoM in our study contained elements within the range of 250-550, with
corresponding fine meshes FiM containing 15-20 times the number of elements
present in their coarse mesh counterparts. The positional coordinates of each
node in both the CoM and FiM were constrained within the 0 to 1 range. For
GraphMesh, we generated train-validation dataset (section 2.2) featuring 8000
training CoM and FiM, alongside 1500 validation CoM and FiM.

4.2 Experiment Details

To assess the performance of our proposed method, our experiments were per-
formed using one Nvidia A30 24GB GPU. We implemented our neural network
and training scripts using PyTorch [19] and PyTorch Geometric [20]. The batch
size was set to 32 and Adam optimizer [21] with a learning rate of 0.0005 was
used for optimization. The training process spanned 100 epochs, and the corre-
sponding loss curve is depicted in figure 2.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

GraphMesh: Geometrically Generalized Mesh Refinement using GNNs 9

0 20 40 60 80 100
Epochs

0.00

0.05

0.10

0.15

0.20

L1
 L
os

s

Validation Loss
Train Loss

Fig. 2. Training and validation loss curves for GraphMesh

4.3 Governing Equation and Boundary Condition

The displacement field u represented the FE solution. The PDE parameter φ was
randomly assigned values within the range of 0 to 1. Additionally, each boundary
(α) in the mesh was subject to a random displacement ranging from 1 to 100.
Further, the boundary values were normalized between 0 and 1 during training.

4.4 Evaluation Details

We conduct evaluation of our model across two distinct data settings. (1) In-
distribution data setting, where both the training and validation sets comprise
meshes with polygons having 6, 7, 8, and 9 vertices (E). (2) Out-of-distribution
data setting, where the training set includes meshes of polygons with E equal
to 6, 7, 8, and 9, and the validation set introduces meshes of polygons with E
equal to 10 and 12. We generated refined meshes with model predicted ê using
Gmsh’s l, with β set to 0.0084 ∗ max(ê), where max(ê) is the maximum of
predicted simulation error values among the nodes of the corresponding mesh.
The authors of [13] assessed their technique, GMR-Net, across various methods
and proved its superiority. Therefore, we conduct a performance comparison
between our model and the current state-of-the-art method, GMR-Net, both
quantitatively and qualitatively, to encompass all existing methods. Qualitative
assessments involve comparing mesh refinements, while quantitative evaluations
employ simulations on output refined meshes from GraphMesh to obtain Ae

across nodes of the refined mesh. Notably, while GraphMesh inherently handles
out-of-distribution data settings, GMR-Net required feature down-sampling for
inferencing. In the case of GMR-Net, features corresponding to vertices exceeding

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

10 K. Ainulla et al.

the 9-vertex limit are averaged out and equally distributed among the nine vertex
features to facilitate fair comparisons without re-training.

Leveraging our method’s independence from the refinement parameter β, we
also conducted evaluations on a case with varying refinement levels. We set 10
values of β between 0.0084∗max(e) and 0.01∗max(e). The corresponding simu-
lation error versus simulation time plots are observed across varying refinement
level-based meshes.

5 Results

5.1 Mesh Comparison

In the evaluation of refinement results, we conducted a comparison using the
data from both the in-distribution (Figure 3) and out-of-distribution (Figure 4)
datasets, considering polygons with all polygon edges subjected to displacements
as boundary conditions during training. The figures present refined meshes from
GraphMesh and GMR-Net, along with an error distribution plot depicting the
distribution of e on the evaluated geometries. The error distribution plot is
obtained based on the comparison of simulation results between the CoM and
FiM, as explained in Section 2.2. Ideally, the model should refine regions with
simulation errors. Figures 3 and 4 highlight GraphMesh’s accurate capture of
refinement regions, resulting in the generation of improved non-uniform meshes.

Fig. 3. Output refined meshes obtained for in-distribution dataset (E = 6 in (a),(b)
and (c); E = 9 in (d),(e) and (f)) using the methods GMR-Net ((a) and (d)) and
GraphMesh ((b) and (e)) with error distribution of the corresponding CoM ((c) and
(f))

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

GraphMesh: Geometrically Generalized Mesh Refinement using GNNs 11

Fig. 4. Output refined meshes obtained for out-of-distribution dataset (E = 10 in
(a),(b) and (c); E = 12 in (d),(e) and (f)) using the methods GMR-Net ((a) and (d))
and GraphMesh ((b) and (e)) with error distribution of the corresponding CoM ((c)
and (f))

5.2 Simulation Error Comparison

In figure 5, we present quantitative comparisons of simulation errors across a set
of 100 unseen meshes, with refined meshes obtained using refinement parameter
equal to 0.0084 ∗max(e). The focus here is on polygons with E ranging from 6
to 9, constituting an in-distribution dataset.

The plots deomstrate the distribution of simulation errors, providing insights
into the effectiveness of GraphMesh. Specifically, for E = 6 the average simula-
tion error on GraphMesh refined meshes was approximately 21% smaller than
that of GMR-Net refined meshes. Hence, the results highlight GraphMesh’s capa-
bility to yield accurate refinements while efficiently identifying regions of errors,
as also observed in the refinement plots depicted in figure 3 and table 1.

Table 1. Average Simulation error and time comparison for in-distribution validation
meshes

Metric Method E = 6 E = 7 E = 8 E = 9

Average Simulation Error GMR-Net 0.0063 0.0051 0.0055 0.0062
GraphMesh 0.005 0.0044 0.0046 0.0051

Average Simulation Time (s) GMR-Net 0.0065 0.0073 0.0075 0.0076
GraphMesh 0.0047 0.0055 0.0059 0.0060

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

12 K. Ainulla et al.

−7.0 −5.5 −4.0
Errors

E = 6

GMR-Net GraphMesh
−7.0 −5.5 −4.0

Errors

E = 7

−7.0 −5.5 −4.0
Errors

E = 8

−7.0 −5.5 −4.0
Errors

E = 9

log (Ae)

Fig. 5. Comparison of simulation errors for in-distribution dataset

In Figure 6, we present quantitative results for the out-of-distribution dataset,
involving polygons with 10 and 12 edges during inference. These results, obtained
using the GMR-Net method (as shown in Figure 6), were acquired through a
down-sampling technique explained in Section 4.4. Figure 4 displays the quali-
tative evaluations, which further support the findings in Figure 6. The proposed
method accurately captures refinement regions, whereas GMR-Net fails to refine
certain regions, leading to outcomes closer to a uniformly coarse mesh.

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0
log (Ae)

E = 10

GMR-Net GraphMesh
−6.0 −5.5 −5.0 −4.5 −4.0 −3.5

log (Ae)

E = 12

Fig. 6. Comparison of simulation errors for out-of-distribution dataset

5.3 Comparison for various simulation times

Since mesh size depends on the refinement level parameter (β), the simulation
time will also depend on β. Therefore, to plot errors at different times, we vary
β between 0.0084 * max(e) and 0.01 * max(e) and record the corresponding
simulation errors. Figures 7 and 8 compare GraphMesh and GMR-Net for both

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

GraphMesh: Geometrically Generalized Mesh Refinement using GNNs 13

in-distribution and out-of-distribution datasets, in terms of a specific simulation
accuracy for varying refinement levels. Each data point on the plot is obtained
using the averaged values of simulation time and errors. The results clearly
demonstrate that, under each of the 10 refinement levels, GraphMesh outper-
forms GMR-Net, achieving superior simulation accuracy within a shorter time
frame.

0.004 0.005 0.006

−5.4

−5.2

−5.0

−4.8

−4.6

−4.4

E = 6

GraphMesh GMR-Net
0.005 0.006 0.007

E = 7

0.005 0.006 0.007

E = 8

0.005 0.006 0.007

E = 9

Si
m
ul
at
io
n
Er
ro
r (

lo
g(
Ae

))

Simulation Time (s)

Fig. 7. Comparative evaluation of mesh optimality between GraphMesh and GMR-Net
for in-distribution dataset

0.0050 0.0055 0.0060−5.4

−5.2

−5.0

−4.8

−4.6

−4.4

−4.2

−4.0
E = 10

GraphMesh GMR-Net
0.0055 0.0060 0.0065

E = 12

Si
m

ul
at

io
n

Er
ro

r (
lo

g(
Ae

))

Simulation Time (s)

Fig. 8. Comparative evaluation of mesh optimality between GraphMesh and GMR-Net
for out-of-distribution dataset

6 Discussion

We focus on several key aspects of GraphMesh that addresses limitations en-
countered in previous approaches. GMR-Net’s ablation study had emphasized
the significance of geometric node features based on input polygon vertices,
restricting its adaptability to polygons within a fixed range of vertex counts.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

14 K. Ainulla et al.

GraphMesh addresses this limitation by leveraging GNNs. The introduction of
the vertex graph Gnv in GraphMesh allows for handling features from any input
geometry, proving especially advantageous for intricate shapes where determin-
ing the precise number of edges might be challenging.Beyond generalization,
the vertex graph favours learning of the inherent topology of a given polygon.
The latent embeddings for each node, obtained through learnable aggregations,
provide information about the node’s positioning relative to polygon corners,
boundaries, and PDE-defined conditions. This information is then used in the
main graph, which utilizes the mesh connectivity information to predict node-
wise simulation errors effectively. The generalization capabilities of GraphMesh
across various datasets, both in-distribution and out-of-distribution, highlight
the GraphMesh’s improvement compared to GMR-Net under the considered
scenarios.

7 Conclusion

This paper introduces GraphMesh, a novel methodology designed to enhance ge-
ometric generalization in the domain of automatic mesh refinement, specifically
emphasizing its adaptability to out-of-distribution geometries. Our approach was
tested through the solution of Poisson’s equation across diverse scenarios, with
comparative assessments against GMR-Net’s output refined meshes. We pre-
sented comparisons that demonstrated the generalization ability and effective-
ness of GraphMesh. Approximately, GraphMesh achieved an improvement in
simulation accuracy of 21% with a 27% reduction in simulation time on compar-
ison with existing state of the art method. Potential avenues for improvement in-
clude the incorporation of advanced topological features to address complexities
in geometries and extensions to accommodate additional boundary conditions
and diverse governing equations in various domains.

7.0.1 Disclosure of Interests. The authors do not have any competing interests
that are applicable to the content presented in this article.

References

1. Zienkiewicz, O.C., Taylor, R.L., David, F.: The finite element method for solid and
structural mechanics. 7th edn. Elsevier (2014)

2. Panthi S.K, Ramakrishnan N., Pathak K.K., Chouhan J.S.: An analysis of spring-
back in sheet metal bending using finite element method (fem). Journal of Materials
Processing Technology 186, 120–124 (2007)

3. Economon T.D., Palacios F., Copeland S.R., Lukaczyk T.W., Alonso J.J.: Su2: An
open-source suite for multiphysics simulation and design. Aiaa Journal 54, 828–846
(2016)

4. Zhengyong R., Jingtian T.: 3d direct current resistivity modeling with unstructured
mesh by adaptive finite-element method. Geophysics 75, H7–H17 (2010)

5. Steffen M.,Bodo N.: Computational acoustics of noise propagation in fluids: finite
and boundary element methods. Springer 578 (2008)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

GraphMesh: Geometrically Generalized Mesh Refinement using GNNs 15

6. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation.
Computational geometry 22(1-3), 21–74 (2002)

7. Ainsworth M., Oden J.T.: A posteriori error estimation in fnite element analysis.
Computational Methods in Applied Mechanics and Engineering 142, 1–88 (1997)

8. Bank R.E., Weiser A.: Some a posteriori error estimators for elliptic partial difer-
ential equations. Mathematics of Computation 44, 283–301 (1985)

9. Zhang Z., Wang Y., Jimack P.K., Wang H.: MeshingNet: a new mesh generation
method based on deep learning. In: International conference on computational sci-
ence, pp. 186–198. Springer, Berlin (2020)

10. Zhang Z., Jimack P.K., Wang H.: MeshingNet3D: efficient generation of adapted
tetrahedral meshes for computational mechanics. Advances in Engineering Software
157, 103021 (2021)

11. Zienkiewicz O., Zhu J.: Adaptivity and mesh generation. International Journal for
Numerical Methods in Engineering 32, 783–810 (1991)

12. Pfaff T., Fortunatoet M., Sanchez-Gonzalez A., Battaglia P.: Learning mesh-based
simulation with graph networks. In: International conference on learning represen-
tations. Vienna (2020)

13. Minseong K., Jaeseung L., Jibum K.: GMR-Net: GCN-based mesh refinement
framework for elliptic PDE problems. Engineering with Computers 39, 3721–3737
(2023)

14. Geuzaine C., Remacle F.: Gmsh: a three dimensional finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering 79, 1309–1331 (2009)

15. Hecht F.: New development in FreeFem++. Journal of Numerical Mathematics
20, 251–266 (2012)

16. Floater M.S.: Mean value coordinates. Computer Aided Geometric Design 20, 19–
27 (2003)

17. Kipf T.N., Welling M.: Semi-supervised classifcation with graph convolutional net-
works. In: International conference on learning representations (2017)

18. Abdelaziz Y., Nabbou A., Hamouine A.: A state-of-the art review of the x-fem for
computational fracture mechanics. Applied Mathematical Modelling 33, 4269–4282
(2009)

19. Paszke A., et al.: PyTorch: an imperative style, high performance deep learning
library. In: Advances in neural information processing systems. (2019)

20. Fey M., Lenssen J.E.: Fast graph representation learning with PyTorch. In: ICLR
workshop on representation learning on graphs and manifolds. (2019)

21. Kingma D.P., Ba J.: Adam: a method for stochastic optimization. In: International
conference on learning representations. (2015)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_9

https://dx.doi.org/10.1007/978-3-031-63775-9_9
https://dx.doi.org/10.1007/978-3-031-63775-9_9

