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Abstract. Non-intrusive reduced order modeling methods (ROMs) have
become increasingly popular for science and engineering applications
such as predicting the field-based solutions for aerodynamic flows. A
large sample size is, however, required to train the models for global ac-
curacy. In this paper, a novel adaptive sampling strategy is introduced
for these models that uses field-based uncertainty as a sampling metric.
The strategy uses Monte Carlo simulations to propagate the uncertainty
in the prediction of the latent space of the ROM obtained using a multi-
task Gaussian process to the high-dimensional solution of the ROM. The
high-dimensional uncertainty is used to discover new sampling locations
to improve the global accuracy of the ROM with fewer samples. The per-
formance of the proposed method is demonstrated on the environment
model function and compared to one-shot sampling strategies. The re-
sults indicate that the proposed adaptive sampling strategies can reduce
the mean relative error of the ROM to the order of 8 × 10−4 which is
a 20% and 27% improvement over the Latin hypercube and Halton se-
quence sampling strategies, respectively at the same number of samples.

Keywords: Adaptive sampling · Field-based uncertainty · Reduced or-
der modeling · Multi-task Gaussian process · Monte Carlo simulation.

1 Introduction

The need to reduce the computational cost of high-fidelity simulations has been
of great interest in the fields of science and engineering. A computationally
cheaper alternative to high-fidelity simulations has been identified in the form of
reduced order modeling (ROM) strategies. ROMs can be intrusive [2], i.e., they
alter the governing equations of a problem and offer a simpler alternative that
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is faster to solve, or they can be non-intrusive [24], i.e., they can be data-driven
models that use high-fidelity data and machine learning techniques to create
an approximation of simulation output. Intrusive ROMs typically require access
to the simulation source code which may be difficult to acquire. Implement-
ing intrusive ROMs also requires extensive knowledge and effort to manipulate
the governing equations and simulation source code. These challenges can be
overcome by using non-intrusive ROMs that only require access to the data gen-
erated by a high-fidelity simulation. Non-intrusive ROMs have gained popularity
and have been extensively applied in the domain of fluid mechanics to predict
high-dimensional field-based variables [20, 12, 6].

A common issue with the creation of ROMs is that they often require a
large number of samples to achieve the desired approximation quality of high-
dimensional field-based variables. These samples are usually generated in one-
shot using, for example, Latin hypercube sampling (LHS) [22] or low discrepancy
sequences, such as Halton sequences [17]. These methods are usually space-filling
design of experiments, however, these methods do not generate sampling plans
that are tailored to the approximation quality of non-intrusive ROMs. As a
result, a higher number of samples are required to lower the prediction error of
the ROM leading to a large number of high-fidelity simulations.

To overcome this disadvantage, adaptive sampling strategies can be used
to choose samples within a parameter space that directly target the prediction
quality of the ROM. An extensive overview of adaptive sampling and different
types of sampling strategies is given in [15] and [9]. The initial work on adaptive
sampling of ROMs was focused on the sampling of POD-based ROMs. Bracon-
nier et al. [5] and Guenot’ et al. [11] developed sampling strategies based on a
measure of quality of POD basis generation and the prediction quality of the
low-dimensional space interpolation model of the ROM. Wang et al. [7] extended
the work of Guenot et al. [11] by developing a fully-automated approach that
utilizes the proposed adaptive sampling metrics in a combined manner.

Yang and Xiao [23] proposed an adaptive sampling algorithm for a POD-
based ROM that used the variance estimate and gradient information of the
low-dimensional space modeled by a Gaussian process regression model. They
employ a weighting strategy for the variance of the prediction of each modal
coefficient and the magnitudes of the gradients. The weights are based on the
singular values of the modal coefficients. This weighting strategy restricts the
use of this method to only POD-based ROMs. The work of Karcher and Franz
[14] and Franz et al. [8] developed adaptive sampling strategies that can be
implemented for both POD-based and manifold learning ROMs. Some of the
sampling metrics used in these studies include manifold-filling metrics, residual of
governing equations, and error estimations, such as leave-one-out cross-validation
error and mean squared error of the interpolation model of the low-dimensional
space.

Most of the previous work on adaptive sampling strategies for ROMs has
typically utilized the approximation quality of the low-dimensional space di-
rectly. This approach does not account for the approximation quality in the
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high-dimensional space which is the actual quantity of interest in a ROM pre-
diction. The current work will quantify the variance in the high-dimensional
solution of the ROM by the use of forward propagation through the backmap-
ping procedure of the ROM. The high-dimensional variance estimate will then
be utilized as a sampling objective in an adaptive sampling algorithm. It is hy-
pothesized that the introduction of high-dimensional variance information will
improve the performance of the adaptive sampling.

In this work, a novel adaptive sampling strategy is proposed for ROMs based
on the multi-task variance of the latent space obtained by the free-form parame-
terization multi-task Gaussian process (MTGP) formulation [4]. In this case, the
latent space is modeled using a MTGP model to predict all the latent space coeffi-
cients simultaneously. Monte Carlo sampling is used to propagate the multi-task
variance of the latent space to the high-dimensional solution space to estimate
the high-dimensional variance and employ it to discover new sampling locations
to improve the global accuracy of the non-intrusive ROM. The proposed adap-
tive sampling strategy is a novel approach as it uses high-dimensional variance
information as an infill criteria to search the design space for new samples rather
than using only the latent space variance. This strategy will introduce more in-
formation in the form of field-based variance information into the search for new
samples that could lead to a better search and possibly higher accuracy with
fewer samples. The proposed method is also agnostic to the dimensionality re-
duction method of the ROM. To illustrate the possible benefits, the proposed
algorithm is benchmarked against traditional one-shot sampling strategies, in
particular, LHS and Halton sequences.

The next section will describe the novel adaptive sampling algorithm pro-
posed in this paper. The section following that will describe the application of
the adaptive sampling algorithm to a 2D analytical test function and a perfor-
mance comparison with benchmarking methods. The final section of the paper
will present the main conclusions and possible future work.

2 Field-based adaptive sampling

This section introduces the high-dimensional field-based adaptive sampling strat-
egy for ROMs proposed in this work.

2.1 Proposed adaptive sampling algorithm

The general process of adaptive sampling is driven by an optimization problem
that chooses a new sampling point by maximizing a sampling objective. This
can be mathematically represented as

xnew = argmax f(x), (1)

where x = (x1, x2, ...xn) is a vector of model parameters, f(x) denotes the
sampling objective and xnew is the new sampling point. The sampling objective
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itself is based on a measure of the prediction uncertainty of the ROM. In the
case of the field-based adaptive sampling proposed here, each point in the field
will be assigned a prediction uncertainty rather than an aggregated prediction
uncertainty being used for the entier field prediction. However, to facilitate the
calculation of a sampling objective the prediction uncertainty from all points in
the field must be aggregated using mathematical operations such as averaging.
This means that in the case of field-based adaptive sampling proposed here, the
sampling problem should be represented as

max
x

f = g(σ̂(x)), (2)

where σ̂(x) is the prediction uncertainty field for a given set of parameters and
g(σ̂(x)) is an aggregation function to aggregate the prediction uncertainty in the
field in a meaningful way.

The main contribution of this work is to introduce high-dimensional informa-
tion in the adaptive sampling algorithm. To do this, the variance estimate of the
latent space prediction provided by an MTGP model will be propagated to the
high-dimensional solution to attain a high-dimensional variance estimate. The
proposed propagated uncertainty sampling algorithm is shown in Algorithm 1.
The main features of the algorithm are discussed in detail in the following sub-
sections. The algorithm described in these subsections will be repeated until a
fixed computational budget is reached. Here, the computational budget refers to
the number of samples that can be obtained within the limits of computational
cost.

2.2 Dimensionality reduction

To start the algorithm, an initial sampling plan X = {x(1), ...,x(n)} is gen-
erated using a one-shot sampling strategy. In this work, Halton sequences are
used to generate the initial sampling plan that contains only a few number of
samples. This is used as the base sampling plan to create the initial ROM and
calculate variance estimates of the ROM. The high-dimensional field-based so-
lutions Y = {y(1), ...,y(n)} ∈ Rm×n are calculated for each sample in X to

Algorithm 1 Adaptive sampling using field-based variance estimate.
Require: initial data sets (X,Y), computational budget Nmax

repeat
obtain POD modes Φ through SVD
project data to low dimensional space, z← ΦTY
fit MTGPz to the data set (X, z)
xnew ← argmax g(σ̂(x))
X← X ∪ xnew

get field-based data (ynew) at xnew

Y← Y ∪ ynew

until computational budget expires
return final sampling plan, X
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create the data for the ROM. Y is a matrix containing n fields of dimension-
ality m. To focus on the adaptive sampling algorithm itself, the simplest pos-
sible dimensionality reduction method is used to create the ROM in this work.
The proposed algorithm, however, is agnostic of the dimensionality reduction
method and any dimensionality reduction method could be applied along with
it. POD is applied to the high-dimensional solutions Y to generate the low-
dimensional latent space for the data. The modes of the high-dimensional space,
Φ = [ϕ(1), ...,ϕ(d)] ∈ Rm×d, are generated using singular value decomposition
(SVD) and the truncation of the modes is performed according to the relative
information criterion [19]. Φ represents the matrix of POD modes with d << n
and d << m as the dimensionality of the latent space coefficients will be much
lower than the original dimensionality. The optimal number of modes for the
POD algorithm is chosen according to a relative information content of 0.9999.

2.3 Multi-task Gaussian process models

After POD is applied to the high-dimensional solutions, a low-dimensional space
is generated for the data. A parametric mapping is created between the input
parameters and the low-dimensional space using a MTGP model that can si-
multaneously predict multiple latent space coefficients. This model is denoted
as MTGPz from here onwards. MTGPs are chosen as they will provide a vari-
ance estimate of the low-dimensional space that can be propagated to the high-
dimensional solution using the truncated POD modes and Monte Carlo sampling.

MTGPs are multi-task learning models that are applied to Gaussian pro-
cesses [4]. They aim at learning multiple correlated tasks simultaneously and
boost the prediction capability of the model by modelling the correlations among
the different outputs that are trying to be predicted. The MTGP models used in
this work are created using GPyTorch [10], a Python implementation of Gaus-
sian process models built on the framework of PyTorch [18]. The MTGP models
were trained using a radial basis function kernel wrapped with a multi-task ker-
nel and the hyperparameters were optimized using the maximum log-likelihood
criterion. These models provide an individual variance estimate of the prediction
of each output.

2.4 Uncertainty propagation

The main feature of the proposed adaptive sampling algorithm is the propagation
of the variance estimate provided by MTGPz from the low-dimensional space
to the high-dimensional solution space. The uncertainty propagation algorithm
used in this work is given in Algorithm 2. One of the most well-known ways
of propagating uncertainty is to use Monte Carlo sampling [16]. Monte Carlo
sampling uses a large number of samples drawn from the distribution of uncertain
variables and uses these samples to estimate the statistics of an output that is
dependent on the uncertain variables. In this work, a collection of m samples,
z(m)(x) ∼ N (µ,Σ), is drawn from the posterior distribution of the MTGPz

model. Each sample is then projected to the high-dimensional space to obtain
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Algorithm 2 Propagating variance estimate to high-dimensional space.
Require: point in parameter space x, fitted MTGPz model, number of Monte-Carlo

samples M
for m = 1, ...,M do

draw sample from MTGPz posterior of low-dimensional space at point of interest
z(m)(x) ∼ N (µ,Σ)

predict high-dimensional solution, ŷ(x) = Φz(m)(x)T

end for
estimate σ̂(x) from data of Monte Carlo samples

the predicted high-dimensional field ŷ(x). Once the high-dimensional solutions of
all the samples have been found, the standard deviation, σ̂(x), of the prediction
of the ROM at each point of the solution domain will be estimated. Essentially,
each point of the solution domain is treated as having a distribution with a mean
value and standard deviation. The resulting standard deviation field will be used
as an estimate of the uncertainty in the high-dimensional field-solution predicted
by the ROM.

2.5 Scalarized sampling objective

The propagated uncertainty will provide a measure of variance or standard de-
viation for every grid point in the high-dimensional solution. A scalarization
or aggregation method is required to enable the use of an optimization algo-
rithm to find the next infill point for the algorithm. In this work, two different
scalarization methods are employed. One of them involves using the average of
the variance while the other involves using the maximum value of the variance
obtained. The average variance is calculated as

σ̂avg(x) =
1

m

m∑
i=1

σ̂i(x), (3)

where σ̂i(x) is the standard deviation of the ith grid point in the high-dimensional
field and m is the total number of grid points in the field. Similarly, the maximum
value of the variance can be determined as

σ̂max(x) = max
i=1,2,...,m

σ̂i(x), (4)

Once the standard deviation estimate has been calculated, the sampling ob-
jective can be defined. To promote the exploration of the parameter space by the
adaptive sampling algorithm, the minimum Euclidean distance between sampling
points will be included in the sampling objective [1, 13]. A further consideration
in the design of the sampling objective is the fact that non-intrusive ROMs are
regression models and therefore, the standard deviation may not be zero at an
already sampled point as is the case for interpolation models. To prevent place-
ment of new infill points near existing sampling points, a threshold distance
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is defined below which the standard deviation is artificially set to zero. This
will prevent an optimization algorithm from looking in regions close to existing
samples while maximizing the sampling objective. After including all of these
considerations, the sampling objective for the algorithm is defined as

f(x) =

{
d(x,X)σ̂scalar(x), d(x,X) ≥ αDmax

min

0, otherwise
, (5)

where σ̂scalar(x) is the scalarized field standard deviation from either 3 or 4,
d(x,X) is the minimum Euclidean distance between the point of interest and
existing sampling points and αDmax

min is the threshold distance. Dmax
min represents

the maximum of the minimum Euclidean distance between any two existing
sampling points and α is a parameter used to tune the value of the threshold
distance. This sampling objective will be maximized to locate the new infill
location, xnew, for the adaptive sampling algorithm.

3 Numerical experiments

This section discusses the test case used to assess the proposed method and the
results obtained.

3.1 2D Environment model function

The analytical environment model function (EMF) [3] will be used to test the
proposed adaptive sampling algorithm. EMF aims to model the spill of a pollu-
tant caused by a chemical accident over a spatial and temporal coordinate grid.
Since this function is a multi-output function, it can provide a good test bed for
understanding the behavior of adaptive sampling algorithms for ROMs without
the need to run high-fidelity simulations. ROMs will be trained to predict the
outputs of this function on a 10 x 10 grid leading to the requirement of modelling
100 outputs in total. The EMF is defined as

h(s, t|x) = M√
4πDt

exp(
−s2

4Dt
) +

1t>τM√
4πD(t− τ)

exp(
−(s− L)2

4D(t− τ)
), (6)

where x = (M,D,L, τ) are the model parameters, and s and t represent the
locations of a grid point in the 10 x 10 grid. The original function has four input
parameters, however, in this work, a 2D version of the problem is considered
which fixes two parameters of the function. A 2D version is considered as it is
easy to study and visualize different aspects of the proposed algorithm in 2D. In
this 2D version, the values of L and τ are fixed at their calibrated values of 1.505
and 30.125, respectively [3]. The parameters M ∈ [7, 13] and D ∈ [0.02, 0.12] are
considered to be the variables in the parameter space.
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3.2 Comparison methods and metric

The results obtained from the adaptive sampling algorithm are compared to
Halton sequences [17] and the mean performance of 10 LHS sampling plans [22]
at various numbers of samples. The mean relative error in the parameter space
is used as a measure of the overall prediction quality of a ROM built by using
different types of sampling plans. The mean relative error is calculated as

erel =
1

N

N∑
i=1

||Wpred − W∗||2
||W∗||2

, (7)

where Wpred is the prediction of the field solution from the ROM, W∗ is the
true field solution and N is the number of testing samples for the ROM.

3.3 Setup of the sampling algorithm

The initial sampling plans, created using Halton sequences, consist of 10 and 20
samples. The testing data to assess the prediction quality of the ROM built from
different sampling plans is an LHS sampling plan of 100 samples and common to
each of the methods of generating samples. The initial sample sizes were chosen
based on heuristics that have been suggested based on the dimensionality of
the parameter space and computational budget of the algorithm [15]. These
samples are used to train the initial ROM and propagate the uncertainty from
the low-dimensional space to the high-dimensional solution space. The Monte
Carlo sampling for uncertainty propagation uses 1000 samples drawn from the
posterior of the MTGP model to estimate the field standard deviation of the
prediction of the pollutant spill multiplied by the minimum Euclidean distance
between samples as described in 5. The value of α is set to 0.10 for all numerical
experiments. A fixed budget of 40 samples is chosen as the stopping criteria.
Both the mean standard deviation and the maximum standard deviation in the
field prediction of the pollutant spill were used as the sampling objectives of the
problem. The sampling objective is maximized using differential evolution [21]
with a population size of 200, a recombination constant of 0.7 and a mutation
rate of 0.9.

3.4 Results

Figure 1 shows the variation of the mean relative error of the prediction of the
ROM starting from 10 and 20 initial samples for a fixed budget of 40 samples. It
can be seen that the adaptive sampling strategies quickly reduce the prediction
error of the ROM as compared to the LHS and Halton sequence sampling plans,
especially when using 20 initial samples.

With 10 initial samples, the sampling plans driven by σ̂avg(x) and σ̂max(x)
achieve a final mean relative error of 9.892 · 10−4 and 1.042 · 10−3, respectively.
This shows that both the sampling strategies achieved a similar performance with
10 initial samples. The LHS sampling and Halton sequence sampling strategy are
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Fig. 1. Mean relative error of the prediction of the ROM constructed using the proposed
sampling methods and benchmark one-shot sampling methods for (a) 10 initial samples
and (b) 20 initial samples.
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Fig. 2. True and predicted contour lines of EMF for M = 11.3830 and D = 0.0204
with (a) 10 initial samples, (b) 20 samples, (c) 30 samples and (d) 40 samples.

able to achieve a mean relative error of 1.010×10−3 and 1.111×10−3, respectively.
This means that in this case the adaptive sampling strategies perform on par
with the one-shot sampling strategies.

If the adaptive sampling algorithm is started with an initial sample size of
20, there is an improvement in the prediction accuracy of the ROM generated
using the adaptive sampling plan. The σ̂avg(x) and σ̂max(x) strategies are able
to reduce the mean relative error of the ROM to 8.086× 10−4 and 8.638× 10−4,
respectively. The sampling plan produced using σ̂avg(x) reduces the prediction
error of the ROM slightly more than the sampling plan generated using σ̂max(x).
The adaptive sampling strategies achieve a 20% improvement over LHS and a
27% improvement over Halton sequences in terms of the mean relative error at
the computational budget of 40 samples. Both adaptive sampling strategies can
also reduce the prediction error of the ROM quicker than the one-shot sampling
strategies. The proposed sampling strategies can overtake the one-shot sampling
strategies in terms of prediction error by a sample size of 32 samples.
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Fig. 3. Sampling plans of the 2D parameter space for the environment model function
generated using adaptive sampling strategies using (a) mean propagated variance and
10 initial samples, (b) maximum propagated variance and 10 initial samples, (c) mean
propagated variance and 20 initial samples, and (d) maximum propagated variance and
20 initial samples.

The nature of the prediction error of the ROM generated using different sam-
pling strategies is also shown in Fig. 2. The figure shows a comparison between
the predicted EMF contour lines from a ROM generated using all of the sam-
pling strategies used in this work and the true EMF contour lines. The figure
illustrates that the adaptive sampling strategies can produce a ROM that pre-
dicts the EMF more accurately with a fewer number of samples than a ROM
generated using one-shot sampling strategies. This is because the contour lines
predicted using the adaptive sampling strategies are closer to the true contours
as compared to the contour lines predicted using one-shot sampling strategies.

Figure 3 shows the sampling plans that are generated using the adaptive
sampling strategies. For comparison, Fig. 4 presents sampling plans of 40 samples
that were generated using the benchmark one-shot sampling strategies. It can be
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Fig. 4. Benchmark one-shot sampling plans generated using (a) Halton sequences and
(b) LHS.

seen that the adaptive sampling strategies place many samples on the edge of the
parameter space in addition to the samples placed in the central region. There
may be an influence of the distance criteria in placing the samples near the edge
of the sample space as this will tend to maximize the minimum distance between
samples. This is, however, also a beneficial aspect of the sampling strategy as
it tends to explore the edge of the parameter space more than typical one-shot
sampling strategies.

The evolution of the contours of σ̂avg(x) with increasing number of samples
is shown in Fig. 5. The contours show that higher values of σ̂avg(x) occur near
the edges of the parameter space rather than the central region. This is also
an influencing factor in the placement of infill samples near the edge of the
parameter space. It is also evident that as the number of samples increases
the value of σ̂avg(x) decreases across the parameter space. This illustrates that
the average field uncertainty of the ROM decreases as the number of samples
increases in the sampling algorithm.

4 Conclusion

This paper proposes an adaptive sampling strategy for non-intrusive ROMs
based on forward propagation of the multi-task variance information of the la-
tent space. The posterior distribution of the multi-task Gaussian process model
of the latent space is sampled using Monte Carlo sampling and the standard
deviation of the high-dimensional field solution is calculated. The overall field
standard deviation is scalarized using the average value or the maximum value.
A sampling objective is designed that maximizes the product of the variance es-
timate and the minimum distance between the samples. The adaptive sampling
process is carried out for a fixed computational budget.
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Fig. 5. Contours of σ̂avg(x) plotted for (a) 25 samples, (b) 30 samples, (c) 35 samples,
and (d) 40 samples starting with 10 initial samples.

The proposed adaptive sampling algorithm is demonstrated on the environ-
ment model function. The proposed sampling strategies outperform both of the
one-shot strategies especially with an initial sample size of 20 samples. In the
case of the EMF, using the average value of the field uncertainty yields slightly
lower prediction errors at the termination of the adaptive sampling algorithm as
compared to using the maximum value of the field uncertainty. Both adaptive
sampling strategies tend to place more samples near the edge of the parame-
ter space as compared to the one-shot sampling strategies. This is due to the
Euclidean distance criterion included in the sampling objective and larger field
uncertainty in locations near the edges of the parameter space.

Future work will aim at applying the adaptive sampling strategies to higher
dimensional and complex engineering problems, such as modeling flow around
an airfoil or wing. The sampling objective of the strategy is a very important
aspect of the method that will be given more attention in future work. Multiple
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different scalarization methods and objective formulations will be investigated
to improve the performance of the algorithm.
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