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Abstract. In this paper, adaptive hyperparameter optimization (HPO)
strategies within the efficient global optimization (EGO) with neural
network (NN)-based prediction and uncertainty (EGONN) algorithm
are proposed. These strategies utilize Bayesian optimization and multi-
armed bandit optimization to tune HPs during the sequential sampling
process either every iteration (HPO-1itr) or every five iterations (HPO-
5itr). Through experiments using the three-dimensional Hartmann func-
tion and evaluating both full and partial sets of HPs, adaptive HPOs are
compared to traditional static HPO (HPO-static) that keep HPs con-
stant. The results reveal that adaptive HPO strategies outperform HPO-
static, and the frequency of tuning and number of tuning HPs impact
both the optimization accuracy and computational efficiency. Specifi-
cally, adaptive HPOs demonstrate rapid convergence rates (HPO-1itr at
28 iterations, HPO-5itr at 26 for full HPs; HPO-1itr at 13, HPO-5itr at
28 iterations for selected HPs), while HPO-static fails to approximate the
minimum within the allocated 45 iterations for both scenarios. Mainly,
HPO-5itr is the most balanced approach, found to require 21% of the
time taken by HPO-1itr for tuning full HPs and 29% for tuning a subset
of HPs. This work demonstrates the importance of adaptive HPO and
sets the stage for future research.

Keywords: Neural networks, surrogate-based optimization, hyperpa-
rameter optimization, sequential sampling.

1 Introduction

The engineering design optimization process merges computational simulations
with optimization methods to determine optimal design under specific con-
straints. This process is typically iterative, which increases the computational
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2 Jeong et al.

cost. Surrogate-based optimization (SBO) presents an effective solution by em-
ploying data-driven surrogate models instead of repetitive simulations, and can
save computational cost while yielding optimum results [14].

The efficient global optimization (EGO) algorithm [8] is a widely used SBO
technique that typically employs kriging [3] as its surrogate model. This al-
gorithm adopts a sequential sampling method, starting with an initial kriging
model. Each iteration involves selecting a new sample point that maximizes the
expected improvement (EI) criterion, balancing exploration and exploitation.
The new samples are then integrated into the kriging model for subsequent itera-
tions, progressively enhancing the performance [16]. However, the computational
cost associated with kriging increases quickly with more samples [12].

Neural networks (NNs) are effective surrogate models for managing large,
nonlinear data sets. They learn complex input-output relationships, enabling ac-
curate predictions of new data outcomes [14]. Their performance largely depends
on the data’s quality and quantity, as NNs do not typically employ sequential
sampling, a process often referred to as one-shot optimization or sampling [7].
This is primarily due to their inability to estimate uncertainty, a requirement
for exploration. Sequential sampling could lead to convergence at local min-
ima without exploration and limiting further refinement of the surrogate model.
Therefore, optimizing an initial data set size is important when using NNs [17].

Koratikere et al. [10] recently introduced the efficient global optimization
using neural networks (EGONN) algorithm, which combines sequential sampling
with NN-based predictions. This method uniquely employs a secondary NN to
model uncertainty, allowing EGO to combine with NNs’ predictive abilities for
sequential sampling. A significant advantage of this approach is simplifying the
preliminary setup and enhancing the efficiency of NNs in global modeling and
optimization tasks [9].

The structure of NNs is defined using hyperparameters (HPs), including
structural parameters and learning algorithms, which need to be set before
training. Consequently, HP optimization (HPO) is important for constructing
an optimally performing NN [17,15]. In one-shot optimization, the optimal HP
configuration is determined for the initial data set and kept static throughout
the algorithm run [7]. However, HPs require occasional tuning as the optimal
NN structure and algorithms may vary with the number of training samples for
sequential sampling.

This work proposes an adaptive HPO for sequential sampling within the
EGONN algorithm. This adaptive HPO addresses the limitations associated
with static HP, offering a more dynamic and responsive optimization strategy.
It combines Bayesian optimization (BO) [15] and multi-armed bandit (MAB)
optimization [5] to optimize continuous and discrete HPs, respectively. These
strategies balance exploration and exploitation, enabling efficient identification
of the HP configuration. This integrated approach facilitates finding the best
HP configuration with fewer design iterations and reduced time [1,4].

Additionally, this paper conducts a comparative analysis of different HPO
strategies within the EGONN framework, examining static HP tuning, tuning
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Adaptive HP tuning within EGONN 3

HPs every five iterations, and every iteration. These strategies are evaluated
based on metrics such as the number of infill points required for convergence
and the time cost, using the EGO as a benchmark. The analysis utilizes the
three-dimensional Hartmann function by tuning a complete set and a subset of
HPs for numerical experiments.

The remainder of the paper is structured as follows. Section 2 provides an
overview of the employed SBO methods and HPO. Section 3 describes numerical
experiments for evaluating the proposed methods. Finally, Section 4 summarizes
the essential findings and identifies potential future research directions.

2 Methods

This section introduces the basics of SBO and specific sequential sampling algo-
rithms for optimization. It then describes the HPO methods and adaptive HPO
strategies employed in this work.

2.1 Surrogate-based optimization

SBO is effective for design optimization problems that minimize an objective
function f(xd), subject to constraints gi(xd) ≤ 0 and hj(xd) = 0, which can be
written as:

min
xd

f(xd)

subject to gi(xd) ≤ 0, i = 1, . . . , q,

hj(xd) = 0, j = 1, . . . , r,

(1)

where xd = (xd1
, xd2

, ..., xdn
) is the vector of design variables, q is the number

of the inequality constraints, and r is the number of the equality constraints.
These problems often require extensive evaluation using simulations, making
SBO a valuable tool for efficiently finding solutions using a data-driven surro-
gate model instead of directly evaluating the objective function or constraints
[3]. The effectiveness of SBO, however, is contingent upon the accuracy of the
surrogate model. Inaccurate approximations can result in sub-optimal optimiza-
tion outcomes. Furthermore, constructing a reliable surrogate model requires
substantial initial data. SBO iteratively refines the surrogate model by adding
a sample point, resulting in progressively more accurate approximations of the
objective function. [16].

Figure 1 presents a flowchart outlining the SBO process with sequential sam-
pling utilized in this research. The process is initiated by generating an initial set
of samples through a deterministic Halton sequence sampling[2]. These samples
are used to acquire observations for training the surrogate models, such as NN or
kriging. Then, infill criteria, such as the expected improvement, are maximized
to explore and exploit the design space using differential evolution [11]. The new
infill point is added to the training data for the next iteration, continuing until
the allocated budget is exhausted or a convergence criterion is satisfied.
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Fig. 1: A flowchart illustrating SBO with sequential sampling and adaptive HPO.

2.2 Efficient global optimization

EGO is a widely used SBO method to optimize a black box function that uses
a kriging model for prediction and uncertainty estimation [8]. As described in
Algorithm 1, the process begins by generating an initial sample plan X and
observing the corresponding outputs Y. In each iteration, a kriging model is
created using the available data set. Then, EI [3] is maximized to find the next
infill point p, which balances the exploration of areas characterized by high
uncertainty against the exploitation of areas with low estimated function values.
The EI function is formulated as

EI(x) =
[
f(x∗)− f̂(x)

]
Φ(Z) + ŝ(x)ϕ

(
f(x∗)− f̂(x)

ŝ(x)

)
, (2)

Algorithm 1 Efficient global optimization [8].

1: Create initial sampling plan X
2: Compute objective function value Y at initial sampling X
3: while infill budget lasts do
4: Create kriging model using (X,Y)
5: Find the best sample y∗ in Y
6: Maximize EI(x) to find next infill point p
7: Compute objective function value y at p
8: Append (X,Y) with (p,y)
9: end while

10: Return best sample (x∗,y∗) in appended data set
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where y∗ is the best objective function value in the data set, ŷ(x) and ŝ(x)
represent the surrogate model prediction and the corresponding uncertainty in
the prediction. Φ and ϕ are the cumulative distribution function and probabil-
ity density function of the standard normal distribution, respectively, and the
standard normal variable (Z) is evaluated as:

Z =
y∗ − ŷ(x)

ŝ(x)
. (3)

The new observation y is evaluated at infill point p and is appended to the data
set (X,Y). The kriging model is retrained with an updated data set, and this
iterative cycle is continued until the budget for infill is exhausted. Finally, the
best-observed sample y∗ and corresponding design variable vector x∗ is returned
as the optimum design.

2.3 EGO using neural networks

The recently developed EGONN algorithm enhances the EGO process by incor-
porating two separate NNs for modeling the objective function and uncertainty
[10]. The first NN (NNy) models the objective function and the second NN
(NNu) models uncertainty. A third NN (NNg) is added if there are constraints
in the problem [9]. As described in Algorithm 2, the EGONN process is similar
to EGO but there are two major differences. The process starts with generating
two different sampling plans, X and Xu, with corresponding function values Y
and Yu. Within the iterative cycle, a NN model for ŷ is created using (X,Y).
Then, ŷ model is used for predicting the values at X and Xu. The prediction
error can be computed since the true values are available. In the next step, the
ŝ model is created using X and Xu, and the corresponding prediction error. In
this way, EGONN creates two NN models, one for prediction and the other for
uncertainty estimation.

The remaining part of the cycle is the same as EGO. The next step is to
maximize EI(x) using the prediction and uncertainty models to find the next

Algorithm 2 Efficient global optimization using neural networks [10].

1: Create initial sampling plan X and Xu

2: Compute objective function value Y and Yu for initial samples
3: while infill budget lasts do
4: Create NN model for ŷ using (X,Y)
5: Create NN model for ŝ using prediction error of ŷ for X and Xu

6: Find the best sample y∗ in Y
7: Maximize EI(x) to find next infill point p
8: Compute objective function value y at p
9: Append (X,Y) with (p,y)

10: end while
11: Return best sample (x∗,y∗) in appended data set
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Table 1: A table of the HPs with their respective types and ranges or options.

Name Type Bounds / options
Learning rate (x1) R+ 10−4 ≤ x1 ≤ 10−1

Epoch number (x2) Z+ 103 ≤ x2 ≤ 5 · 103
Activation function (x3) [-] (relu, elu, tanh, sigmoid)
Optimizer (x4) [-] (SGD, Adam, RMSprop, Adagrad)
Hidden layer number (x5) Z+ 1 ≤ x5 ≤ 4
Initial neuron number (x6) Z+ 4 ≤ x6 ≤ 16

infill point. The function value at the infill point is evaluated, and the (X,Y)
data set is updated. This cycle is repeated until the infill budget is exhausted.
Recently, a constrained version of EGONN was proposed, which uses a third NN
model for representing the constraints [9].

2.4 Hyperparameter optimization

A critical step while creating an NN model involves configuring its structure
and the training algorithm, which are problem-dependent and must be tuned
for good performance [7]. Table 1 illustrates the HPs used in this study with
their respective ranges and details. The number of hidden layers and neurons
defines the NN’s depth and pattern recognition capacity of input data features.
The activation function introduces non-linearity in the NN, which is essential to
recognize complex patterns. The learning rate controls the optimization pace to
ensure efficient learning while the optimizer guides the learning through weight
updates. Finally, the epoch size indicates the number of iterations of the opti-
mization algorithm [18].

The HPO problem involves minimizing the root mean squared error (RMSE)
of NN prediction on the validation set with respect to x = (x1, x2, . . . , x6), where
each xi denotes a distinct tunable HP within its respective bounds. The HPO
process is executed during steps 4 and 5 of Algorithm 2 for all the NNs, which
is written as

x∗ = min
x∈χ

RMSE(x), (4)

where x∗ is the optimal HP configuration, χ is the HP domain, and RMSE is
the discrepancy between a model’s predictions f̂(x,xd) and actual observation
f(xd) for the number of validation data points nv, which is formulated as

RMSE =

√√√√√ nv∑
i=1

[f(x
(i)
d )− f̂(x,x

(i)
d )]2

nv
. (5)

The optimization process concludes upon meeting a predefined convergence cri-
terion, typically defined as either reaching a maximum number of HP sets or
attaining a target loss function value.
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Adaptive HP tuning within EGONN 7

This paper evaluates the impact of different HPO frequencies on NN per-
formance and computational efficiency. It contrasts static HPO with tuning the
HPs every five iterations and every iteration, focusing on the optimal balance
between their time efficiency and effectiveness in optimizing the function.

BO [15] offers a solution for continuous HPs with infinite choices. It adopts an
adaptive strategy, using observations from previous evaluations to decide subse-
quent sets of the HPs to evaluate. BO begins by constructing a smooth surrogate
model using a Gaussian process (GP), characterized by a mean function, which
offers the best prediction based on existing observations, and a kernel function,
which measures prediction uncertainty [17,12]. The radial basis function (RBF)
kernel [15], also known as the Gaussian kernel, is used in GP regressions, quan-
tifying similarities between data points. The RBF kernel includes HPs such as
the length scale and the variance, which are internally tuned in BoTorch [1].

The predictions and uncertainty estimates are combined to form an acquisi-
tion function. In this study, the EI in (2) is taken to be the acquisition function,
which is maximized to select the most promising HP configuration for the next
observation. After each observation, the surrogate model is updated, and this
iterative process continues until it converges with the optimal HP configuration.

MAB optimization [5], in contrast to BO, is particularly suited for discrete
HPs with a finite set of choices. In this work, MAB optimization utilizes the
Thompson sampling (TS) algorithm [4] for sequentially selecting discrete HP
sets. TS bases its choice on the probability of each HP set being the most ef-
fective, balancing between exploring lesser-known options and exploiting those
that have yielded promising results.

TS begins by assigning a prior distribution to each HP configuration’s reward
probability. For every iteration, it samples a reward value from the distribution
of each HP configuration, selecting the one with the highest sampled value. The
observed reward from the chosen configuration updates its distribution. This
iterative process continues until the HP configuration with the highest reward
probability distribution is identified, which is the optimal HP configuration [4].

3 Numerical Experiments

This section presents the results from employing HPO strategies for SBO with
sequential sampling, applied to a three-dimensional Hartmann function. The
investigation explores the impact of varying the number of HPs optimized in
each scenario.

3.1 Problem formulation of the Hartmann function

The three-dimensional Hartmann function minimization problem [13], which has
four local minima and one global minimum, is defined as:

min
xd

f(xd) = −
4∑

i=1

αi exp

−
3∑

j=1

Aij(xdj − Pij)
2

 , (6)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_6

https://dx.doi.org/10.1007/978-3-031-63775-9_6
https://dx.doi.org/10.1007/978-3-031-63775-9_6


8 Jeong et al.

where α = [1.0, 1.2, 3.0, 3.2]T ,

A =


3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

,
and

P = 10−4


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

.
The lower and upper bounds are xdL

= (0, 0, 0) and xdU
= (1, 1, 1), respectively,

with the global minimum f(x∗
d) of -3.86 located at x∗

d = (0.11, 0.56, 0.85).

3.2 Strategies and algorithm setup

HPO strategies within the EGONN framework include static HPO (HPO-static),
tuning HPs every five iterations (HPO-5itr), and tuning every iteration (HPO-
1itr). The HPs are tuned using the open-source tool Ax [1] built on PyTorch [6],
which integrates BO and MAB optimization. Ax constructs a combined search
space for the continuous and discrete HPs where each type of HP is optimized
by its respective algorithm simultaneously.

The minimization problem (6) is tackled using the SBO methodology de-
picted in Fig. 1 and EGONN algorithm (cf. Alg. 2). The initial sample size is 10
with 45 infill points. Deterministic Halton sequence sampling [2] ensures consis-
tency in the starting points across all methods. This study evaluates the efficacy
of various HPO strategies by comparing their convergence performance and time
efficiency against the traditional EGO method (cf. Alg. 1) as a benchmark. Ini-
tially, a full set of the HPs, as detailed in Table 1, is optimized, followed by the
optimization of a subset of the HPs based on preliminary results.

Fig. 2: Optimization of the three-dimensional Hartmann function utilizing EGO and
EGONN with various HPO strategies that tune a full set of HPs.
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3.3 Optimizing the full set of HPs

The minimization of the three-dimensional Hartmann function is explored through
EGONN, employing NNs optimized with a set of six tunable HPs, and EGO.
Figure 2 illustrates varied convergence rates towards the minimum with increas-
ing sample numbers. While all methods gradually approach the minimum, they
require different numbers of samples for accurate approximation. The results in-
dicate that while EGO outperforms EGONN, the two adaptive HPO strategies
show comparable performance. EGO achieves convergence in 12 infills, whereas
EGONN with HPO-5itr and HPO-1itr take 26 and 28 infills, respectively. HPO-
static shows no significant improvement after 22 infills.

Figure 3 presents the history of six HPs across various HPO strategies. While
the HPO-static approach uses a fixed HP configuration, including the ReLU ac-

Fig. 3: Convergence analysis of 6 HPs across iterations of different HPO strategies
within the EGONN algorithm for optimizing a three-dimensional Hartmann function.
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Table 2: Percentage of each HP calculated for each method using a full set of HPs.

Hyperparameter
Methods

HPO-1itr HPO-5itr HPO-static
A
ct
iv
at
io
n relu 20.0% 37.5% 100%

elu 44.4% 25.0% 0.0%
tanh 28.9% 25.0% 0.0%

sigmoid 6.7% 12.5% 0.0%

O
p
ti
m
iz
er SGD 15.6% 0.0% 0.0%

Adam 48.9% 44.4% 0.0%
RMSprop 11.1% 22.2% 0.0%
Adagrad 24.4% 33.3% 100%

L
ay
er

1 8.9% 0.0% 0.0%
2 20.0% 11.1% 100%
3 46.7% 33.3% 0.0%
4 24.4% 55.6% 0.0%

N
eu
ro
n 4 ∼ 8 37.8% 0.0% 0.0%

8 ∼ 12 31.1% 11.1% 0.0%
12 ∼ 16 31.1% 88.9% 100%

E
p
o
ch

1 ∼ 2 (103) 13.3% 11.1% 100%
2 ∼ 3 (103) 26.7% 55.6% 0.0%
3 ∼ 4 (103) 37.8% 22.2% 0.0%
4 ∼ 5 (103) 22.2% 11.1% 0.0%

L
R

10−3 ∼ 10−4 11.1% 0.0% 100%
10−2 ∼ 10−3 26.7% 33.3% 0.0%
10−1 ∼ 10−2 60.0% 66.7% 0.0%

tivation function, Adagrad optimizer, two hidden layers, 15 neurons, a learning
rate of 0.0007, and 1805 epochs for NNy, adaptive HPO strategies show en-
hanced flexibility and effectiveness by adjusting HPs to fit better the evolving
data set size. The trends, however, indicate that the HP convergence is not di-
rectly correlated with increased sample size. This is attributed to the nonlinear
and multimodal relationship between HPs and optimization performance, indi-
cating multiple HP configurations can yield a similar optimized NN performance.
This suggests continuous HP tuning with each added infill point may be unnec-
essary, yet adaptive HPO is critical for identifying the most effective HPs for
NNs across different data set sizes.

Table 2 outlines the percentage distribution of HP selections, with bolded
most frequently chosen HPs. The data reveals that the choice of activation func-
tions is nearly uniformly distributed for both the adaptive HPO strategies, in-
dicating no clear preference. However, a noticeable trend is the selection of a
higher number of layers, suggesting a move towards more complex NN archi-
tectures as sample sizes increase. Additionally, the Adam optimizer, alongside
higher learning rates and epoch sizes, is consistently preferred in the adaptive
HPO strategies, indicating the critical HPs for achieving convergence. The pref-
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Table 3: Time cost for iterations of HPO of a full set of HPs and surrogate training
in the three-dimensional Hartmann function optimization.

Time cost (hr)
Methods

HPO-1itr HPO-5itr HPO-static EGO

H
P
O

Mean 0.21 0.19 - -
SD 0.09 0.08 - -

Total time 9.40 1.75 0.09 -

T
ra
in
in
g Mean 8.9·10−3 9.1·10−3 6.9·10−3 1.6·10−4

SD 3.1·10−3 3.6·10−3 1.7·10−3 1.1·10−5

Total time 0.36 0.35 0.32 7.5·10−3

Cumulative time 9.76 2.10 0.41 7.5·10−3

erence for HPs in the adaptive HPO strategies explains the limitations of the
static HPO approach. As sample sizes increase, the necessity for complex HP
configurations grows, emphasizing the effectiveness of adaptive HPO strategies.

A comprehensive analysis of the time costs throughout all 45 iterations is
presented in Table 3. It specifies each method’s mean and standard deviation
(SD) of HPO and surrogate training per iteration along with the total time cost,
demonstrating significant variations in time cost. This variability is mainly at-
tributed to the growing training data sets as iterations progress. Despite these
variations in HPO time costs, the time required to train NNs shows minimal
differences across strategies. The finding reveals that the time cost of HPO-1itr
is 465% of HPO-5itr’s time cost, primarily due to the frequency of HPO. Conse-
quently, HPO-5itr stands out as the most efficient EGONN approach, balancing
the convergence speed and the overall computational time.

3.4 Optimizing a subset of the HPs

Analyzing the optimization convergence history in Fig. 2 and the HP distribu-
tion in Table 2 suggests that a strategic HP selection could enhance the efficiency

Fig. 4: Optimization of the three-dimensional Hartmann function utilizing EGO and
EGONN with HPO-static, HPO-5itr, and HPO-1itr strategies for a subset of HPs.
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of HPO. The activation function, number of epochs, and learning rate are iden-
tified as critical HPs for tuning. Although the optimizer choice also influences
performance, the consistent selection of the Adam optimizer from the previous
evaluation reflects its effectiveness for this test case. The preference for a high
learning rate necessitates further optimization because it is a continuous parame-
ter offering a broad spectrum of possibilities. Based on the superior performance
of HPO-5itr in the previous evaluation, the mean values for the number of neu-
rons and layers are adopted, which are 13 and 3, respectively. The options for
the activation function and the ranges of the epoch size and the learning rate
are maintained as detailed in Table 1.

Figure 4 displays the convergence performance of each HPO strategy on
the subset of the HPs. Despite a similar trend to the previous test, noticeable
improvements are observed in the HPO-static and HPO-1itr strategies. HPO-
1itr achieves early convergence at 13 iterations, while HPO-static approaches
closer to the minimum from -3.67 to -3.79. In contrast, HPO-5itr shows limited
improvement, converging at 25 iterations.

The convergence history and HP distribution, as shown in Fig. 5 and Table
4, indicate the differences in HP selection across the strategies. The improved
performance of the HPO-static is attributed to its initial choice of a high learn-
ing rate. However, the HPO-static strategy chose a relatively low epoch size,
contrasting with the higher epoch sizes preferred by adaptive HPO strategies.

Fig. 5: Convergence analysis of 3 HPs with various HPO strategies in EGONN for the
three-dimensional Hartmann function optimization.
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Table 4: Percentage distribution of each HP for the test using a subset of the HPs.

Hyperparameter
Methods

HPO-1itr HPO-5itr HPO-static
A
ct
iv
at
io
n relu 15.6% 22.2 0.0%

elu 35.6% 22.2% 0.0%
tanh 24.4% 22.2% 100%

sigmoid 24.4% 33.3% 0.0%

E
p
o
ch

1 ∼ 2 (103) 17.8% 22.2% 100%
2 ∼ 3 (103) 17.8% 22.22% 0.0%
3 ∼ 4 (103) 33.3% 11.1% 0.0%
4 ∼ 5 (103) 31.1% 44.4% 0.0%

L
R

10−3 ∼ 10−4 13.3% 22.2% 0.0%
10−2 ∼ 10−3 28.9% 22.2% 0.0%
10−1 ∼ 10−2 55.6% 55.6% 100%

Despite a similar HP distribution to the previous test for HPO-1itr, retaining
the optimizer and the number of neurons and layers enhanced convergence per-
formance. Additionally, the adaptation of activation functions to sigmoid for
HPO-5itr and tanh for HPO-static indicates strategic adjustments to improve
optimization outcomes.

The analysis reveals a significant decrease in time costs, primarily attributed
to the decreased time required for tuning fewer HPs, as detailed in Table 5.
EGONN with the strategy of HPO-1itr requires 3.79 hours, HPO-5itr 1.01 hours,
and HPO-static 0.40 hours to for optimization. It demonstrates substantial time
savings in HPO compared to the previous case outlined in Table 3. Specifically,
HPO-1itr saves 5.97 hours for 45 HPOs, HPO-5itr saves 1.04 hours for 9 HPOs,
and HPO-static saves 0.04 hours for a single HPO. This comparison indicates
that reducing the number of HPOs directly correlates with increased time effi-
ciency. It notably reduces the gap between HPO-1itr and HPO-5itr from 7.66
hours to 2.75 hours, stressing the importance of the streamlined HPO processes.

Table 5: Time cost of HPO and surrogate training in optimizing the three-dimensional
Hartmann function with a selected subset of the HPs.

Time cost (s)
Methods

HPO-1itr HPO-5itr HPO-static EGO

H
P
O

Mean 0.08 0.08 - -
SD 0.02 0.01 - -

Total time 3.43 0.71 0.05 -

T
ra
in
in
g Mean 8.7·10−3 8.6·10−3 6.7·10−3 1.6·10−4

SD 2.9·10−3 3.2·10−3 1.6·10−3 1.1·10−5

Total time 0.33 0.30 0.36 7.5·10−3

Cumulative time 3.79 1.01 0.41 7.5·10−3
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4 Conclusion

This paper proposes the use of adaptive hyperparameter optimization (HPO)
strategies within the efficient global optimization (EGO) with neural network
(NN)-based prediction and uncertainty (EGONN). Numerical experiments with
the three-dimensional Hartmann function revealed that while traditional EGO
is effective, integrating NNs through EGONN with HPO strategies enhances
performance for optimization problems.

Moreover, this study demonstrates the importance of appropriate HPO in
the success of SBO for their adaptive tuning as the complexity of the data set
increases. It shows that a static HPO strategy could not adapt to the sequential
sampling process, leading to sub-optimal performance. In contrast, the adaptive
HPO strategies demonstrated their ability to converge with fewer iterations by
effectively reaching the optimum. Tuning HPs every five iterations emerged as
the most efficient approach, balancing optimization performance and computa-
tional burden. Additionally, the optimization of a subset of the HPs reveals that
the most effective adaptive HPO strategies can vary as the number of tunable
HPs changes.

Future research directions include establishing a predefined tolerance thresh-
old based on numerical metrics, such as the loss function values, and identifying
a subset of the HPs for iterative tuning guided by global sensitivity analysis.
Such investigation could yield more reliable NN performance throughout the
SBO iterations while saving computational resources. Moreover, expanding the
scope of test cases to more complex and higher-dimensional problems, such as
airfoil shape optimization in transonic viscous flow, will provide further insights
into the efficiency of EGONN with adaptive HPO versus EGO.
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