
Efficient Search Algorithms for the Restricted
Longest Common Subsequence Problem

Marko Djukanović1[0000−0003−1358−3789], Aleksandar
Kartelj2[0000−0001−9839−6039], Tome Eftimov3[0000−0001−7330−1902], Jaume
Reixach4[0009−0002−0305−9270], and Christian Blum4[0000−0002−1736−3559]

1 Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja
Luka, Bosnia and Herzegovina

marko.djukanovic@pmf.unibl.org
2 Faculty of Mathematics, University of Belgrade, Belgrade, Serbia

aleksandar.kartelj@matf.bg.ac.rs
3 Computer Systems, Jožef Stefan Institute, Ljubljana, Slovenia

tome.eftimov@ijs.si
4 Artificial Intelligence Research Institute (IIIA-CSIC),

Campus of the UAB, Bellaterra, Spain
{jaume.reixach,christian.blum}@iiia.csic.es

Abstract. This paper deals with the restricted longest common subse-
quence (RLCS) problem, an extension of the well-studied longest com-
mon subsequence problem involving two sets of strings: the input strings
and the restricted strings. This problem has applications in bioinfor-
matics, particularly in identifying similarities and discovering mutual
patterns and motifs among DNA, RNA, and protein molecules. We in-
troduce a general search framework to tackle the RLCS problem. Based
on this, we present an exact best-first search algorithm and a meta-
heuristic Beam Search algorithm. To evaluate the effectiveness of these
algorithms, we compare them with two exact algorithms and two ap-
proximate algorithms from the literature along with a greedy approach.
Our experimental results show the superior performance of our proposed
approaches. In particular, our exact approach outperforms the other ex-
act methods in terms of significantly shorter computation times, often
reaching an order of magnitude compared to the second-best approach.
Moreover, it successfully solves all problem instances, which was not the
case with the other approaches. In addition, Beam Search provides close-
to-optimal solutions with remarkably short computation times.

Keywords: Longest Common Subsequence Problem · Beam search · A∗

search · Restricted Patterns.

1 Introduction

A string is a finite sequence of characters from a finite alphabet Σ. Strings
are often used as a data structure, for example, in programming languages.
Moreover, they play an important role as a model for DNA, RNA, and protein

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

2 M. Djukanović et al.

sequences. In the fields of stringology and bioinformatics, a pivotal task is to
find meaningful and representative measures of structural similarity between
molecular structures. Among several measures, one that has gathered significant
attention from both practical and theoretical perspectives is the well-known
longest common subsequence (LCS). In this context, a subsequence of a string s
is a string obtained by deleting zero or more symbols from s without changing
the order of the remaining symbols. Finding longest common subsequences has
been a subject of study for over half a century. Given a set of input strings
S = {s1, . . . , sm}, the LCS problem aims to identify a common subsequence
concerning all strings in S of maximal length [4]. Apart from bioinformatics
applications, this problem has shown to be useful in various fields, such as data
compression and text processing [21].

From the very beginning, scientists have been concerned with the develop-
ment of efficient algorithms for the LCS problem, especially for the case m = 2.
Notable examples include algorithms based on the dynamic programming (DP)
paradigm, such as the Hirschenberg algorithm, the Hunt-Szymanski algorithm,
and the Apostolico-Crochemore algorithm; see [16, 3]. If m is a fixed value, the
LCS problem becomes polynomially solvable by DP, with a time complexity of
O(nm), where n is the length of the longest string in S. For arbitrarily large sets
S, however, the problem is known to be NP-hard [18]. Moreover, it was found
that a time complexity of O(nm) is likely the tightest unless P = NP. Conse-
quently, the existence of an efficient algorithm for the general LCS problem sce-
nario seems unlikely. As a result, various heuristic and approximation algorithms
have been proposed. In particular, beam-search-based approaches [11] and hy-
brid anytime algorithms [12] have proven to be very efficient. In parallel with the
development of methods for solving the LCS problem, several practical variants
of this problem have been introduced. These include the longest arc-preserving
common subsequence problem [17, 5], the constrained LCS problem [22, 10], and
the shortest common supersequence problem [19], among others.

In this study, we deal with the restricted longest common subsequence (RLCS)
problem, originally introduced by Gotthilf et al. [14]. In addition to considering
an arbitrary set of input strings S, the problem involves a set of restricted
pattern strings R = {r1, . . . , rk}. The objective is to find a longest common
subsequence s such that none of the restricted patterns ri ∈ R is contained as
a subsequence of s. In their work, the authors show that the RLCS problem
is NP-hard even in the case of two input strings and an arbitrary number of
restricted patterns. Moreover, they develop a DP approach for general values
of m and k. In this scenario, they find that RLCS is in FPT (Fixed-Parameter
Tractable) when parameterized by the total length of the restricted patterns. In
addition, the authors propose two approximation algorithms. The first ensures
an approximation ratio of 1/|Σ| , while the second one guarantees a ratio of
(kmin − 1)/nmin , where kmin and nmin represent the lengths of the shortest
strings in R and S, respectively.

Independently of Gotthilf et al. [14], Chen and Chao [8] proposed a DP ap-
proach specifically for the RLCS problem withm = 2 and k = 1, achieving a time

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

Efficient Search Algorithms for the RLCS Problem 3

complexity of O(|s1| · |s2| · |r1|). For the same special case of the RLCS problem,
Deorowicz and Grabowski [9] introduced two asymptotically faster algorithms
than the conventional dynamic approach, with subcubic time complexities of

O(|s1| · |s2| · |r1|/ log(|s1|)) and O(|s1| · |s2| · |r1|/ log
3
2 (|s1|)) by utilizing well-

designed internal data structures. Farhana and Rahman [13] proposed a finite
automata-based approach to solve the general RLCS problem with a time com-
plexity of O(|Σ|(R+m)+nm+ |Σ|Rnk), where R = O(nm) denotes the size of
the resulting automaton. The experimental results presented in that paper em-
phasize the superiority of the automata approach over the classical DP approach.
The contributions of this paper are as follows:

1. An error-free DP approach. We present a DP approach to the RLCS problem
that handles an arbitrary number of input strings and restricted pattern
strings. In particular, our approach avoids significant flaws identified in the
DP approach from [14].

2. General search framework. We design a general search framework for solving
the RLCS problem, which serves as the core of an exact A∗ algorithm and
a Beam Search approach. The search process in these methods is guided
by utilizing the tightest known upper bounds for the classical LCS problem
with arbitrary input strings.

3. In-depth comparative analysis. We perform a thorough comparison of all
seven approaches (three proposed in this paper and four from the literature)
for the RLCS problem, using a comprehensive set of available instances for
evaluation.

Our A∗ search shows a clear superiority over the other two exact approaches from
the literature. It excels in terms of the number of optimally solved instances,
while it provides significantly shorter runtimes, often by an order of magnitude,
compared to the best exact approaches from the literature.

1.1 Preliminaries

The length of a string s is denoted by |s|, whereas s[i], 1 ≤ i ≤ |s|, stands for
its i-th character. It should be noted that—in this paper—the position of the
leading character is indexed with 1. For two integers i, j ≤ |s|, s[i, j] denotes
a continuous part of the string s that begins with the character at position i
and ends with the character at position j. If i = j, the single-character string
s[i] = s[i, i] is given, or if i > j, the empty string ε is assigned.

For a left position vector pL = (pL1 , . . . , p
L
m), 1 ≤ pLi ≤ |si|, i = 1, . . . ,m,

we denote by S[pL] the set of suffix input strings associated with the respective
coordinates of this vector, i.e., S[pL] := {si[pLi , |si|] | i = 1, . . . ,m}. Finally, we
define pL−1 := (pLi −1, . . . , pLm−1) or, more generally, for two vectors p,q ∈ Nm,
p− q := (p1 − q1, . . . , pm − qm).

A complete RLCS problem instance is denoted as a pair (S,R) of two sets of
strings, where S contains the input strings and R the restricted pattern strings.
For two integer vectors p ∈ Nm and q ∈ Nk, a sub-problem (sub-instance) of

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

4 M. Djukanović et al.

the initial problem instance with respect to these two (left) positional vectors is
denoted by (S[p], R[q]).

The remaining sections of the work are organized as follows. Section 2 presents
a DP approach for solving the RLCS problem. In particular, this section ad-
dresses and corrects the shortcomings of DP proposed in [14]. Section 3 presents
a simple and naive greedy algorithm as an alternative method for solving the
RLCS problem. Section 4 builds on the DP approach and derives a general search
framework. In particular, we propose efficient A∗ and Beam Search algorithms.
The practical comparison between our approaches and those in the literature is
detailed in Section 5 through a thorough experimental evaluation. The paper
concludes in Section 6, with possible directions for future research.

2 The DP approach for the RLCS problem

When considering DP, it is crucial to determine whether the problem under study
has the optimal substructure property. The question is if the problem can be bro-
ken down into smaller parts, such that solving these smaller subproblems leads
to an optimal solution to the overall problem. Based on this concept and using
the well-known DP algorithm for the LCS problem with an arbitrary number of
input strings, we derive the DP approach for the RLCS problem as follows. Let
(S,R) be a RLCS problem instance, p ∈ Nm and l ∈ Nk with 1 ≤ pi ≤ |si| for
i ∈ {1, . . . ,m} and 1 ≤ lj ≤ |rj | for j ∈ {1, . . . , k}. We denote by RLCS[p; l], the
length of a longest common subsequence of S[p] = {s1[1, pi], . . . , sm[1, pm]} with
no string from Rl = {r1[1, l1], . . . , sk[1, lk]} as a subsequence. We distinguish the
following non-trivial cases:

Case 1: si[pi] = σ ∈ Σ for every i ∈ {1, . . . ,m}. Let us denote J := {j ∈
{1, . . . , k} | rj [lj] = σ}. In the event that letter σ does not contribute to
the optimal solution of this subproblem, the relevant smaller subprob-
lem is (Sp−1, Rl) or (Sp−1, Rl∗) if it does contribute, where l∗j = lj − 1
for j ∈ J and l∗j = lj otherwise. There are two sub-cases for this case:

(a) RLCS[p; l] = RLCS[p − 1; l] if there is an index j ∈ J such that
lj = 1;

(b) RLCS[p; l] = max{RLCS[p− 1; l],RLCS[p− 1; l∗] + 1}, otherwise.
Case 2: si1 [pi1] ̸= si2 [pi2] for some i1, i2 ∈ {1, . . . ,m}. The same is done as in

the recursion for the LCS problem. That is, the recursion is given by

RLCS[p; l] = max{RLCS[p− ei; l] | i = 1, . . . ,m}.

In [14], the authors did not provide a correct derivation for Case 1 (see Section
4 of the aforementioned paper). In particular, they failed to include the +1 term
(“plus one”) for the Case 1b and did not distinguish between the Cases 1a and
1b. This omission led to incorrect calculations in the experimental evaluations
of subsequent papers from the literature, e.g. [13].

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

Efficient Search Algorithms for the RLCS Problem 5

3 Greedy Algorithm

The greedy algorithm for the RLCS problem uses a constructive approach that
employs the best-next heuristic. It is an extension of the greedy approach used
for the LCS problem [6]. At each step, it consists of appending the feasible letter
with the best greedy value to the current partial solution. The algorithm starts
with an empty solution sp = ε and processes the input strings from the far left
(pointing to the characters at position 1 for strings from both sets, S and R)
towards their right endpoints. The pointers for this process are denoted as p
and l for each set, respectively. Next, the set Σcand of those letters that occur
in all suffix strings si[pi, |si|] is considered. From this set, the algorithm retains
only those letters which, when appended to sp, do not cause a violation of the
restriction that the whole ri becomes a subsequence of the extended sp. We
denote the filtered set with Σfeas. The algorithm selects a letter a ∈ Σfeas with
the smallest value calculated by:

g(p, l, a) =

m∑
i=1

Succ[pi]i,a − pi
|si| − pi + 1

+

k∑
j=1

|Σ|
|rj | − lj − Iri[li]=a + 1

(1)

where Succ[pi]i,a denotes the smallest position in si greater or equal to pi,
at which letter a appears (in this way we eliminate suboptimality at the local
level of decisions) and I represents the indicator function. Let us denote the
best letter according to these g-values by a∗. Then, the following updates are
performed: sp = sp · a∗, pi = Succ[pi]i,a∗ + 1 and lj = lj + Irj [lj]=a∗ for every
i ∈ {1, . . . ,m} and j ∈ {1, . . . , k} respectively. The following iterations proceed
in the same way until Σfeas = ∅. Finally, the constructed solution is returned.

Note that, at each iteration, the greedy criterion (1) favors the feasible letters
whose selection excludes smaller parts of the input strings from being considered,
and who make the partial solution less close to having one of the restricted strings
as a subsequence.

4 The Proposed Efficient Search Methods

In this section, we first describe a general search framework for the RLCS prob-
lem based on the definition of a state graph. Afterwards, we derive an exact and
a heuristic search algorithm, both based on this framework.

4.1 The General Search Framework

The state graph is the environment of our proposed algorithms. Its inner nodes
represent partial solutions while its sink nodes represent complete solutions.
Moreover, edges between nodes represent extensions of partial solutions. The
state graph G = (V,E) of an RLCS problem instance (S,R) is defined as follows.

We say that a partial solution—that is, a common subsequence sv of the
strings in S that does not contain any string from R as as subsequence—induces
a node v = (pL,v, lv, uv) ∈ V if:

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

6 M. Djukanović et al.

– |sv| = uv

– sv is a subsequence of all si[1, p
L,v
i − 1], i ∈ {1, . . . ,m} and pL,v

i − 1 is the
smallest index that satisfies this property.

– sv contains none of the prefix strings rj [1, l
v
j] as its subsequence whereas

rj [1, l
v
j − 1], j ∈ {1, . . . , k} are all included.

Additionally, there is an edge between nodes v1 = (pL,v1 , lv1 , uv1) and v2 =
(pL,v2 , lv2 , uv2) labelled with a letter a ∈ Σ, denoted by t(v1, v2) = a, if:

– uv1 + 1 = uv2

– The partial solution inducing node v2 is obtained by appending the letter a
to the partial solution inducing node v1.

Each edge of the state graph of an RLCS problem instance has weight one
and (as mentioned above) a label denoting the letter used for the extension.

To extend a node v and determine its successor nodes (children), it is nec-
essary to identify the letters that can feasibly extend the partial solution sv

represented by v. First, all letters occurring in each string from the set S[pL,v]
are identified. Then, the letters that cause a violation of the restrictions are
removed, i.e., letters that cause one of the restricted patterns ri ∈ R to be a
subsequence of the partial solution obtained by extending sv with this letter.
In addition, dominated letters are also omitted. A letter a is said to dominate
the letter b (i.e., b is dominated by a) if Succ[pL,vi]i,a ≤ Succ[pL,vi]i,b for every
i ∈ {1, . . . ,m} and rj [l

v
j] /∈ {a, b} for all j ∈ {1, . . . , k}. We denote the set of

non-dominated feasible letters to extend the partial solution of a node v by Σnd
v .

For a letter a ∈ Σnd
v , the corresponding successor node w = (pL,w, lw, uw) of

v is constructed as follows.

– uw = uv + 1, i.e., the partial solution of node v derives the partial solution
of node w by appending the letter a to it: sw = sv · a.

– lwj = lvj + 1 if rj [l
v] = a or lwj = lvj otherwise.

– For the (left) position vectors, pL,w
i = Succ[pL,v

i]i,a + 1.

Notably, the aforementioned data structure Succ can be preprocessed before
the construction of an RLCS state graph is started. In this way, finding suitable
position vectors of a child node is addressed in time O(m).

The root (initial) node r = ((1, . . . , 1), (1, . . . , 1), 0) corresponds to the empty
solution sr = ε, which is trivially feasible and induces the complete problem
instance (S,R).

We say that a node v is complete if Σnd
v = ∅. These are the nodes that have no

child nodes (successors). Note that (partial) solutions induced by complete nodes
are candidates for optimal solutions. In this context, note that optimal solutions
are end-points of the longest paths from the root node r to complete nodes. Since
the RLCS problem is NP-hard, generating the entire state graph is generally
infeasible as its size grows exponentially with the instance size. Consequently,
our algorithm proposals generate and visit nodes on the fly, making intelligent

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

Efficient Search Algorithms for the RLCS Problem 7

((1,1),(1,1),0)

((2,3),(1,2),1)((4,6),(1,1),1)

((6,7),(2,1),2)

((3,2), (2,1), 1)

((3,4),(2,2), 2)((7,8),(1,2),2)

((6,5), (2, 2),3)((7,8),(3,2),3)

((7,8),(3,2),4)

((4,6),(2,1),2) ((6,4),(2,1),2)((7,3),(3,2),2)

((6,7),(2,1),3)

ba

cb
b

b

b

bb

c

c

c

b

a cb

c

Fig. 1. Example of the full state graph in the form of a directed acyclic graph for the
problem instance (S = {s1 = bcaacbb, s2 = cbccacb}, R = {cbb, ba}). It contains
four complete nodes (light grey background). The two paths from ((7, 8), (3, 2), 4) to
the root node (in blue) are the longest paths in the graph. Hence, they represent two
optimal solutions for this problem instance, bccb and cacb respectively.

decisions to prioritize the exploration of more promising nodes, as explained
in the following sections. This section concludes by showing the complete state
graph of an instance in Figure 1.

4.2 A∗ Search Algorithm

A∗ search [15] is an exact, informed search algorithm that follows the best-
first search strategy for path-finding. It is the most widely used path-finding
algorithm, being of high relevance in many fields e.g., in video games, in string
matching and parsing, and others. The idea of the algorithm is to always expand
the most promising nodes first. To rank the quality of nodes, a scoring function
f(v) = g(v) + h(v) is used. If the goal is to find longest paths, as in our case,
functions g() and h() are defined as follows:

– g(v) is the length of the longest path currently known from the root r to v.
– h(v) is a heuristic function for estimating the length of the longest path from

v to a complete (goal) node.

Note that A∗ works on a dynamically generated directed acyclic graph and
in practice rarely examines all nodes. It has the advantageous ability to merge
multiple nodes into one, which, as explained below, leads to considerable memory
savings. To set up an efficient A∗ search for the RLCS problem, two important
data structures are used:

– A hash map N with keys of the form (pL,v, lv), where the corresponding
value is the longest partial solution that induces a node with these vectors,

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

8 M. Djukanović et al.

indicating the sub-instance (S[pL,v], R[lv]) to be solved. This data structure
efficiently checks whether or not a node with the same key values has already
been visited.

– A priority queue Q that contains open (not yet expanded) nodes that are
prioritized based on their f -values. This structure facilitates the efficient
retrieval of the most promising node.

Next, the heuristic function h() must be defined. For this purpose, we opt for
using the tightest known upper bound for the LCS problem. Note that any upper
bound for an LCS problem instance is also an upper bound for a corresponding
RLCS problem instance obtained by adding a set R of restricted strings. The
upper bound we used is the minimum of two known upper bounds, denoted as
UB1 and UB2, that is, UB = min{UB1,UB2}. For detailed information, we refer
to [6] and [23]. The upper bound UB1 determines for every letter an upper bound
on the number of times this letter is potentially included in an optimal solution
and then returns the sum of these values. On the other hand, UB2 repeatedly
applies dynamic programming to the LCS problem of two input strings for con-
structing the upper bound. It is important to note that there may be multiple
nodes with the same f -value. In such cases, ties are resolved by favoring those
with a higher uv value.

The algorithm starts by initializing the root node r, which is then added to
both N and Q. At the same time, the best solution sbest is initialized to the
empty string ε. In each iteration, the most promising node v from the beginning
of the priority queue Q is selected. If f(v) is less than or equal to |sbest|, the
search is terminated and the proven optimal solution sbest is returned. If the
node v is complete, it is checked whether uv is greater than |sbest|. If this is the
case, sbest is chosen for inducing node v, which is reconstructed by traversing
from v back to the root node r and reading the letters along the transitions. The
algorithm then proceeds to the next iteration. If none of the above conditions
are met, the node v is expanded in all possible ways by creating its children. For
each child w, it is checked whether (pL,w, lw) is already contained in N . If not,
w is added to both N and Q. Otherwise, it is checked whether a new best path
from the root node r to any node associated with (pL,w, lw) has been found. In
the case of a positive answer, the information in N is updated and the priority
of this node is changed in Q. In the case of a negative answer, w is declared
irrelevant and thus skipped in the next iteration of the algorithm.

4.3 Beam Search Algorithm

Beam Search (BS) [1] is a heuristic search algorithm that works in a “breadth-
first-search” (BFS) manner, expanding nodes at each level, with a limitation on
the number of nodes to be expanded. More precisely, up to β > 0 of the most
promising nodes at each level are selected to generate the nodes of the next
level. Parameter β ensures that the size of the BS tree remains polynomial with
respect to the size of the problem instance, which makes this method applicable

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

Efficient Search Algorithms for the RLCS Problem 9

to various complex problems. BS is widely used in fields such as packing [1],
scheduling [20], and bioinformatics [7], among others.

In addition to parameter β > 0, the effectiveness of BS strongly depends
on a heuristic function h() used to evaluate the “quality” of each node. The
choice of h() is typically a problem-specific decision. For our purpose, we opt for
the tightest upper bound (UB) for the LCS problem already introduced in the
previous section. The BS approach for the RLCS problem works as follows. The
root node r is first generated and included in the beam B (i.e. B = {r}) and
lbest is initialized to 0. Then, the main loop is entered. All nodes in the beam B
are expanded in all possible ways. The resulting child nodes are stored in Vext,
while lbest is increased by one. The nodes from Vext are then sorted in descending
order according to their h()-values. B is emptied and the best β > 0 nodes are
then added to it for the subsequent level. These steps are repeated as long as
the beam B is not empty, in which case, the algorithm is stopped, and the best
RLCS solution sbest of length lbest is returned.

5 Experimental Evaluation

This section presents a comprehensive experimental evaluation comparing three
exact competitors: the A∗ search proposed in Section 4.2 and two existing ap-
proaches from the literature, namely, the automaton approach presented in [13]
(denoted as Automaton) and the corrected version of DP initially proposed
in [14], as provided in Section 2 (denoted as Dp). Besides the exact approaches,
we also compare four heuristic methods: the Beam Search (BS) proposed in Sec-
tion 4.3, the greedy approach from Section 3 (denoted as Greedy) and two
approximation algorithms (denoted as Approx1 and Approx2) from the liter-
ature, proposed in [14]. As mentioned above, the source code for the Automa-
ton approach in its original form was obtained directly from the authors of [13],
along with the provided problem instances. The remaining six approaches were
implemented in C++ under Ubuntu 20.0 and compiled with gcc 13.1.0 with op-
timization level Ofast. All experiments were conducted in single-threaded mode
on an Intel Xeon E5-2640 with 2.40GHz and 16 GB of memory.

The experimental evaluation employs three sets of benchmark instances de-
noted as Random, Real and Substr-Ec. In the benchmark set Random, in-
stances are divided into six groups based on the values of m and k, which denote
the amount of input and restricted strings respectively. Five groups comprise
10 instances each, while one group comprises a single instance, as provided by
the original authors. Thus, there are a total of 51 randomly generated problem
instances in this set.

For the benchmark set Real, we use four real-world instances presented
in [13]. Finally, to extend the scope of our experiments, we use randomly gener-
ated instances designed for a variant of the RLCS problem, namely the substring-
exclusion constrained LCS problem [2]. This set consists of two sets of 10 ran-
domly generated instances each, resulting in a total of 20 instances. We refer to

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

10 M. Djukanović et al.

this benchmark set as Substr-Ec.

Parameter setting. Only Beam search (BS) requires the setting of one of
its parameters, namely the beam width β > 0. After a preliminary experimen-
tal evaluation, we found that setting β = 100 leads to a favorable compromise
between the quality of the final solutions and the required computation times.

Description of the results. Table 1 shows the numerical results for the
three exact algorithms applied to the benchmark setRandom. Every row presents
the average results for one of the instance groups. The first four columns de-
scribe the properties of each group, specifying the number of input strings (m),
the number of pattern strings (k), the length of all input strings (|s0|) and the
length of all pattern strings (|r0|). Moreover, |s| denotes the average length of
the optimal solutions for every instance group.

For each algorithm and instance group, we present the amount (#opt) of
instances that were solved to optimality and the average runtime required for
obtaining these optimal solutions. Symbol “–” denotes that the respective al-
gorithm was not able to provide any optimal solution due to problems during
runtime, such as reaching time or memory limits.

The following conclusions can be drawn from Table 1.

1. A∗ search and Dp can find a provably optimal solution for all (51) problem
instances within the given time and memory constraints. For the Automa-
ton approach, this was possible for 32 problem instances, facing memory
limitations for the remaining ones.

2. In terms of runtime, the A∗ search emerges as the clear winner, as it shows
a significantly faster performance in comparison to Dp and Automaton,
often outperforming them by an order of magnitude. It achieves consistently
short average runtimes, all below one second.

3. The runtimes of Dp increase rapidly with increasing m, while it seems to
be difficult for the Automaton approach to handle instances with larger k
values (memory problems are notable for k ≥ 3).

Table 2 shows the averaged numerical results for the four heuristic approaches
applied to the benchmark set Random. The values are averages over the in-
stances within each group (rows). As in Table 1, the first four columns correspond
to the instance groups. The table is then divided into four blocks, each consisting
of two columns. These blocks correspond to the approaches Bs, Greedy, Ap-
prox1 and Approx2 respectively. Two values are provided for each algorithm:
the average quality of the best-found solutions (|s|) and the average runtime for
obtaining these best solutions (t[s]).

The following conclusions can be drawn from Table 2.

– The most effective heuristic approach, both in terms of solution quality and
time efficiency, is Bs. It outperforms the second-best approach, Greedy,
by a significant margin. With runtimes of around 0.1 seconds on average,
Bs achieves a high solution quality and remains within 7% of the optimal
results.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

Efficient Search Algorithms for the RLCS Problem 11

Table 1. Comparisons between the exact approaches on benchmark set Random. All
pattern strings in the instances of the same group are of an equal length |r0|. The same
also holds for the length of the input strings, which are of length |s0|.

m k |s0| |r0| |s| A∗ Dp Automaton

#opt t[s] #opt t[s] #opt t[s]

2 1 200 3 65.0 1 0.0 1 0.0 1 0.3
2 3 250 8 88.2 10 0.0 10 6.8 1 2.1
2 4 250 6 87.1 10 0.0 10 18.5 0 –
3 1 200 10 46.0 10 0.6 10 35.3 10 1.2
3 2 200 3 43.8 10 1.0 10 44.9 10 1.9
4 1 75 3 12.9 10 0.0 10 92.4 10 0.2

Table 2. Comparisons between the heuristic approaches on benchmark set Random.

m k |s0| |r0| |s| Bs Greedy Approx1 Approx2

|s| t[s] |s| t[s] |s| t[s] |s| t[s]

2 1 200 3 65.0 64.0 0.1 62.0 0.0 13.0 0.0 2.0 0.0
2 3 250 8 88.2 88.2 0.1 86.2 0.0 15.9 0.0 7.0 0.0
2 4 250 6 87.1 87.1 0.1 85.0 0.0 16.4 0.0 5.1 0.0
3 1 200 10 46.0 44.9 0.1 38.2 0.0 11.2 0.0 9.0 7.0
3 2 200 3 43.8 41.0 0.1 36.6 0.0 11.5 0.0 2.0 7.0
4 1 75 3 12.9 12.9 0.0 11.5 0.0 4.2 0.0 2.0 20.9

– In contrast, the two approximation algorithms Approx1 and Approx2 are
significantly behind the rest. In particular, the computation times of Ap-
prox2 grow rapidly with increasing values of m, which indicates that using
DP for the LCS problem is slow for larger instances.

Table 3 shows the numerical results for all seven approaches applied to four
real cases. This table is structured as follows. The first four columns show the
characteristics of the problem instances, including the number of input strings
(m), the number of restricted strings (k), the length pairs for the shortest and
longest input strings (n), and the length pairs for the shortest and longest
restricted pattern strings (p). The next seven blocks, each consisting of two
columns, show the results for the aforementioned approaches. In particular, the
two columns show the delivered solution quality (|s|) and the corresponding
runtime (t[s]).

The following conclusions can be drawn from the numerical results in Table 3.

– A∗ search and Automaton provide optimal solutions for all four instances.
A∗ outperforms Automaton by being approx. one order of magnitude
faster. Conversely, the Dp approach only achieved optimal solutions for two
instances and reached memory limits for the remaining two cases.

– Among the heuristic approaches, Bs stands out as the superior choice, pro-
viding optimal solutions for two out of four instances. It is closely followed

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

12 M. Djukanović et al.

Table 3. Comparison between all seven approaches for benchmark set Real.

m k n p A∗ Automaton Dp Approx1 Approx2 Bs Greedy

|s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s] |s| t[s]

4 2 (141, 146) (1, 2) 48 0.1 48 3.4 – – 15 0 – – 48 0.1 27 0
3 2 (255, 293) (1, 4) 74 0.4 74 8.7 74.0 69.7 29 0 0.0 26.9 72 0.1 57 0
5 4 (98, 123) (1, 4) 16 0.1 16 2.0 – – 9 0 – – 16 0.0 15 0
3 2 (124, 185) (4, 5) 37 0.1 37 0.5 37.0 19.3 10 0 3.0 2.8 32 0.0 30 0

by Greedy, which provides solutions of reasonable quality with exception-
ally short computation times. On the other hand, both approximation algo-
rithms, Approx1 and Approx2, provide impractical results. In particular,
Approx2 does not provide any results for instances with m ≥ 4.

Table 4 reports the numerical results for all seven approaches on the bench-
mark set Substr-Ec. This table is structured similarly to Table 2 with a small
difference in the instance description. In particular, in addition to m and k,
instances are also described by their index number (there are 10 (indexed) in-
stances in each of the two groups).

The following conclusions can be derived from Table 4.

– A∗ and Dp achieve optimal solutions for all 20 instances. However, A∗ shows
again a notable advantage in terms of computation times (a difference of two
orders of magnitude). The Automaton approach encounters difficulties in
terms of memory usage for the instances with k = 3, as already observed for
the Random benchmark set.

– Regarding the heuristic approaches, Bs proves to be an outstanding per-
former as it provides optimal solutions for all 20 problem instances with
remarkably short computation times (at most 0.1 seconds). Greedy is able
to derive optimal solutions for all (10) instances with k = 2. However, in
case of the instances with k = 3, the performance of Greedy deteriorates
as an optimal solution is only produced in 3 (out of 10) cases.

– In contrast, the other two algorithms provide extremely fast solutions, but
they deviate significantly from the known optimal solutions.

5.1 Statistical Analysis

To determine statistical differences between the results of the seven compet-
ing approaches, we conducted a pairwise statistical analysis using a one-sided
Wilcoxon rank-sum test, as shown in Figure 2. The null hypothesis, asserting
that the first algorithm yields superior (larger) results compared to the second
algorithm, was assessed at a significance level (α) of 0.05. For instance, at the
point of intersection of A∗ search (on the x-axis) and the Greedy approach (on
the y-axis), a p-value resulting from a one-sided Wilcoxon rank-sum test between
the outcomes of these two algorithms is provided (with a value of 1.0). This in-
dicates substantial evidence in favor of retaining the null hypothesis over the

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

Efficient Search Algorithms for the RLCS Problem 13

Table 4. Comparison between the approaches on benchmark set Substr-Ec. The
instances comprised in the group m = 2, k = 1 have both input strings of length 100
and pattern strings of length 40. The instances comprised in the group m = 2, k = 3
have both input strings of length 250 and all pattern strings of length 8.

m k ind. A∗ Automaton Dp Approx1 Approx2 Bs Greedy

s t[s] s t[s] s t[s] s t[s] s t[s] s t[s] s t[s]

2 1 0 47 0.0 47.0 0.2 47 0.1 7 0 39 0.0 47 0.1 47 0.0
1 42 0.0 42.0 0.2 42 0.1 6 0 39 0.0 42 0.0 42 0.0
2 44 0.0 44.0 0.2 44 0.1 6 0 39 0.0 44 0.1 44 0.0
3 44 0.0 44.0 0.2 44 0.1 8 0 39 0.0 44 0.0 44 0.0
4 46 0.0 46.0 0.2 46 0.1 7 0 39 0.0 46 0.0 46 0.0
5 47 0.0 47.0 0.2 47 0.1 7 0 39 0.0 47 0.1 47 0.0
6 45 0.0 45.0 0.2 45 0.1 7 0 39 0.0 45 0.0 45 0.0
7 48 0.0 48.0 0.2 48 0.1 7 0 39 0.0 48 0.1 48 0.0
8 43 0.0 43.0 0.2 43 0.1 8 0 39 0.0 43 0.0 43 0.0
9 45 0.0 45.0 0.2 45 0.1 7 0 39 0.0 45 0.1 45 0.0

2 3 0 90 0.0 - - 90 7.0 16 0 7 0.0 90 0.1 87 0.0
1 84 0.0 - - 84 8.1 14 0 7 0.0 84 0.1 83 0.0
2 87 0.0 - - 87 6.5 16 0 7 0.0 87 0.1 87 0.0
3 91 0.0 - - 91 5.6 16 0 7 0.0 91 0.1 90 0.0
4 89 0.0 - - 89 7.4 16 0 7 0.0 89 0.1 85 0.0
5 87 0.0 - - 87 7.5 15 0 7 0.0 87 0.1 83 0.0
6 88 0.0 - - 88 6.4 17 0 7 0.0 88 0.1 87 0.0
7 91 0.0 - - 91 9.5 17 0 7 0.0 91 0.1 91 0.0
8 89 0.0 - - 89 5.9 15 0 7 0.0 89 0.1 83 0.0
9 86 0.0 - - 86 7.0 17 0 7 0.0 86 0.1 86 0.0

alternative. Hence, we infer that the A∗ search results statistically outperform
those of the Greedy approach. The solution quality achieved by A∗ is superior
across all 75 instances compared to other competitors. In addition, remember
that the running times of A∗ are significantly shorter than those of Dp and
Automaton approaches.

6 Conclusions and future work

This work has dealt with the RLCS problem, an extension of the well-known
LCS problem. First, we corrected a previously proposed dynamic programming
approach for the RLCS problem. Then, a comprehensive search framework based
on the concept of a state graph was introduced. Using this framework, we de-
veloped both an exact A∗ search algorithm and a heuristic Beam Search. Our
results, validated on 75 problem instances from the literature, obtained from the
authors of [13], emphasize the effectiveness of the proposed methods. The exact
approach showed strong performance by being the only algorithm to provide
provably optimal solutions for all instances, with computation times being an
order of magnitude shorter than those of the best exact competitor from the
literature. In addition, the Beam Search showed promising results by providing
optimal solutions for many instances employing remarkably short computation
times.

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

14 M. Djukanović et al.

A*

Au
to
m
at
on DP

Ap
pr
ox
1

Ap
pr
ox
2 BS

Gr
ee
dy

A*

Automaton

DP

Approx1

Approx2

BS

Greedy

1.00

0.91 0.00

1.00 1.00 1.00

1.00 1.00 1.00 1.00

1.00 0.00 0.99 0.00 0.00

1.00 0.00 1.00 0.00 0.00 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Post-hoc pairwise statistical comparison between the seven competing ap-
proaches on all problem instances using the (one-sided) Wilcoxon rank-sum test.

For future research, it would be interesting to explore the limits of our proposed
exact approach by testing it on much larger instances. Moreover, the known scal-
ability and robustness of Beam Search present considerable potential and also
deserve further investigation. Improving the heuristic guidance for Beam Search
is another research direction; possible ideas include developing a probabilistic
search model or incorporating machine learning techniques.

Acknowledgments. The research of M. Djukanović is partially supported by the Ministry for Sci-
entific and Technological Development and Higher Education of the Republic of Srpska, B&H in
the course of the bilateral research project between B&H and Slovenia entitled “Theoretical and
computational aspects of some graph problems with the application to graph network information
spreading” and the COST Action ROAR-NET under no. CA22137. A. Kartelj was supported by
grant 451-03-47/2023-01/200104 funded by the Ministry of Science Technological Development and
Innovations of the Republic of Serbia. J. Reixach and C. Blum are supported by grants TED2021-
129319B-I00 and PID2022-136787NB-I00 funded by MCIN/AEI/10.13039/501100011033. The au-
thors would like to thank the Compute Cluster Unit of the Institute of Logic and Computation at
the Vienna University of Technology for providing computing resources for this research project.

References

1. Akeb, H., Hifi, M., M’Hallah, R.: A beam search algorithm for the circular packing
problem. Computers & Operations Research 36(5), 1513–1528 (2009)

2. Ann, H.Y., Yang, C.B., Tseng, C.T.: Efficient polynomial-time algorithms for the
constrained lcs problem with strings exclusion. Journal of Combinatorial Optimiza-
tion 28(4), 800–813 (2014)

3. Apostolico, A., Guerra, C.: The longest common subsequence problem revisited.
Algorithmica 2, 315–336 (1987)

4. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: Proceedings Seventh International Symposium on String Processing
and Information Retrieval. SPIRE 2000. pp. 39–48. IEEE (2000)

5. Blum, C., Blesa, M.J.: A hybrid evolutionary algorithm based on solution merg-
ing for the longest arc-preserving common subsequence problem. In: 2017 IEEE
Congress on Evolutionary Computation (CEC). pp. 129–136. IEEE (2017)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

Efficient Search Algorithms for the RLCS Problem 15

6. Blum, C., Blesa, M.J., Lopez-Ibanez, M.: Beam search for the longest common
subsequence problem. Computers & Operations Research 36(12), 3178–3186 (2009)

7. Carlson, J.M., Chakravarty, A., Gross, R.H.: Beam: a beam search algorithm for
the identification of cis-regulatory elements in groups of genes. Journal of Compu-
tational Biology 13(3), 686–701 (2006)

8. Chen, Y.C., Chao, K.M.: On the generalized constrained longest common subse-
quence problems. Journal of Combinatorial Optimization 21(3), 383–392 (2011)

9. Deorowicz, S., Grabowski, S.: Subcubic algorithms for the sequence excluded lcs
problem. In: Man-Machine Interactions 3. pp. 503–510. Springer (2014)

10. Djukanovic, M., Berger, C., Raidl, G.R., Blum, C.: On solving a generalized con-
strained longest common subsequence problem. In: International Conference on
Optimization and Applications. pp. 55–70. Springer (2020)

11. Djukanovic, M., Raidl, G.R., Blum, C.: A beam search for the longest common sub-
sequence problem guided by a novel approximate expected length calculation. In:
International Conference on Machine Learning, Optimization, and Data Science.
pp. 154–167. Springer (2019)

12. Djukanovic, M., Raidl, G.R., Blum, C.: Finding longest common subsequences:
New anytime A∗ search results. Applied Soft Computing 95, 106499 (2020)

13. Farhana, E., Rahman, M.S.: Constrained sequence analysis algorithms in compu-
tational biology. Information Sciences 295, 247–257 (2015)

14. Gotthilf, Z., Hermelin, D., Landau, G.M., Lewenstein, M.: Restricted lcs. In: Inter-
national Symposium on String Processing and Information Retrieval. pp. 250–257.
Springer (2010)

15. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE transactions on Systems Science and Cybernet-
ics 4(2), 100–107 (1968)

16. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. Jour-
nal of the ACM (JACM) 24(4), 664–675 (1977)

17. Lin, G., Chen, Z.Z., Jiang, T., Wen, J.: The longest common subsequence prob-
lem for sequences with nested arc annotations. Journal of Computer and System
Sciences 65(3), 465–480 (2002)

18. Maier, D.: The complexity of some problems on sequences. Princeton University
(1978)

19. Mousavi, S.R., Bahri, F., Tabataba, F.S.: An enhanced beam search algorithm for
the shortest common supersequence problem. Engineering Applications of Artificial
Intelligence 25(3), 457–467 (2012)

20. Sabuncuoglu, I., Bayiz, M.: Job shop scheduling with beam search. European Jour-
nal of Operational Research 118(2), 390–412 (1999)

21. Storer, J.A.: Data compression: methods and theory. Computer Science Press, Inc.
(1987)

22. Tsai, Y.T.: The constrained longest common subsequence problem. Information
Processing Letters 88(4), 173–176 (2003)

23. Wang, Q., Pan, M., Shang, Y., Korkin, D.: A fast heuristic search algorithm for
finding the longest common subsequence of multiple strings. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 24, pp. 1287–1292 (2010)

ICCS Camera Ready Version 2024
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-63775-9_5

https://dx.doi.org/10.1007/978-3-031-63775-9_5
https://dx.doi.org/10.1007/978-3-031-63775-9_5

