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Abstract. Survival analysis focuses on the prediction of failure time and
serves as an important prognostic tool, not solely con�ned to medicine
but also across diverse �elds. Machine learning methods, especially de-
cision trees, are increasingly replacing traditional statistical methods
which are based on assumptions that are often di�cult to meet. The
paper presents a new global method for inducing survival trees contain-
ing Kaplan�Mayer estimators in leaves. Using a specialized evolutionary
algorithm, the method searches for oblique trees in which multivariate
tests in internal nodes divide the feature space using hyperplanes. Spe-
ci�c variants of mutation and crossover operators have been developed,
making evolution e�ective and e�cient. The �tness function is based on
the integrated Brier score and prevents over�tting taking into account
the size of the tree. A preliminary experimental veri�cation and com-
parison with classical univariate trees was carried out on real medical
datasets. The evaluation results are promising.
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1 Introduction

Is it possible to predict the risk of death after a cancer diagnosis? Can we classify
individuals into risk groups for disease relapse? These are some of the questions
that survival analysis attempts to answer.

What exactly is survival analysis? It is a set of tools, often statistical, which
are able to cope with survival data, in which time of a certain event occurrence
is investigated. A characteristic element of this type of data is censoring, which
means that for some observations the precise time of the event of interest, called
failure, is unknown. Statistical methods often rely on various assumptions that
must be met for the results to be accurate [5]. Machine learning methods, on the
other hand, are not subject to such limitations. They are constantly developed
attempting to successfully address the aforementioned questions.

Tree-based models are among the most commonly used machine learning
methods for analyzing censored data. We can di�erentiate between individual
trees and ensembles. In both cases, univariate (with axis-parallel tests in internal
nodes) and oblique solutions are available, with the former being predominant.
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The construction process for typical survival tree models follows a greedy,
top-down approach. This involves two main phases: induction and pruning. Dur-
ing induction, the focus is on recursively minimizing a speci�ed impurity measure
[20] or maximizing between-node separation [17]. The pruning step typically
involves cost-complexity pruning [3] or its survival extension, split-complexity
pruning [17]. Despite pruning e�orts, the resulting trees often remain overgrown
[13], and adopting more global approaches may be bene�cial.

A di�erent approach, called a conditional inference framework, was intro-
duced by Hothorn et al. [8], and next by Kundu and Ghosh [14], where the split
importance is assessed during node creation, obviating the need for additional
pruning phases. To other univariate survival tree models belong also median re-
gression trees [4] or a non-greedy induction method introduced in [2]. Oblique
trees, in which multivariate tests in internal nodes are in a form of a hyperplane,
belong to less common solutions. Kretowska [12] proposed dipolar survival tree
while oblique random survival forest was introduced by Jaeger et al. [10].

The paper presents a novel method for global inducing survival trees that
include Kaplan�Meier estimators in their leaves. Using a specialized evolutionary
algorithm, the method searches for a whole oblique tree, simultaneously tree
structure and all tests. Speci�c variants of mutation and crossover operators have
been developed to ensure e�ective and e�cient evolution. The �tness function,
based on the integrated Brier score, mitigates over�tting by considering the
model complexity. A preliminary experimental veri�cation was conducted using
�ve medical datasets. The prediction ability was compared with that of two state-
of-the-art survival trees. Additionally, the interpretable model obtained for the
follicular cell lymphoma dataset was discussed in detail.

2 Preliminaries

Survival data We assume having a learning set, L, which consists of M obser-
vations. In survival analysis, the ith observation is described by a set of three
values (xi, ti, δi), where xi is the N -dimensional feature vector, ti is the observed
time, which for uncensored subjects is equal to its failure time, for censored - it
takes values of the follow-up time, δi is the failure indicator, which takes one of
two values: 0 for censored observations or 1 otherwise.

The distribution of the survival time may be represented by a survival func-
tion S(t) = P (T > t), which gives the probability of surviving beyond the time
t. Kaplan�Meier (KM) method [11] is one on the most common nonparametric
estimators of the survival function. If we assume that the events of interest occur
at D distinct times t(1) < t(2) < . . . < t(D), it is calculated as follows:

Ŝ(t) =
∏

j|t(j)≤t

(
mj − dj

mj

)
, (1)

where dj is the number of events at time t(j) and mj is the number of patients
at risk at t(j) (i.e., who are alive or experience the event of interest at t(j)).
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Fig. 1: Univariate decision tree vs. oblique survival tree.

Oblique survival trees A tree structure consists of internal and terminal nodes
called leaves. The purpose of trees is to divide a feature space (internal nodes)
into homogeneous data regions (leaves) for a given task. In case of survival tree,
each terminal node, in our approach, is characterised by the Kaplan�Meier esti-
mator and we aimed at obtaining areas with homogeneous survival experience.

Proposed here, oblique survival trees, divide the feature space by the test of
the form of hyperplane H(w, θ), where w = [w1, . . . , wN ]T , instead of one single
variable xi. Terminal nodes contain the feature vectors corresponding to distinct
regions of the feature space (Figure 1).

Integrated Brier score Taking into account censored survival data, the ex-
act failure time is unknown for some of the observations. Therefore, a direct
comparison of real and predicted survival times is impossible. One of the most
common performance measures is the integrated Brier score [7]. The �rst step
in calculating the IBS is to compute the Brier score as:

BS(t) = 1
M

∑M
i=1(Ŝ(t|xi)

2I(ti ≤ t ∧ δi = 1)Ĝ(ti)
−1

+(1− Ŝ(t|xi))
2I(ti > t)Ĝ(t)−1), (2)

here Ŝ(t|xi) is the KM estimator, Ĝ(t) denotes the KM estimator of the censor-
ing distribution, I(condition) is equal to 1 if the condition is ful�lled and zero
otherwise. Integrated Brier score (IBS) is obtained by:

IBS =
1

max(ti)

∫ max(ti)

0

BS(t)dt, (3)

3 Evolutionary Induction

The proposed evolutionary algorithm extends the global induction of standard
decision trees [13]. In this short paper, we have to concentrate on the elements
crucial to survival analysis and omit more general elements.
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3.1 Representation, Initialization, and Termination Condition

In non-terminal nodes, only oblique tests based on hyperplanes are allowed. It
means that if nominal features are part of the analyzed datasets they need to
be �rst converted (typically into a group of binary features). In every leaf of
survival trees, a KM estimator is situated based on the training objects that
reached that leaf. As the structure of the tree evolves during induction, the loca-
tions of all training data need to be constantly known. From the computational
point of view, it is convenient to store this information smartly (once allocated
table) and, as the modi�cations are often local, update only the corresponding
areas/subtrees. As a consequence, individuals are not encoded but represented
as standard binary trees with additional data structures.

Appropriate population initialization signi�cantly shortens evolution and al-
lows for more e�cient use of resources. The initial trees should be diverse and
preferably similar in size to the target survival trees, which are usually quite
compact. A simple top-down algorithm with a tree height limit is used, which is
activated on random small subsets of the training set. Tests in internal nodes are
created based on randomly selected dipoles - pairs of observations. Dipoles can
be created between uncensored observations and between earlier uncensored ob-
servations and later censored observations. When generating tests, longer dipoles
are preferred (taking into account the di�erence between failure times), because
their intersection means that these observations will be in two disjoint subtrees
(and ultimately leaves). The same mechanism of selecting dipoles and creating
tests based on them is also used in the mutation operator.

Evolutionary induction ends when, after a given number of iterations, no
individual with a better �tness value is found (default 1000 iterations) or when
the limit of the number of iterations is reached (default 5000).

3.2 Genetic Operators

As in a typical evolutionary algorithm [13], two genetic operators are used.
Crossover allows the exchange of genetic material between two individuals. In
the most typical variant, two nodes (including subtrees) are randomly selected
in two trees and the entire subtrees are replaced. It is also possible to: exchange
the tests themselves or conduct a crossover with the best individual so far. Since
crossing in relation to tree structures can be destructive [6], this operator is ap-
plied to trees with a rather low probability (default 0.2). Mutation is the main
mechanism for di�erentiating individuals and is performed on the tree with a
high probability (default 0.8). The tree structure can be modi�ed directly, by
pruning a randomly chosen subtree to a leaf, or by replacing the leaf with an
internal node with a new test. The structure may change indirectly when an
existing test is modi�ed (e.g., by randomly changing or resetting one weight in
the hyperplane) and the corresponding subtree is changed as a result. The key
operation ensuring the e�ciency of exploration of the search space is generating
a new test. The dipole mechanism described earlier is used here, thanks to which
it is possible to direct the search sensibly (by avoiding ine�ective tests).
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3.3 Fitness Function

The �tness function is the most crucial component of any evolutionary algorithm.
In the context of evolutionary machine learning, de�ning functions directly is not
feasible, as the objective of the algorithms is to perform (predict) as e�ectively
as possible not on the training data, but on data that is unavailable during
induction. A common approach is to optimize a measure of solution quality
on the training data, coupled with an additional factor re�ecting model size to
prevent over�tting (regularization). In the case of survival trees, we calculate the
integrated Brier score (IBS) for the training data and determine the tree size
(number of leaves). The �tness function is then de�ned as follows:

Fitness(T ) = IBS(T ) + α(Size(T )− 1), (4)

Adjusting the α value allows for the control of the expected complexity of the
resulting tree. In this formulation, all tests (irrespective of the number of features
used) hold equal importance. If a preference for simpler tests is desired, the Size
term could be made dependent on the number of features used.

4 Preliminary Experimental Validation

The �rst part of the experiments aims to compare the predictive ability of the
evolutionary induced oblique survival tree (EIOST) with two state-of-the-art
univariate survival trees: the conditional inference tree (CItree) [8] and the re-
cursive partitioning for survival trees (RPtree) [3]. Both of these solutions are
publicly available in R packages party and rpart, respectively. The parameters
of the EIOST (see Section 3) were kept constant during all experiments.

The experiments were conducted using �ve publicly available medical datasets
with the percentage of censored cases from 30.4 to 87.3, the number of observa-
tions from 418 to 2231, and 4 to 39 attributes. In Table 1, the IBS calculated
for RPART, CItree, and EIOST are presented. The EIOSTs were induced with
a default value of α = 0.001. This indicates that the reported values of IBS may
not represent the optimal performance for the speci�c dataset, leaving potential
for further enhancement. For this �xed α value, in three for �ve datasets the
proposed method gives the best IBS values. The number of leaves is similar to
other solutions.

The follicular cell lymphoma study (follic) dataset contains information about
541 patients described by four attributes: age, hemoglobin(hgb), clinical stage
(stg), and chemotheraphy (ch). In Figure 2, we can observe the impact of the α
value on the IBS and the number of leaves obtained for the follic dataset. It is
evident that the tree complexity decreases with increasing values of α. We start
with approximately 33 leaves for α = 0.0001 and gradually decrease to only one
leaf at α = 0.1. The best IBS value of 19.9 was achieved for α = 0.005, with
a corresponding number of leaves equals 3. This result clearly outperforms the
one reported in Table 1 and is better than the IBS calculated for the univariate
trees.
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Table 1: Integrated Brier score of three types of survival trees: RPtree, CItree,
and EIOST inducted with α = 0.001; Size denotes the mean number of leaves
and IBS denotes the mean ± standard deviation of IBS calculated over 5 runs
of 10-fold cross-validation multiplied by 100.
Dataset #obs #at %cen RPtree CItree EIOST

IBS Size IBS Size IBS Size

pbc [5] 418 8 61.5 15.42 ± 0.7 12.5 14.65 ± 0.5 6.9 14.50 ± 0.9 8.2
follic [18] 541 4 49.7 20.88 ± 0.4 3.9 20.63 ± 0.5 4 21.43 ± 1.1 9.6
nwtco [19] 668 5 87.3 10.43 ± 0.2 4.1 10.24 ± 0.2 3.8 10.10 ± 0.3 4.1
mgus2 [15] 1384 6 30.4 14.76 ± 0.3 2 14.14 ± 0.3 12.6 13.16 ± 0.3 4.7
peakv02 [9] 2231 39 67.5 16.37 ± 0.1 3.9 16.63 ± 0.1 7.3 16.46 ± 0.6 3.2
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Fig. 2: Accuracy versus interpretability trade-o� for follic dataset.

In Figure 3a, we can see the EIOST induced for the follic dataset with
α = 0.005. The tree divides the feature space into three distinct regions rep-
resented by leaves. L3 represents the region with the worst prognosis, having
a median survival time of 6.17 years, while the best prognosis is for L1, where
the median survival time cannot be calculated. This is evident in Figure 3b,
where three KM survival functions are depicted. The disparities between esti-
mators are statistically signi�cant (log-rank test, p < 0.0001), indicating that
the hyperplanes in the internal nodes have split the feature space into areas with
varying survival experiences.

5 Conclusions

In this paper, we propose a novel method for global induction of oblique survival
trees tailored for analyzing censored data, which includes observations with un-
known exact failure times. An essential aspect of survival analysis tools is the
ability to leverage this incomplete information during the induction process. We
achieve this through specialized evolutionary algorithm with speci�c initializa-
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Fig. 3: EIOST inducted for follic dataset (a) with the corresponding KM survival
functions (b); me denotes the median survival time in the leaf, s indicates the
number of observations (number of censored cases).

tion, variants of genetic operators, as well as the �tness function combining the
integrated Brier score and tree complexity.

Based on �ve real datasets, two characteristics of the survival trees, predictive
ability and model complexity, were compared with two existing univariate tree
models. The preliminary results are encouraging. In three datasets, the predictive
ability of EIOST is better than the results obtained for the competitors, while
the number of nodes is small facilitating the interpretability of the model. The
experiments were conducted with default values of α and the quality of the
oblique survival tree may be improved by adjusting it to a given problem.

One of the major tasks of the resulting tree is the ability to distinguish areas
in the feature space that would contain patients with varying survival experi-
ences. The example of the tree model induced for the follicular cell lymphoma
dataset points out that this objective was achieved. The Kaplan-Meier survival
functions calculated for leaves di�er signi�cantly.

The proposed solution requires further investigation. A possible path is to re-
place the integrated Brier score in the �tness function with other measures, such
as the likelihood method [16], as the IBS can favor tests with higher speci�city
[1]. Additionally, we aim to extend the algorithm to accommodate other types
of survival data, such as discrete survival data or data with competing risks.
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